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Purpose: Human bronchial smooth muscle cells (BSMCs) contribute to airway obstruction and 
hyperresponsiveness in patients with bronchial asthma. BSMCs also generate cytokines and 
matricellular proteins in response to extracellular acidification through the ovarian cancer 
G protein-coupled receptor 1 (OGR1). Cobalt (Co) and nickel (Ni) are occupational agents, 
which cause occupational asthma. We examined the effects of Co and Ni on interleukin-6 (IL-6) 
secretion by human BSMCs because these metals may act as ligands of OGR1.
Methods: Human BSMCs were incubated in Dulbecco’s Modified Eagle Medium (DMEM) 
containing 0.1% bovine serum albumin (BSA) (0.1% BSA-DMEM) for 16 hours and stimulated 
for the indicated time by exchanging the medium with 0.1% BSA-DMEM containing any of the 
metals or pH-adjusted 0.1% BSA-DMEM. IL-6 mRNA expression was quantified via reverse 
transcription polymerase chain reaction (RT-PCR) using the real-time TaqMan technology. IL-6 
was measured using an enzyme-linked immunosorbent assay. Dexamethasone (DEX) was added 
30 minutes before each stimulation. To knock down the expression of OGR1 in BSMCs, small 
interfering RNA (siRNA) targeting OGR1 (OGR1-siRNA) was transfected to the cells and non- 
targeting siRNA (NT-siRNA) was used as a control.
Results: Co and Ni both significantly increased IL-6 secretion in human BSMCs at 300 μM. 
This significant increase in IL-6 mRNA expression was observed 5 hours after stimulation. 
BSMCs transfected with OGR1-siRNA produced less IL-6 than BSMCs transfected with NT- 
siRNA in response to either Co or Ni stimulation. DEX inhibited Co- and Ni-stimulated IL-6 
secretion by human BSMCs as well as pH 6.3-stimulated IL-6 secretion in a dose-dependent 
manner. DEX did not decrease phosphorylation of ERK1/2, p38 MAP kinase, and NF-κB 
p65 induced by either Co or Ni stimulation.
Conclusion: Co and Ni induce secretion of IL-6 in human BSMCs through activation of 
OGR1. Co- and Ni-stimulated IL-6 secretion is inhibited by DEX.
Keywords: cobalt, nickel, proton, cytokine, glucocorticoid, asthma

Introduction
Human bronchial smooth muscle cells (BSMCs) directly contribute to bronchial 
contraction in patients with bronchial asthma. An increase in airway smooth muscle 
mass also plays a pivotal role in airway obstruction and hyperresponsiveness.1 

Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as G protein- 
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coupled receptor 68 (GPR68), has previously been identi
fied as a proton-sensing G protein-coupled receptor 
(GPCR).2 OGR1 seems to regulate the contraction and 
proliferation of airway smooth muscle (ASM).3,4 Modest 
reductions in extracellular pH induce Ca2+ mobilization 
and contraction through OGR1 in human ASM cells.3 The 
benzodiazepine drug lorazepam was identified as a non- 
selective OGR1 positive allosteric modulator by yeast- 
based screens against OGR1.5 Among benzodiazepines, 
Gs-biased agent sulazepam, which selectively activates the 
Gs of the G protein signaling pathway through OGR1, 
promotes ASM relaxation but the balanced lorazepam 
does not.6,7 In future, the synthesis of OGR1 modulators, 
which avoids pro-contractile Gq/11 but activates pro- 
relaxant Gs may lead to the treatment of obstructive airway 
diseases such as asthma.4

Human BSMCs generate cytokines under the stimula
tion of different environmental factors, suggesting that 
BSMCs may be directly involved in airway 
inflammation.8–17 IL-6 is a pleiotropic cytokine that can 
be produced by human BSMCs in response to various 
inflammatory stimuli8,13,18,19 and cigarette smoke20 as 
well as by many other kinds of cells. IL-6 induces mast 
cell proliferation,21 expansion of Th2 cells,22,23 and mucus 
hypersecretion.24 Increased levels of IL-6 have been found 
in the serum,25 induced sputum,26 and bronchoalveolar 
lavage fluid (BALF)27,28 of asthmatic patients. Serum IL- 
6 concentration is negatively associated with pulmonary 
function in patients with obese asthma.29 Moreover, the 
level of IL-6 in BALF is higher in patients with non- 
allergic asthma than in patients with allergic asthma.30 

These findings suggest that IL-6 may play an important 
role in the pathogenesis of asthma, particularly in obese or 
non-allergic asthma. Interestingly, extracellular acidifica
tion induces secretion of interleukin-6 (IL-6),8 interleukin- 
8 (IL-8)/ C-X-C motif chemokine ligand 8 (CXCL8),9 and 
connective tissue growth factor (CTGF)10 in addition to 
cell contraction3 through OGR1 activation in human 
BSMCs.

Hard metal is an alloy of tungsten carbide in a matrix 
of cobalt (Co). Nickel (Ni) is sometimes added to hard 
metal as a matrix in addition to Co. Hard metal dust is 
known to be associated with occupational asthma (OA), 
which has been termed hard metal asthma, since the first 
report of the development of asthma in a patient working 
in a tungsten carbide plant.31 Occupational exposure to 
low-molecular-weight (LMW) agents such as acid anhy
drides and platinum salts induces specific IgE production 

and these agents seem to cause OA via IgE-mediated 
mechanisms.32 Asthma caused by Co sensitization is 
observed among Co production workers, diamond pol
ishers, glassware manufacturers, and manufacturer of auto
motive engine valves.33 Evidence suggests that Co and Ni 
may be etiologic agents of hard metal asthma. Bronchial 
provocation challenges with Co induce either early or late 
asthmatic responses or both.34,35 These facts suggest that 
Co and Ni induce the pathogenesis of asthma by immuno
logical mechanisms. Although IgE specific for these 
metals can be demonstrated in some patients with hard 
metal asthma,36,37 their involvements in the pathogenesis 
are unclear. This is because IgE-independent immunologi
cal mechanisms are expected to contribute to the patho
genesis of OA caused by LMW sensitizers such as 
diisocyanate although specific IgE is detected in diisocya
nate asthmatics.38 Cell-mediated immunity39,40 has also 
been suggested to play a role in pathogenesis of hard 
metal asthma. However, the clinical features and patho
genesis of hard metal asthma are still largely unknown. 
Although either eosinophilic or neutrophilic inflammation 
can be predominant in induced sputum samples from 
patients with OA, neutrophilic inflammation is more com
mon in OA induced by LMW agents.41

Recently, metals including iron (Fe), zinc (Zn), Co, Ni, 
and manganese (Mn) have been shown to induce intracel
lular Gq-coupled inositol phosphate signals in OGR1- 
expressing cells and osteoclasts through OGR1.42–44 This 
suggests that metals such as Fe, Zn, Co, Ni, and Mn are 
novel OGR1 agonists, which can individually activate 
OGR1 in neutral pH conditions. These metals may directly 
act on BSMCs and induce airway inflammation.

This study was initiated to elucidate the non- 
immunological mechanisms of OA caused by metals. 
Specifically, we examined OGR1-mediated IL-6 produc
tion from human BSMCs stimulated by Co and Ni and the 
effect of dexamethasone (DEX) on IL-6 production to 
determine the effect of glucocorticoids (GCs), i.e., the 
most effective therapeutic agents for asthma.

Materials and Methods
Cells and Reagents
Human BSMCs (catalog No. CC-2576) originated from 
non-diseased individuals were purchased from Lonza 
(Walkersville, MD). Cells were grown in the complete cul
ture medium (Lonza), which was composed of smooth mus
cle cell basal medium supplemented with human epidermal 
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growth factor, insulin, human fibroblast growth factor β, 5% 
fetal bovine serum, gentamicin, and amphotericin B, under 
a humidified atmosphere of 95% air plus 5% CO2 at 37°C, 
as previously reported.9,10 Three to six passages of BSMCs 
were used in the experiments. Human BSMCs were cultured 
in collagen I-coated 12-well plates (BioCoatTM, Corning 
International K.K., Tokyo, Japan) for enzyme-linked immu
nosorbent assay (ELISA) and in collagen I-coated 6-well 
plates (BioCoatTM) for real-time RT-PCR using TaqMan 
probes. Fatty acid-free bovine serum albumin (BSA) was 
purchased from EMD chemicals (San Diego, CA). Trypan 
blue solution, YM-254890, cobalt (II) chloride hexahydrate, 
nickel (II) chloride hexahydrate, chromium (Cr) (III) chlor
ide hexahydrate, manganese (II) chloride tetrahydrate, and 
iron (III) chloride hexahydrate were purchased from 
FUJIFILM Wako Pure Chemical (Osaka, Japan) and dis
solved in ultra-pure water (H2O). Goat anti-rabbit IgG-HRP 
was from GE Healthcare Japan Corporation (Tokyo, Japan). 
Antibodies for phospho-p44/42 MAPK (ERK1/2) (Thr202/ 
Tyr204) (D13.14.4E), phospho-p38 MAPK (Thr180/ 
Tyr182) (D3F9), phospho-NF-κB p65 (Ser536) (93H1), 
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
(14C10) were from Cell Signaling Technology (Danvers, 
MA). Dexamethasone (DEX), Dulbecco’s Modified Eagle 
Medium (DMEM, low glucose) and all other chemicals 
were purchased from Sigma-Aldrich Japan (Tokyo, Japan).

Cell Stimulation and ELISA for IL-6 and 
IL-8
Cultured human BSMCs were serum deprived for 16 hours 
in 0.1% BSA-DMEM and then stimulated by replacing the 
medium with 0.1% BSA-DMEM containing any of the 
metals: Co, Ni, Mn, Cr, and Fe or the control vehicle 
(0.1% H2O). To investigate the effect of DEX on cytokine 
secretion, DEX or a control vehicle (0.1% ethanol) was 
added to the medium 30 minutes before replacing the 
medium containing Co, Ni, and DEX or control vehicles. 
To evaluate the time course of IL-6 secretion, BSMCs 
were incubated in 0.1% BSA-DMEM containing Ni (300 
μM), Co (300 μM), or the control vehicle for 6, 12, and 24 
hours. We selected 300 μM as a concentration of Ni and 
Co that would induce sufficient cytokine production with
out toxicity. In some experiments, human BSMCs were 
stimulated by replacing the medium with pH-adjusted 
0.1% BSA-DMEM (pH 6.3 or 7.4) instead of the medium 
containing metals. In these experiments, the pH of the 
DMEM solution containing 25 mM HEPES, 27 mM 

NaHCO3, and 0.1% BSA was adjusted to pH 6.3 or 7.4 
by titration with HCl or NaOH. To investigate the effects 
of DEX on IL-6 secretion, DEX was also added 30 min
utes before stimulation. The cell culture supernatants were 
collected and stored at −30°C. Concentrations of IL-6 and 
IL-8 were measured by ELISA (Duo Set ® ELISA devel
opment system, R&D Systems, Minneapolis, MN).

Quantitative RT-PCR Using Real-Time 
TaqMan Technology
To examine IL-6 mRNA expression, human BSMCs were 
incubated for 5 hours in 0.1% BSA-DMEM containing 
300 μM Ni, 300 μM Co, or the control vehicle. To inves
tigate the effect of DEX on IL-6 mRNA expression, DEX 
(100 nM) or the control vehicle was added to the medium 
30 minutes before replacing the medium containing Ni, 
Co, and DEX or control vehicles. Total RNA was isolated 
from BSMCs in 6-well plates using the RNeasyⓇ Plus 
Mini Kit (Qiagen, Hilden, Germany) or Direct-zolTM 

RNA MiniPrep (Zymo Research, Irvine, CA) according 
to the manufacturer’s instructions. Up to 2.5 g of total 
RNA was reverse-transcribed using random priming and 
reverse transcriptase (SuperScriptTM VILOTM Master Mix, 
Thermo Fisher Scientific, Waltham, MA). To evaluate 
expression levels of OGR1, IL-6, IL-8, and GAPDH 
mRNA, quantitative RT-PCR was performed using real- 
time TaqMan technology with a StepOneTM Real-Time 
PCR system (Thermo Fisher Scientific). TaqMan probes 
specific for human OGR1 (Hs00268858_s1), IL-6 
(Hs00174131_m1), IL-8 (Hs00174103_m1), and GAPDH 
(Hs02758991_g1) were purchased from Thermo Fisher 
Scientific. The expression levels of IL-6, IL-8, and 
OGR1 mRNA were normalized to GAPDH mRNA expres
sion levels, as previously reported.8

Transfection of Small Interfering RNA
Small interfering RNA (siRNA) targeting OGR1 (OGR1- 
siRNA, L-005591-00-0005) and non-targeting siRNA 
(NT-siRNA, D-001810-10-05) as a control were purchased 
from Thermo Fisher Scientific. OGR1-siRNA and NT- 
siRNA were transfected into cells at a final concentration 
of 3 nM using RNAiMAX reagent (Thermo Fisher 
Scientific) according to the manufacturer’s instructions. 
BSMCs suspended in the complete culture medium with
out gentamicin and amphotericin B were mixed with 
siRNA and the RNAiMAX reagent and then cultured in 
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6- or 12-well plates for 46 hours before further 
experiments.

Evaluation of Cell Viability and Cell 
Proliferation
Cell viability was assessed by trypan blue staining. Cell 
proliferation was measured by detecting bromodeoxyuri
dine (BrdU) incorporated into DNA during cell prolifera
tion. Cell-based ELISA kit for measuring BrdU 
incorporation in situ (CycLex Cellular BrdU ELISA Kit 
Ver.2, Medical & Biological Laboratories, Tokyo, Japan) 
was used according to the manufacturer’s protocol. 
Namely, BSMCs cultured in 96 well plates were incubated 
in 0.1% BSA-DMEM for 16 hours, then Ni, Co, or control 
vehicle was added, and the cells were incubated for addi
tional 24 hours. BrdU was added simultaneously when 
BSMCs were stimulated with metals. The incorporation 
of BrdU into DNA was measured at an absorbance of 
450 nm.

Measurement of Intracellular Ca2+ 

Concentration
Intracellular Ca2+ concentration was measured as previously 
described.45–47 After a 20 minutes incubation of the cells 
with 1 μM Fura-2/AM at 37°C in Ham’s F-10 medium 
containing 0.1% BSA, the cells were washed twice with ice- 
cold HEPES-buffered medium composed of 20 mM 
HEPES, 134 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 
1.2 mM MgSO4, 2 mM CaCl2, 2.5 mM NaHCO3, 5 mM 
glucose, and 0.1% BSA and suspended in the same medium. 
Intracellular Ca2+ concentration ([Ca2+]i) was measured in 
cell suspension under gentle stirring condition in HEPES- 
buffered medium. The Fura 2-loaded cells were warmed for 
3 minutes at 37°C and the [Ca2+]i change was monitored in 
the intensities of 540 nm fluorescence obtained by the two 
excitation wavelengths (340 nm and 380 nm), which were 
monitored by CAF-100 fluorometer (JASCO, Tokyo, 
Japan).47 The [Ca2+]i change by the addition of Ni or Co 
was shown as Δfluorescence ratio (difference between peak 
and basal fluorescence ratio).

Western Blotting
The incubation was terminated by adding 0.1 mL of the cold 
lysis buffer composed of 50 mM Tris (pH 8.0), 150 mM 
NaCl2, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 
sulfate, 1% NP-40 substitute, 1.04 mM AEBSF, 0.8 μM 
aprotinin, 0.04 mM bestatin, 14 μM E-64, 20 μM leupeptin, 

and 15 μM pepstatin A and immediately harvested from the 
6-well plates with cell scrapers. The recovered lysate was 
incubated for 30 minutes on ice and centrifuged at 17,800 
xg for 15 minutes. The supernatant was then analyzed by 
Western blotting with specific antibodies for phospho-p44/42 
MAPK (ERK1/2) (Thr202/Tyr204), phospho-p38 MAPK 
(Thr180/Tyr182), phospho-NF-κB p65 (Ser536), and 
GAPDH as previously described.8,9

Statistical Analysis
Almost all experiments were performed independently at 
least three times. The results of multiple observations are 
expressed as means ± standard error of the mean (SEM).

When raw data were standardized in each independent 
experiment, the standardized data were also shown as means 
± SEM. The data were analyzed using Excel statistics software 
(SSRI, Tokyo, Japan). Differences between the mean values of 
two independent groups were determined using Student’s 
t-test. The Mann-Whitney test was also used to compare the 
two groups of nonparametric data. In analyses of more than 
two groups, analysis of variance was used to examine the 
significance of differences, and post-hoc analysis (Bonferroni 
test) was performed when significance was found. The 
Kruskal-Wallis test was also used to compare the nonpara
metric data in multiple groups. Steel test was performed 
when significance was found. P values less than 0.05 were 
considered significant.

Results
Effects of Co, Ni, Fe, Mn, and Cr on IL-6 
and IL-8 Production by Human BSMCs
After 24 hours, as measured by ELISA, Co and Ni induced 
significant secretion of IL-6 compared with the control vehicle. 
Mn induced a low and non-significant amount of IL-6. Neither 
Cr nor Fe induced substantial IL-6 secretion (Figure 1A). 
A dose dependency of the metal effects was observed for Ni 
and Co (Figure 1B and C). A significant high level of IL-6 
secretion was observed at 6 hours after the addition of either Co 
or Ni and gradually increased until 24 hours (Figure 1D). The 
absolute values of IL-6 secreted by Co- or Ni-stimulated 
BSMCs varied across experiments according to the cell con
dition or the cell lot number. The mean value of IL-6 secreted 
by BSMCs was 1.42 ng/mL under Co stimulation and 1.36 ng/ 
mL under Ni stimulation. The mean value of IL-6 secreted by 
BSMCs under incubation with the control vehicle was 0.09 ng/ 
mL. As measured by RT-PCR, significant increases in IL-6 
mRNA expression were observed in Co- and Ni-stimulated 
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human BSMCs compared to that in control vehicle-treated 
cells (Figure 1E). Co- and Ni- stimulation significantly 
enhanced IL-8 production in human BSMCs compared to 
unstimulated controls (Figure 2A). The mean value of IL-8 in 
the supernatant 24 hours after Co (300 μM)- or Ni (300 μM)- 
stimulation were 2.56 ng/mL (Co) and 1.56 ng/mL (Ni) respec
tively, while that in the control vehicle was 0.34 ng/mL. The 
expression levels of IL-8 mRNA were also significantly 
increased 5 hours after Co and Ni stimulation compared to 
the unstimulated control (Figure 2B).

OGR1 is Involved in Co- and 
Ni-Stimulated IL-6 Production in Human 
BSMCs
In our previous study, only OGR1 mRNA was practically 
detected in human BSMCs among four kinds of GPCRs, 
namely OGR1, G protein-coupled receptor 4 (GPR4), T-cell 
death-associated gene 8 (TDAG8), and G2A8 and the 
expression level of OGR1 mRNA after treatment with 
OGR1-siRNA was decreased to about 5% of the level 
found after treatment with NT-siRNA in BSMCs.9 Human 

BSMCs under Co and Ni stimulation were transfected with 
OGR1-siRNA to decrease OGR1 expression in this study. 
We confirmed the knockdown efficacy of OGR1-siRNA as 
well. OGR1 mRNA expression in BSMCs transfected with 
OGR1-siRNA was considerably decreased compared with 
NT-siRNA transfected BSMCs (Figure 3A). IL-6 secretion 
under Co and Ni stimulation by human BSMCs transfected 
with OGR1-siRNA was significantly decreased compared 
with that of human BSMCs transfected with NT-siRNA 
(Figure 3B and C). The effect of OGR1 knockdown on IL- 
8 production from BSMCs was also examined similarly. In 
this case, IL-8 secretion seemed to be lower in BSMCs with 
OGR1 knockdown than in cells without knockdown in both 
Ni- and Co-stimulation. However, these differences were not 
necessarily significant, at least with respect to IL-8 produc
tion by Ni-stimulation (Figure 3D and E).

Toxicity of Co and Ni on Human BSMCs 
in Serum-Deprived Media
To investigate toxicity or lethal effects of Co or Ni on 
BSMCs in serum-deprived media, BSMCs were stained by 

Figure 1 Effect of metals on IL-6 secretion by human bronchial smooth muscle cells. (A) Human bronchial smooth muscle cells (BSMCs) were stimulated with 300 μM of 
the metal Cr, Mn, Fe, Ni, or Co for 24 hours. Co and Ni induced substantial secretion of IL-6, but not Mn, Cr, and Fe compared with the control vehicle. The amount of IL-6 
secreted by each individual metal-stimulated BSMCs was standardized to that secreted by Co-stimulated cells (mean ± SEM, n=4; *P<0.05). Ni (B) and Co (C) induced 
substantial secretion of IL-6 in a dose-dependent manner after 24-hour-incubation. The amount of IL-6 in each culture condition was standardized to that secreted by Ni 
(300 μM) or Co (300 μM)-stimulated cells (mean ± SEM, n=4; *P<0.05). (D) Co (300 μM) and Ni (300 μM) induced a substantial amount of IL-6 secretion at 6 hours. The 
level of IL-6 in the cell culture supernatant gradually increased until 24 hours after either stimulation. The IL-6 amount under Co and Ni stimulation was significantly higher 
than that secreted by non-stimulated BSMCs (Control: control vehicle alone) at 6, 12, and 24 hours after either stimulation. Data were standardized to the amount of IL-6 
secreted by Co-stimulated BSMCs at 24 hours (mean ± SEM, n=6; **P<0.01). (E) The expression of IL-6 mRNA in Co (300 μM) and Ni (300 μM)-stimulated human BSMCs 
significantly increased at 5 hours compared with that in the cells incubated with the control vehicle. IL-6 mRNA was normalized to the expression of GAPDH mRNA. Data 
were standardized to IL-6 mRNA expression in Co (300 μM)-stimulated BSMCs (mean ± SEM, n=5; **P<0.01).
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0.2% trypan blue after 16 hour-preincubation in 0.1% BSA- 
DMEM and further 24 hour-incubation with 300 μM Ni, 300 
μM Co, or the control vehicle (H2O). Cell viability (mean, 
n=6) was 98% after incubation with 300 μM Ni, 96% with 
300 μM Co, and 95% with the control vehicle.

Effects of Co and Ni on the Proliferation 
of Human BSMCs
Proliferation of human BSMCs was assessed by BrdU 
assay. The incorporation of BrdU into DNA after 24 
hours of Ni- or Co-stimulation did not increase. On the 
contrary, Ni and Co significantly decreased the incorpora
tion of BrdU into DNA compared to the control vehicle 
(Figure 4).

Effects of DEX on IL-6 Production by 
Human BSMCs Stimulated by Co and Ni
In our previous study, DEX inhibited acidic pH-stimulated 
IL-8 production by human BSMCs in a dose-dependent 
manner. The inhibition was significant at a DEX concen
tration ≥1 nM. DEX also significantly inhibited IL-8 
mRNA expression in pH 6.3-stimulated human BSMCs.9 

DEX inhibited Ni- and Co-stimulated IL-6 production in 
a dose-dependent manner. This inhibition was significant 
at a DEX concentration ranging between 1 and 1000 nM 
(Figure 5A and B). The expression of IL-6 mRNA in 

human BSMCs increased after a 5 hour-incubation with 
the medium containing Ni or Co. DEX significantly inhib
ited Ni- and Co-induced IL-6 mRNA expression in human 
BSMCs (Figure 5C and D).

Comparison of IL-6 Secretion by Human 
BSMCs Under Co, Ni, and Acidic pH 
Stimulation and the Effect of DEX on IL-6 
Production by Acidic pH-Stimulated Cells
The amount of IL-6 secreted by both Co- and Ni- 
stimulated cells seemed slightly lower than that secreted 
by acidic pH-stimulated cells, but the difference was not 
significant (Figure 6A). DEX inhibited IL-6 secretion by 
acidic pH-stimulated human BSMCs as well as that by Ni- 
and Co-stimulated cells in a dose-dependent manner. The 
inhibition was significant at a 1–1000 nM DEX concentra
tion (Figure 6B).

Effects of Co and Ni on [Ca2+]i Changes 
and the Involvement of Gq/11-Proteins in 
[Ca2+]i Changes
The [Ca2+]i change was monitored in the intensities of 540 
nm fluorescence obtained by the two excitations (340 nm 
and 380 nm) and the increase of [Ca2+]i was shown as 
Δfluorescence ratio (340/380). Addition of Ni (300 μM) or 

Figure 2 Effects of metals on IL-8 production by human BSMCs. (A) Human bronchial smooth muscle cells (BSMCs) were stimulated with 300 μM of the Metals: Cr, Mn, Fe, 
Ni, or Co for 24 hours. Co and Ni induced substantial secretion of IL-8, but not Mn, Cr, and Fe compared with the control vehicle (Control). The amount of IL-8 secreted by 
each individual metal-stimulated BSMCs was standardized to that secreted by Co-stimulated cells (mean ± SEM, n=4; *P<0.05). (B) The expression of IL-8 mRNA in Co (300 
μM) and Ni (300 μM)-stimulated human BSMCs significantly increased at 5 hours compared with that in the cells incubated with the control vehicle (Control). IL-8 mRNA 
was normalized to the expression of GAPDH mRNA. Data were standardized to IL-8 mRNA expression in Co (300 μM)-stimulated BSMCs (mean ± SEM, n=4; *P<0.05).
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Co (300 μM) increased [Ca2+]i of BSMCs and Gq/11 inhi
bitor, YM-254890 (100 nM) significantly inhibited the 
increase of [Ca2+]i (Figure 7A–C).

Activation of Extracellular Signal- 
Regulated Kinase 1/2 (ERK1/2), p38 
Mitogen-Activated Protein Kinase (p38 
MAPK), and Nuclear Factor-Kappa 
B (NF-κB) by Ni- and Co-Stimulation
Phosphorylation of ERK1/2 and p38 MAPK was 
assessed by Western blotting using specific antibodies 
for phosphorylated ERK1/2, phosphorylated p38 
MAPK, phosphorylated NF-κB (p65), and GAPDH. 
ERK1/2 and p38 MAPK are activated by their phosphor
ylation. We examined endogenous levels of ERK1 and 
ERK2 when they were dually phosphorylated at Thr202 

and Tyr204 of ERK1 (Thr185 and Tyr187 of ERK2) and 
singly phosphorylated at Thr202. Endogenous levels of 
p38 MAPK only when phosphorylated at Thr180 and 
Tyr182 were also analyzed. Addition of Ni (300 μM) 
and Co (300 μM) increased phosphorylated ERK1/2 and 
phosphorylated p38 MAPK. The level of these phos
phorylated kinases reached a maximum at 10 minutes 
after each stimulation and decreased at 30 and 60 min
utes. NF-κB p65 was detected only when it was phos
phorylated at Ser536. Addition of Ni (300 μM) and Co 
(300 μM) also increased the amount of NF-κB p65 
phosphorylated at Ser536. IκB kinase-α and IκB 
kinase-β have been implicated in the direct phosphoryla
tion of p65 at Ser536 and this phosphorylation seems to 
be associated with transcriptional activity.48 The phos
phorylated NF-κB p65 reached the maximum level at 30 
minutes after Ni- or Co-stimulation (Figure 8A).

Figure 3 Possible involvement of OGR1 in Co- or Ni-stimulated IL-6 secretion by human bronchial smooth muscle cells. Human bronchial smooth muscle cells (BSMCs) 
were transfected with non-targeting small interfering RNA (NT-siRNA) or siRNA specific for ovarian cancer G protein-coupled receptor 1 (OGR1-siRNA). (A) The 
expression level of OGR1 mRNA 46 hours after the siRNA transfection in BSMCs was analyzed by quantitative RT-PCR performed using real-time TaqMan technology. 
OGR1 mRNA expression in BSMCs transfected with OGR1-siRNA was significantly decreased to less than 20% compared with that in NT-siRNA-transfected BSMCs. 
OGR1 mRNA was normalized to the expression of GAPDH mRNA (mean ± SEM, n=3; **P<0.01). At 46 hours after transfection, human BSMCs were incubated in 0.1% 
BSA-DMEM containing Ni (300 μM), Co (300 μM), or the control vehicle (0.1% H2O: Control) for an additional 24 hours. (B) Ni-stimulated IL-6 secretion was decreased in 
human BSMCs transfected with OGR1-siRNA compared with that in human BSMCs transfected with NT-siRNA. (C) Co-stimulated IL-6 secretion was also suppressed in 
human BSMCs transfected with OGR1-siRNA compared with that transfected with NT-siRNA. Data are expressed as percentages of the IL-6 values in the culture 
supernatant of BSMCs transfected with NT-siRNA after 24-hour stimulation by Ni or Co (mean ± SEM, n=8; **P<0.01). (D) Ni-stimulated IL-8 secretion tended to decrease, 
but the suppression was not significant in human BSMCs transfected with OGR1-siRNA compared with that in human BSMCs transfected with NT-siRNA. (E) Co-stimulated 
IL-8 secretion was significantly suppressed in human BSMCs transfected with OGR1-siRNA compared with those transfected with NT-siRNA. Data are expressed as 
percentages of the IL-8 values in the culture supernatant of BSMCs transfected with NT-siRNA after 24-hour stimulation by Ni or Co (mean ± SEM, n=8; NS, not significant; 
**P<0.01).
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Effects of DEX on Ni- and Co-Stimulated 
Activation of ERK1/2, p38 MAPK, and 
NF-κB p65
After 30 minutes incubation with DEX (100 nM) or con
trol vehicle (0.1% ethanol), BSMCs were stimulated by Ni 
(300 μM) or Co (300 μM). Ni and Co increased phos
phorylated ERK1/2, p38 MAPK at 10 minutes and phos
phorylated NF-κB p65 at 30 minutes after the metal 
stimulation. DEX did not decrease the phosphorylation 
(Figure 8B).

Effects of DEX on the Expression of 
OGR1 mRNA in Human BSMCs
OGR1 mRNA expression was analyzed by quantitative 
RT-PCR 5 hours after Ni, Co, or control vehicle (H2O) 
stimulation. DEX (100 nM) or the control vehicle (0.1% 
ethanol) was added 30 minutes before metal stimulation. 
OGR1 mRNA expression was slightly decreased after 5.5 
hours in the presence of DEX compared to the absence of 
DEX, but the differences were not significant (Figure 8C).

Discussion
It has been demonstrated that GPCRs, including OGR1, 
GPR4, and TDAG8/GPR65, sense extracellular protons 
and mediate the cellular actions induced by an alkaline 
and an acidic pH ranging from 8 to 6 through histidine 
residues in a variety of cell types.2,49–51 We have pre
viously reported that OGR1 expression is required to 
develop allergic asthma in mice.52 Bronchial asthma is 
a disease characterized by chronic airway inflammation, 
airway hyperresponsiveness, and reversible airway 
obstruction. The pathogenesis in most asthmatics is char
acterized by eosinophilic airway inflammation, so-called 
type 2 inflammation, and inhaled GCs (inhaled corticos
teroids: ICS) are the most effective anti-inflammatory 
therapy for asthma.53 However, in some asthmatics, espe
cially obese asthmatics and some occupational asthmatics, 
there is a phenotype wherein the eosinophilic airway 
inflammation is not prominent but neutrophilic airway 
inflammation is predominant.54

Human BSMCs are increasingly recognized as an impor
tant source of inflammatory cytokines, as well as the effector 
cells of bronchoconstriction.55–62 Among these cytokines, 
IL-6, IL-8, and IL-17 may be particularly associated with 
non-type 2 airway inflammation.54,63 Our previous studies 
showed that extracellular acidification induced human 
BSMCs to generate IL-6, IL-8, and CTGF via OGR1 
activation.8–10 In the present study, BSMCs, in which the 
expression of OGR1 was decreased by OGR1-targeting 
siRNA, released less IL-6 in response to Co or Ni than the 
control BSMCs, suggesting that metals such as Co and Ni 
may stimulate human BSMCs and induce IL-6 secretion 
through OGR1-mediated intracellular signal transduction. 
However, the results for IL-8 were not as clear as those for 
IL-6. Additionally, the degree of cytokine suppression by 
OGR1-siRNA seemed to be weaker in Ni stimulation than 
in Co stimulation. These results suggest that Ni-stimulated 
cytokine production in BSMCs, especially IL-8 production, 
may well be mediated by mechanisms other than OGR1 
activation. The amount of IL-6 released by Co- and Ni- 
stimulated cells was substantial and was about half of that 
produced by acidic pH (pH 6.3)-stimulated BSMCs, suggest
ing that both Co and Ni can activate OGR1 in human BSMCs 
to a level comparable to pH 6.3. Altogether, our results 
suggest that Co and Ni act as OGR1 ligands in the airway 
and may elicit non-eosinophilic or non-type 2 inflammation 
independent of sensitization-mediated immune response and 
environmental acidification. The findings shed light on new 

Figure 4 Effects of Ni and Co on the incorporation of BrdU into DNA in BSMCs. 
BrdU incorporation for 24 hours in Ni- or Co-stimulated BSMCs was measured as 
absorbance at 450 nm (A450). As a control (Control), BrdU incorporation in the 
control vehicle (0.1% H2O)-stimulated BSMCs was used (mean ± SEM, n=9; 
**P<0.01).
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mechanisms mediating the development of OA caused by Co 
or Ni exposure.

Interestingly, certain alleles in the IL-6 receptor gene 
are associated with increased asthma susceptibility.64 

Activation of the IL-6 pathway has been suggested to be 
involved in neutrophilic and mixed granulocytic airway 
inflammation in asthmatic patients.65,66 A longitudinal 
analysis confirmed an exacerbation-prone asthma pheno
type characterized by features of metabolic dysfunction. 
Blood measures of IL-6 concentrations but not eosinophil 
counts, were significantly associated with exacerbation- 
prone asthma, and baseline levels of IL-6 and eosinophils 
predicted exacerbations.67 In a recent study, the classifica
tion of asthmatic patients with bronchial epithelial IL-6 
trans-signaling pathway activation as a novel subset was 

advocated. This phenotype is characterized by an 
increased exacerbation rate, type 2 airway inflammation- 
independent eosinophilia, and epithelial dysfunction.68

GCs are the most effective anti-inflammatory drugs for 
chronic airway inflammation in asthmatics, and ICS are widely 
used for the long-term management of bronchial asthma. GC 
resistance in asthmatic patients not responding well to GC 
therapy is important for understanding the pathogenesis of 
severe asthma. We have shown that DEX inhibited IL-8 secre
tion by acidic pH-stimulated human BSMCs.9 Similarly, DEX 
inhibited IL-6 secretion by Co- and Ni-stimulated BSMCs as 
well as that by acidic pH-stimulated BSMCs in a dose- 
dependent manner. Moreover, like IL-6 protein, IL-6 mRNA 
expression in Co- and Ni-stimulated BSMCs was inhibited by 
DEX, showing that DEX inhibited IL-6 gene transcription 

Figure 5 Effect of DEX on Co- and Ni-stimulated IL-6 production by human bronchial smooth muscle cells. Human bronchial smooth muscle cells (BSMCs) were pretreated 
with dexamethasone (DEX, 1–1000 nM) or 0.1% ethanol for 30 min. The cells were further incubated in 0.1% BSA-DMEM containing Ni (300 μM), Co (300 μM), or the 
control vehicle (0.1% H2O: Control) with DEX or 0.1% ethanol for 24 hours. DEX inhibited IL-6 secretion by Ni (A)- and Co (B)-stimulated human BSMCs in a dose- 
dependent manner. The inhibition was significant at a DEX concentration of 1–1000 nM. Data are expressed as percentages of IL-6 values in the culture supernatant of Ni- 
and Co-stimulated BSMCs without DEX (mean ± SEM, n=4; *P<0.05). Total RNA was extracted from BSMCs at 5 hours after incubation with Ni (300 μM), Co (300 μM), or 
the control vehicle (0.1% H2O). DEX (100 nM) significantly inhibited IL-6 mRNA expression in human BSMCs at 5 hours after Ni (C)- and Co (D)-stimulation. The 
expression levels of IL-6 mRNA were standardized to expression levels of GAPDH mRNA. Data are expressed as percentages of IL-6 mRNA expression at 5 hours after Ni- 
or Co-stimulation (mean ± SEM, n=4; *P<0.05). 
Abbreviations: EtOH, 0.1% ethanol as a solvent for DEX.
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following OGR1 activation. Since the inhibition of cytokine 
production by DEX is not specific to OGR1-mediated stimula
tion, and since the pretreatment time with DEX was 30 minutes 
prior to the application of Ni or Co stimulation in the present 
study, it is unlikely that DEX reduced IL-6 production by 
decreasing the expression of OGR1 in BSMCs. In fact, at the 
mRNA level, the expression of OGR1 mRNA might be 
slightly decreased in unstimulated BSMCs 5.5 hours after the 
start of DEX treatment, but the difference was not significant. 
There was no DEX-induced decrease in OGR1 mRNA expres
sion in Co- or Ni-stimulated BSMCs. Co and Ni stimulation 
elicited activation of OGR1-linked Gq, increased intracellular 
Ca concentration and phosphorylation of ERK1/2, p38MAPK, 
and NF-κB p65. Since these phosphorylation pathways are 
likely to be involved in OGR1-mediated IL-6 production, we 
examined the effects of DEX on phosphorylation. 
Phosphorylation of ERK1/2, p38 MAPK, and NF-κB p65 
was not inhibited by DEX. Considering the mechanism of 
action of DEX in suppressing IL-6 production, it is expected 
that it mainly acts in the step after the transcription factor binds 
to the target DNA by extracellular stimulation,53 but this will 
be a subject of future research.

Hypertrophy and hyperplasia of BSMCs are characteris
tic pathological findings of severe asthma.1,69 In the present 
study, ERK1/2 in BSMCs were phosphorylated and acti
vated by Co and Ni stimulation, suggesting that these 
metal stimuli might promote cell proliferation of BSMCs. 

However, Co (300 μM) and Ni (300 μM) did not promote 
the incorporation of BrdU into DNA, and we could not 
prove that these metals promote the proliferation of 
BSMCs. Although the concentrations of Co and Ni used in 
the serum-free culture medium in this experiment did not 
show toxicity that induced cell death, we cannot deny the 
possibility that they had an adverse effect on the intracellular 
mechanisms involved in cell proliferation, and we believe 
that this issue requires further investigation.

One limitation in our study is that the experiments 
were conducted using human BSMCs originated from 
a non-diseased individual. No data were obtained to 
show that Co or Ni is associated with proliferation or 
hypertrophy of BSMCs, which are factors in airway remo
deling. If IL-6 secretion via OGR1 activation is involved 
in neutrophilic airway inflammation in OA, then our 
results might support the usefulness of ICS in the pharma
cotherapy of OA caused by some metals. In future, it 
would be important to investigate whether DEX inhibits 
OGR1-mediated IL-6 secretion in BSMCs isolated from 
patients with steroid-resistant asthma or OA, because the 
BSMCs of patients with severe asthma seem resistant to 
GCs.70–72 Since the inhibitory effect of GCs on cytokine 
production in BSMCs is not specific to OGR1-mediated 
cytokine production, further elucidation of the mechanism 
by which GCs inhibit cytokine production at the cellular 
level is necessary.

Figure 6 Comparison of IL-6 secretion by human bronchial smooth muscle cells stimulated by acidic pH, Ni, and Co. (A) Human bronchial smooth muscle cells (BSMCs) 
cultured in collagen-coated 12-well plates were serum deprived for 16 hours in 0.1% BSA-DMEM. The cells were stimulated by replacing the culture medium with 0.1% BSA- 
DMEM containing Ni (300 μM), Co (300 μM), the control vehicle (0.1% H2O: Control), or pH-adjusted 0.1% BSA-DMEM (pH 6.3 or 7.4) and incubated for additional 24 
hours. Data are expressed as percentages of the IL-6 values in the culture supernatant of Co-stimulated human BSMCs. About half the amount of IL-6 appeared to be 
secreted by Ni- and Co-stimulated cells compared with acidic pH-stimulated cells, although the differences were not significant (mean ± SEM, n=9; NS, not significant). (B) 
DEX inhibited acidic pH-stimulated IL-6 secretion of human BSMCs in a dose-dependent manner. The inhibition was significant at a DEX concentration of 1–1000 nM (mean 
± SEM, n=4; *P<0.05).
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Conclusions
We demonstrate for the first time that Co and Ni induce IL-6 
secretion by human BSMCs through OGR1-mediated cellular 
activation, and that DEX inhibits OGR1-mediated IL-6 secre
tion by BSMCs originated from non-diseased individuals. 

These results suggest that Co and Ni not only induce inflam
mation as sensitizers in the airway but may also be involved in 
airway inflammation as ligands for OGR1. Additionally, it is 
suggested that GCs may be effective in the treatment of airway 
inflammation induced by Co and Ni.

Figure 7 The [Ca2+]i increase induced by the addition of Ni or Co in human bronchial smooth muscle cells and the involvement of Gq/11 proteins. After the Fura2-loaded 
BSMCs were pre-incubated with in HEPES-buffered medium (pH 7.4) for 2 minutes with either 100 nM YM-254890 or DMSO as a vehicle, the cells were stimulated by 
addition of Ni (300 μM) or Co (300 μM). Ni and Co increased [Ca2+]i (shown as fluorescence ratio). YM-254890 (100 nM) almost completely inhibited this increase. 
Representative data are shown (A). The increase of [Ca2+]i shown as Δfluorescence ratio was significantly inhibited by YM-254890 in Ni (B)- and Co (C)-stimulated BSMCs 
(mean±SEM, n=3; **P<0.01).
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