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Abstract: With an increasingly aging population globally, a confluence has emerged between 
the rising prevalence of degenerative spinal disease and osteoporosis. Fusion of the anterior 
spinal column remains the mainstay surgical intervention for many spinal degenerative disorders. 
However, decreased vertebral bone mineral density (BMD), quantitatively measured by dual 
x-ray absorptiometry (DXA), complicates treatment with surgical interbody fusion as weak 
underlying bone stock increases the risk of post-operative implant-related adverse events, 
including cage subsidence. There is a necessity for developing cages with advanced structural 
designs that incorporate bioengineering and architectural principles to tailor the interbody fusion 
device directly to the patient’s BMD status. Specifically, lattice-designed cages that mimic the 
web-like structure of native cancellous bone have demonstrated excellent resistance to post- 
operative subsidence. This article provides an introductory profile of a spinal interbody implant 
designed intentionally to simulate the lattice structure of human cancellous bone, with a similar 
modulus of elasticity, and specialized to match a patient’s bone status across the BMD con
tinuum. The implant incorporates an open pore design where the degree of pore compactness 
directly corresponds to the patient’s DXA-defined BMD status, including patients with 
osteoporosis. 
Keywords: osteoporosis, interbody fusion, bone mineral, cage, degenerative disc disease

Introduction
Orthograde human posture, with the adaptation of a curved and flexible spine, 
places high axial compressive loads across the spinal joint complex resulting in 
nearly universal evidence of arthritic deterioration among older adults.1–5 When 
age-related spondylosis leads to neural compression and chronic pain, instrumented 
fusion of the anterior spinal column remains one of the preferred surgical 
interventions.6–9

Following discectomy, an interbody fusion device or cage is typically employed 
to re-establish intervertebral disc space, providing immediate stability and neural 
decompression with symptom relief.8 The cage also serves as a carrier for bone 
graft, stimulating osseointegration to facilitate endplate-to-endplate arthrodesis.10

Set against the backdrop of an increasingly aging population, this paper eluci
dates the confluence between the rising prevalence of both degenerative disc 
disease and osteoporosis. Specifically, we highlight the necessity of developing 
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cages with advanced structural designs that incorporate 
bioengineering and architectural principles to tailor the 
interbody fusion device directly to the patient’s bone 
mineral density (BMD) status as commonly diagnosed by 
dual x-ray absorptiometry (DXA, or colloquially 
“DEXA”).

The Aging of the Population
The “greying” of the US population is a well-established 
demographic phenomenon that has generated significant 
interest in developing medical programs and health care 
policy initiatives specifically targeted to advance knowl
edge of and plan investments for the elderly. At the root of 
this phenomenon are the combined effects of plunging 
birth rates and increased longevity.11 In fact, in the US, 
the expansion of the older population will continue una
bated for many decades to come, primarily fueled by the 
aging of the baby boom cohort. With the 65 and over age 
cohort projected to encompass 95 million or 23% of the 
population by 2060, North America remains the second 
oldest region globally.

With the exception of the African continent where high 
fertility rates persist, the demographics of the remainder of 
the world mirror the rapid expansion of the older popula
tion experienced in the US.12 Worldwide in 2015, approxi
mately 9% of the population was ≥ 65 years old. This 
global estimate is projected to swell to 12% by 2030, with 
almost 1 in 6 individuals (17%) being 65 years or older by 
2050.

Epidemiology of Degenerative Disc 
Disease and Surgical Treatment 
with Interbody Fusion
Degeneration of the intervertebral disc represents the 
initial pathoanatomical stage of degenerative spinal 
changes,13 which gradually progresses to involve dete
rioration of associated osteo-ligamentous structures, such 
as the facet joints, and stenosis of the central and for
aminal canals.14 Starting as early as the fourth decade of 
life, degeneration of the intervertebral disc occurs com
monly. Undertaking a systematic review of 20 studies, 
Battie et al15 were the first to estimate the prevalence of 
disc degeneration based on magnetic resonance imaging 
(MRI) evaluations of asymptomatic individuals. 
Prevalence rates for disc abnormalities at any vertebral 
level ranged from 3% to 56% for disc narrowing, 6% to 
56% for disc tears, 10% to 81% for disc bulges, 3% to 

63% for disc protrusions, and 20% to 83% for MRI 
signal intensity reduction.16

Using MRI that encompassed the entire spinal column, 
Teraguchi et al17 reported the occurrence of disc degenera
tion in 71% of men and 77% of women ≤ age 50 years, and 
> 90% in both men and women > age 50 years. Employing 
longitudinal computed tomography (CT) imaging data from 
1196 participants in the Framingham study, Jarraya et al18 

found that more than one-third of women (ages 40–59) 
demonstrated moderate-to-severe disc height narrowing, 
and this prevalence increased 2- to 4-fold with increasing 
age. Lastly, Ravindra et al19 calculated the global incidence 
of patients with degenerative disc disease coupled with 
clinical low back pain using the Global Burden of Disease 
Database (Institute for Health Metrics and Evaluation). 
Almost 4% of individuals worldwide, or 266 million indivi
duals, are estimated to have clinically significant symptoms 
of low back pain resulting from disc disease annually.

Interbody spinal fusion represents a common surgical 
treatment for patients with chronically-severe back pain, 
impaired function and reduced quality of life. The Agency 
for Healthcare Research and Quality (AHRQ) estimated that 
approximately 488,000 spinal fusion procedures were per
formed in 2011, accounting for over 3% of all operating 
room procedures.20 More recently, a 2020 estimate (iData 
Research) determined that approximately 1.62 million instru
mented spinal fusion procedures were performed annually 
including 352,000 interbody procedures involving cages.

To address this enormous patient population, dozens of 
commercial entities worldwide have developed interbody 
cage devices of various sizes, styles, shapes, and materials 
including titanium, polyether ether ketone (PEEK), ceramic, 
carbon fiber as well as cortical allograft dowels and spacers.21 

Commercially-available devices include both static and low- 
profile expandable cages. Following surgical disc removal, 
intervertebral cages are inserted from an anterior approach in 
the cervical spine, and anterior, posterior, oblique, and lateral 
approaches in the lumbar spine. The common purpose of all 
cages is to provide intervertebral distraction and neural 
decompression until solid fusion occurs. Supplementary fixa
tion with pedicle screws and posterior instrumentation is often 
required to provide a stable construct for fusion to take place.

Prevalence of Osteoporosis
Osteoporosis is the most common bone disorder, affecting 
over 200 million people globally and representing a public 
health epidemic.22 As an age-related medical condition, low 
BMD, commonly referred to as osteopenia, and 
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osteoporosis, the most severe manifestation of low BMD, 
are being more frequently diagnosed by non-invasive ima
ging technologies such as DXA among the ever-expanding 
elderly population. While significantly increasing the risk of 
vertebral compression fractures, this condition occurs pari 
passu with the development of arthritic degenerative 
changes described previously. The confluence of these syn
dromes creates a more challenging and complex interven
tional strategy for the spine surgeon contemplating interbody 
fusion.23

A patient with osteoporosis is characterized as having 
a BMD T-score of ≤ −2.5 standard deviations below the 
comparative reference value for a young gender-matched 
population at peak bone mass.24,25 Osteopenia is the range 
of bone loss between normal BMD and osteoporosis (ie, 
T-score; < −1.0 - > −2.5). Measurement of BMD is accom
plished most commonly using DXA and, less frequently, with 
quantitative computed tomography (qCT).24 It has been esti
mated that approximately 45–50% of US adults have low 
BMD with 10–15% suffering from definitive osteoporosis as 
per current definitional standards.26–28 Based on 2010 world
wide statistics, almost 160 million individuals had increased 
fracture risk due to low BMD and this prevalence is expected 
to balloon to 300 million at risk individuals by 2040.29

Interbody Fusion in the Presence of 
Osteoporosis
Underlying low BMD has been associated with serious post- 
operative, device-related adverse events such as implant 
subsidence,30–36 pedicle screw loosening,37,38 subsequent 
adjacent-level fractures,39,40 and the need for revision 
surgery.41 Clinically-significant implant subsidence occurs 
in about 10% of cases,42 precipitating spinal instability and 
recurrence of neuro-compressive symptoms,34,35 particularly 
among older individuals with spinal osteoporosis.43,44 

Historically, a diagnosis of definitive osteoporosis has 
often been considered a contraindication to spinal fusion 
due to weak vertebral bone stock.45,46

It is therefore impossible to exclude all at-risk patients 
from spinal surgery. Estimates of the proportion of patients 
undergoing spinal fusion procedures with undiagnosed 
osteoporosis have ranged from 17% to 31%.47,48 These 
figures underscore the need to develop specialized techni
ques, procedures and implants to address this growing 
patient population so they may experience symptom relief 
and clinical benefit from surgery.

Evolution of Bioactive Interbody 
Fusion Devices
Spinal interbody devices have traditionally been used in 
a supportive role for static anatomical correction by rees
tablishing disc space height to provide indirect decom
pression, and restoring sagittal alignment by inducing 
lordosis.6,49–51 Newer model devices have also intro
duced bone windows to act as carriers of osteo- 
promotive bone graft.52 Despite hundreds of cage types 
being cleared for commercial use in the US,53 only 
recently has there emerged an appreciation of the possi
ble contribution interbody implants may play in the 
fusion consolidation process. Figure 1 illustrates the evo
lution of interbody cage designs and materials.

Bioactive or biokinetic implants are currently being 
designed that maximize and optimize cage topology and 
microstructure to reduce the risks, such as subsidence, 
associated with implantation in a low BMD or osteoporo
tic environment.54–59 Specifically, lattice-designed cages 
that mimic the web-like structure of native cancellous 
bone have demonstrated excellent resistance to post- 
operative subsidence.60–62

Figure 1 Evolutionary time line of spinal interbody fusion device types and materials.
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Development of a BMD-Specific 
Interbody Cage Device
This article provides an introductory profile of a spinal 
interbody implant designed intentionally to simulate the 
lattice structure of human cancellous bone, with a similar 
modulus of elasticity, and specialized to match a patient’s 
bone status across the BMD continuum (DEXA TiBone™, 
Aurora Spine, Carlsbad, Ca USA). Indeed, native vertebral 
bone trabeculae orient spatially in response to the direction 
of axial compressive forces,63 forming a web-like structure 
of cancellous bone with exceptionally high load-bearing 
capacity.64 The implant has an open, porous structure that 
supports osseointegration and vascularization (Figure 2).

The implant is optimized for size to allow maximal con
tact with the apophyseal ring, and also incorporates 
a textured surface modification. There is a large body of 
evidence to demonstrate that introducing a roughened surface 
topography elicits a bone stimulatory effect with increased 
bony ongrowth.65–70 New bone matrix interdigitates within 
the crevices and asperities on the roughened surface to form 
a secure bond at the bone-implant interface.69

By modulating the density and compactness of the pore 
structure, this device can be configured to match a patient’s 
BMD T-score, with cages available to support patients 
across the BMD spectrum, including those with osteoporosis 
(Figure 3). Three designs are available reflecting low, mid 
and high-density BMD T-scores as classified by DXA.

This spinal interbody device has undergone a series of 
bench-top biomechanical testing procedures in accordance 
with standardized methods and protocols (ASTM F2077, 
Test Methods for Intervertebral Body Fusion Devices). 
Testing included measurements of static axial compression, 
static torsion/torque, static compression-shear, dynamic 
compression, and dynamic torsion/torque in six implants. 
In addition to the DEXA TiBone™ implant, all tests were 

conducted with six predicate spinal interbody implants com
posed of polyetheretherketone (PEEK) (DISCOVERY™, 
Aurora Spine, Carlsbad, CA USA). Mean values between 
groups were compared using the two-sample t-test (2-tailed).

We observed an 87% and 88% improvement in favor of 
the DEXA implant for static compression yield load (22.4 ± 
7.1 vs 12.0 ± 0.1 kN, p=0.005) and static compression-shear 
yield load (12.2 ± 0.4 vs 6.5 ± 0.1 kN, p=0.0001), respec
tively. There was also a robust statistical difference 
(p=0.0001) in static torque yield moment between implants; 
DEXA (51.8 ± 2.3 Nm), PEEK (7.05 ± 0.38 Nm). For 
dynamic tests run out to 5 million cycles, we found an 
equivalent endurance limit between implants in compression 
(3.0 vs 4.0 kN, p=0.10) and double the torsional strength for 
the DEXA implant (4.0 vs 2.0 Nm, p=0.01).

The DEXA TiBone™ spinal interbody implant 
received 510(k) premarket notification for commercial 
use in the US in 2021 (DEXA-C Cervical Interbody 
System, K210521).

Conclusions
Current projections indicate a continued upward trajectory 
in the prevalence of patients afflicted with spinal degen
erative disorders with concomitant osteoporosis that 
require interbody fusion procedures. Traditionally, cage 
devices for spinal fusion procedures have been “one size 
fits all” without any architectural or topological modifica
tions to account for variations in the underlying vertebral 
BMD, including osteoporotic bone. Spinal fusion patients 
present with a range of vertebral BMD, but most commer
cially-available implants have a significantly higher den
sity and are more rigid than the supporting bony structures. 
We introduce a new spinal interbody fusion device with 
a unique biomechanical profile that is bone density- 
specific and may be used in patients with osteoporotic 

Figure 2 Rendering illustrating an open pore structure of the DEXA TiBone™ interbody implant at the macro-level (mm) showing hypothetical progression of 
osseointegration and vascularization throughout the implant (left to right). Inset image (far left) illustrates the roughened titanium surface modifications at the micron level.
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bone. Further research into the clinical utility of these 
design features is encouraged.

Data Sharing Statement
Requests for data sharing can be made by contacting the 
corresponding author. Individual participant data that 
underlie the results reported in this article will be made 
available (after deidentification) from 9 to 36 months after 
article publication. Data sharing will be limited to investi
gators whose proposed use of the data has been approved 
by an independent review committee identified for this 
purpose.
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