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Background: Comorbidity burden has been identified as a relevant predictor of critical 
illness in patients hospitalized with coronavirus disease 2019 (COVID-19). However, comor-
bidity burden is often represented by a simple count of few conditions that may not fully 
capture patients’ complexity.
Purpose: To evaluate the performance of a comprehensive index of the comorbidity burden 
(Queralt DxS), which includes all chronic conditions present on admission, as an adjustment 
variable in models for predicting critical illness in hospitalized COVID-19 patients and 
compare it with two broadly used measures of comorbidity.
Materials and Methods: We analyzed data from all COVID-19 hospitalizations reported in 
eight public hospitals in Catalonia (North-East Spain) between June 15 and December 8 
2020. The primary outcome was a composite of critical illness that included the need for 
invasive mechanical ventilation, transfer to ICU, or in-hospital death. Predictors including 
age, sex, and comorbidities present on admission measured using three indices: the Charlson 
index, the Elixhauser index, and the Queralt DxS index for comorbidities on admission. The 
performance of different fitted models was compared using various indicators, including the 
area under the receiver operating characteristics curve (AUROCC).
Results: Our analysis included 4607 hospitalized COVID-19 patients. Of them, 1315 
experienced critical illness. Comorbidities significantly contributed to predicting the outcome 
in all summary indices used. AUC (95% CI) for prediction of critical illness was 0.641 
(0.624–0.660) for the Charlson index, 0.665 (0.645–0.681) for the Elixhauser index, and 
0.787 (0.773–0.801) for the Queralt DxS index. Other metrics of model performance also 
showed Queralt DxS being consistently superior to the other indices.
Conclusion: In our analysis, the ability of comorbidity indices to predict critical illness in 
hospitalized COVID-19 patients increased with their exhaustivity. The comprehensive 
Queralt DxS index may improve the accuracy of predictive models for resource allocation 
and clinical decision-making in the hospital setting.
Keywords: comorbidity, multimorbidity, COVID-19, hospitalization, risk

Introduction
During 2020, the rapid spread of the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) and the severity of coronavirus disease 2019 (COVID-19) led to the 
collapse of many healthcare systems worldwide, particularly hospital and intensive care 
unit (ICU) resources. Recently approved vaccines against SARS-CoV-2 infection are 
expected to ease hospital resources pressure.1 Nevertheless, in many settings, COVID-19 
continues to cause high hospital demand, which requires adequate healthcare provision 
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planning, particularly in scenarios of a shortage of resources or 
overburdening of hospitals.

Early in the pandemic, underlying comorbidities were 
pointed out as significant prognostic factors for the devel-
opment of severe illness. Initial analyses of a large series 
of COVID-19 patients revealed that hospitalized patients 
with chronic conditions like diabetes, hypertension, 
chronic obstructive pulmonary disease, or cardiovascular 
diseases were more likely to develop severe COVID-19, 
with no consensus regarding the contribution of each 
comorbidity to explaining differences in COVID-19 
outcomes.2–5 Based on this evidence, the patient’s comor-
bidity burden on admission has been included in many 
models for predicting hospital outcomes in COVID-19 
patients, sometimes combined with post-admission infor-
mation (eg, vital signs, laboratory and imaging results).6 

However, the comorbidity burden is typically represented 
by a simple count of few chronic conditions (ie, up to 12) 
that does not fully capture patients’ complexity.7–14

Another approach to representing the patient’s comor-
bidity burden is using a comorbidity index that combines 
information about several comorbidities into a single 
score.17,18 This approach yields more complex models 
with a more challenging interpretation; however, it allows 
adjusting for multiple factors, likely improving model 
accuracy.18 Known examples of comorbidity indices 
include the Charlson Comorbidity Index15 and the 
Elixhauser index for hospitalized patients.16 In 2020, we 
developed a comprehensive risk index tool for hospitalized 
patients, the Queralt Index, which includes a measure of 
pre-existing comorbidities (Queralt DxS).19 The Queralt 
DxS combines and weighs more than 2100 relevant acute 
and chronic diagnostic codes. Queralt DxS has shown 
optimal performance for risk adjustment when measuring 
comorbidity burden in hospitalized patients.19

Understanding the risk factors, such as comorbidities 
associated with hospital outcomes in COVID-19 patients, 
is crucial for healthcare planning during future waves of 
the infection. However, most predicting models published 
to date rely on simple counts of comorbidities, and no 
studies have explored the appropriate measure for adjust-
ing for multimorbidity in the COVID-19 setting. In this 
study, we assessed the performance of Queralt DxS as 
a comorbidity measure in models for predicting outcomes 
in hospitalized COVID-19 patients and compared it with 
other widely used comorbidity measures: the Charlson and 
Elixhauser indices.

Materials and Methods
Data Sources
In this retrospective analysis, we included data from patients 
hospitalized due to COVID-19 in any of the eight hospitals 
of the Catalan Institute of Health (ICS), the leading health 
care provider in Catalonia (North-East Spain; 7.5 million 
inhabitants). The ICS provides universal health care to 
nearly 70% of the Catalan population, and accounts for 
approximately 30% of all hospitalizations reported in 
Catalonia. ICS hospitals systematically collect and store 
data on diagnoses and resource utilization into 
a centralized database. We screened the ICS database for 
all admissions due to COVID-19 occurred within the inves-
tigated period, which was restricted to June 15–December 8, 
2020, to prevent biases associated with the unprecedented 
hospital overburdening experienced in Spain during the first 
wave of the COVID-19 outbreak.20,21 The database was 
locked on March 30, 2021.

Hospital admissions due to COVID-19 were identified 
according to the following codes of the International 
Classification of Diseases, 10th Revision, Clinical 
Modification (ICD-10-CM) system: B97.29, B97.21, 
B34.2, J12.81, J12.89, and the recently added code for lab- 
confirmed COVID-19 U07.1. We included all hospital 
admissions of patients who either died in the hospital or 
were discharged home. Records from patients transferred 
from or to other hospitals were excluded from the analysis 
to ensure the completeness of clinical data during the full 
index hospitalization.

All data were handled according to the General Data 
Protection Regulation 2016/679 on data protection and priv-
acy for all individuals within the European Union and the 
local regulatory framework regarding data protection. The 
independent ethics committee of the Bellvitge Biomedical 
Research Institute (IDIBELL) approved the study protocol 
(Ref. PR195/21) and waived the need for informed consent, 
as the data were generated as part of routine clinical care and 
fully de-identified for analytic purposes.

Outcomes and Predictors
The study outcome (“critical illness” in patients hospita-
lized with COVID-19) was a composite that included the 
need for invasive mechanical ventilation, transfer to the 
intensive care unit (ICU), or in-hospital death. The need 
for invasive mechanical ventilation was identified by the 
presence of any of the following procedure codes recorded 
in the hospital database for billing purposes: 5A09357, 
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5A09457, 5A09557, 5A1935Z, 5A1945Z, 5A1955Z, 
09HN7BZ, 09HN8BZ, 0BH13EZ, 0BH17EZ, 0BH18EZ, 
and 0CHY7BZ.

Potential predictors considered for the analysis 
included age, sex, and comorbidities present on admission. 
The latter were measured using three multi-comorbidity 
indices: the Charlson Comorbidity Index, the Elixhauser 
index, and Queralt DxS. In another model, we also used 
the 27 comorbidities included in the Elixhauser index, 
each of them separately. The Charlson and Elixhauser 
indices were estimated using the ICD-10 coding system 
proposed by Quan et al.22 For the Charlson index, diag-
nostic weights were assigned based on the original formu-
lation by Charlson et al.15 For the Elixhauser index, we 
used the weights proposed by Moore et al.23 Queralt DxS 
belongs to a family of three indices for predicting clinical 
outcomes in hospitalized patients that provide a numerical 
value from the weighted sum of diagnoses (primary, sec-
ondary present on admission, and complications) from 
a list of 2119 diagnostic code groups.19 In this analysis, 
we used an updated version of the index (version 6.0), 
computed using healthcare data recorded in the routine 
care setting between 2018 and 2019.

Statistics
Data on demographic and clinical variables and outcomes 
were described as frequency and percentage, mean and 
standard deviation (SD), and/or median and interquartile 
range (IQR, defined as the 25th and 75th percentiles), as 
appropriate. The Charlson and Elixhauser indices were 
computed using the Comorbidity library by Gasparini;24 

Queralt DxS was generated using R functions and instruc-
tions provided in the Supplementary File. For descriptive 
purposes only, patients were also stratified at four risk 
levels (ie, low, moderate, high, and very high) based on 
the 50th, 80th, and 95th percentiles of Queralt DxS, as 
previously described.19

Since the primary objective was to compare the per-
formance of each index of comorbidity when added to 
a given multivariate risk prediction model, we built five 
logistic regression models to predict the composite out-
come of critical illness: a baseline model with age (intro-
duced into the model as a continuous variable) and sex, 
three models including the baseline and each of the comor-
bidity measures (ie, Charlson index, Elixhauser index, and 
Queralt DxS), and one including the 27 diagnoses included 
in the Elixhauser index separately. The performance of 
each model was evaluated using five statistical measures 

of model performance: the deviance, the Akaike informa-
tion criterion (AIC),25 the Bayesian Information Criterion 
(BIC),26 the area under the receiver operating characteris-
tic curve (AUROCC), and the area under the precision– 
recall curve (AUPRC).27 The 95% confidence intervals 
(CI) of AUROCC were estimated using 1000 bootstrap 
samples and confirmed with the DeLong criteria.28 All 
analyses were performed using the R statistical package 
(version 4.0.3).29

Results
Study Population
Between June 15 and December 8, 2020, 4607 patients 
were admitted to the ICS hospitals with COVID-19. 
Table 1 summarizes the demographic characteristics of 
the study population according to the incidence of critical 
illness (ie, need for invasive mechanical ventilation, trans-
fer to ICU, or death) on admission and/or during hospita-
lization. The corresponding comorbidity burden, measured 
using the three analyzed indices, is shown in Table 2. 
Patients who experienced critical illness on/after admis-
sion were significantly older and had higher scores of 
comorbidity burden irrespective of the index used. Men 
experienced critical illness more frequently.

According to the distribution of patients across the five 
risk levels of Queralt DxS, 2145 (46.6%) patients were at 
low risk, 1509 (32.8%) at moderate risk, 730 (15.8%) at 
high risk, and 223 (4.8%) at very high risk. Figure 1 shows 
the distribution of patients with and without critical illness, 
according to age, sex, and Queralt risk group.

Performance of Comorbidity Indices for 
Prediction of Critical COVID-19 Illness
Table 3 shows the overall performance of each model, 
computed using various measures of the magnitude of 
the effect. The addition of a multimorbidity measure to 
the baseline model increased the AUROCC and AUPRC 
values of the model, which were consistent with all other 
metrics of model performance. In all, the best performance 
was consistently observed for the model that included age, 
sex, and Queralt DxS (Table 3). Figure 2 shows the ROC 
and precision–recall curves of the five models explored.

In the three models including a comorbidity index, this 
factor significantly contributed to predicting critical illness, 
irrespective of the comorbidity index used in the model 
(Figure 3). In the model including Queralt DxS as 
a comorbidity measure, age groups lost statistical significance.
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Discussion
Our results using data from the healthcare databases of 
Catalonia confirm the relevance of comorbidities on admission 
as a strong predictor of outcomes in patients hospitalized with 
COVID-19, which is consistent with prior reports. 
Accordingly, the addition of any of the summary measures 
of comorbidity burden used in our analysis improved the 
performance of predictive models compared with age and 
sex only. Furthermore, for the first time to our knowledge, 
we showed how different measures of the comorbidity burden 
can change the accuracy of models for predicting critical 
illness in hospitalized COVID-19 patients.

In the context of comorbidity burden being a strong pre-
dictor of outcomes in COVID-19 patients, we observed that the 
most comprehensive multi-comorbidity index evaluated, 
Queralt DxS, showed the strongest contribution to explaining 

critical illness. Unlike the other two indices investigated (ie, the 
Charlson and Elixhauser indices), which estimate comorbidity 
burden from a discrete list of diagnoses, Queralt DxS considers 
all conditions present on admission among a list of 2119 
diagnostic groups. Hence, our findings align with the concerns 
highlighted by Ording and Sørensen, who warned about resi-
dual confounding potentially introduced when underestimat-
ing the comorbidity burden by using numerical indices based 
on rather restrictive definitions of comorbidity.18 Remarkably, 
when introducing an exhaustive summary measure of comor-
bidities, such as Queralt DxS, to the model, age was no longer 
a significant predictor. This suggests that the risk of critical 
illness in older patients is driven by the accumulation of 
chronic conditions over time rather than by age per se.

In addition to comorbidities, various authors have iden-
tified other relevant predictors of hospital outcomes in 

Table 1 Demographic Characteristics of Patients Included in the Analysis, Grouped by Incidence of Critical Illness During the Index 
Hospitalizationa

Without Critical Illness 
(N=3292)

Critical Illness (N=1315) Total (N=4607) p value

Age < 0.001

Mean (SD) 58.2 (19.7) 66.1 (17.5) 60.5 (19.4)
Median (Q1, Q3) 59.0 (45.0, 73.0) 68.0 (56.0, 79.0) 62.0 (48.0, 75.0)

Age group < 0.001
0–4 42 (1.3%) 6 (0.5%) 48 (1.0%)

5–9 11 (0.3%) 4 (0.3%) 15 (0.3%)
10–14 8 (0.2%) 3 (0.2%) 11 (0.2%)

15–19 32 (1.0%) 8 (0.6%) 40 (0.9%)

20–24 65 (2.0%) 5 (0.4%) 70 (1.5%)
25–29 108 (3.3%) 13 (1.0%) 121 (2.6%)

30–34 144 (4.4%) 25 (1.9%) 169 (3.7%)

35–39 181 (5.5%) 36 (2.7%) 217 (4.7%)
40–44 195 (5.9%) 47 (3.6%) 242 (5.3%)

45–49 260 (7.9%) 62 (4.7%) 322 (7.0%)

50–54 305 (9.3%) 96 (7.3%) 401 (8.7%)
55–59 303 (9.2%) 122 (9.3%) 425 (9.2%)

60–64 316 (9.6%) 146 (11.1%) 462 (10.0%)

65–69 297 (9.0%) 126 (9.6%) 423 (9.2%)
70–74 275 (8.4%) 155 (11.8%) 430 (9.3%)

75–79 271 (8.2%) 143 (10.9%) 414 (9.0%)

80–84 190 (5.8%) 129 (9.8%) 319 (6.9%)
85–89 160 (4.9%) 95 (7.2%) 255 (5.5%)

90 -> 129 (3.9%) 94 (7.1%) 223 (4.8%)

Sex < 0.001

Male 1742 (52.9%) 844 (64.2%) 2586 (56.1%)

Female 1550 (47.1%) 471 (35.8%) 2021 (43.9%)

Notes: aCritical illness was defined as need for invasive mechanical ventilation, transfer to ICU, or in-hospital death. Q1, Q3: 25th, 75th percentiles. 
Abbreviation: SD, standard deviation.
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patients with COVID-19, such as inflammatory biomarkers, 
need for oxygen therapy, and diagnostic images analyzed 
using advanced machine learning approaches.30–35 While 
these models are helpful for informing clinical decisions 
based on assessments performed during the hospital stay in 
individual patients, models that use retrospective informa-
tion available from electronic health records can provide 
hospital outcome estimates at the time of hospital admis-
sion, thus aiding not only clinicians but also managers and 
policymakers in hospital resource planning. Our results 

suggest that all models, irrespective of whether they include 
data from in-hospital assessments, may benefit from 
a summary, highly comprehensive measure of the comor-
bidity burden on admission, such as Queralt DxS. We have 
made this index and the related code freely available online 
for research purposes as an open-source tool to facilitate 
evaluation by other groups either in its current form in other 
populations or potentially as part of clinical risk estimation 
tools combining comorbidities and clinical data on 
admission.

Table 2 Clinical Characteristics of Patients Included in the Analysis, Grouped by Incidence of Critical Illness During the Index 
Hospitalizationa

Without Critical Illness 
(N=3292)

Critical Illness (N=1315) Total (N=4607) p value

Charlson index < 0.001

Mean (SD) 1.0 (1.6) 1.6 (2.0) 1.2 (1.7)
Median (Q1, Q3) 0.0 (0.0, 1.0) 1.0 (0.0, 2.0) 0.0 (0.0, 2.0)

Elixhauser index < 0.001
Mean (SD) 1.8 (6.5) 5.5 (9.2) 2.8 (7.6)

Median (Q1, Q3) 0.0 (−1.0, 4.0) 3.0 (−1.0, 11.0) 0.0 (−1.0, 5.0)

Queralt index (risk) < 0.001

Mean (SD) 17.8 (12.2) 33.8 (18.2) 22.3 (15.9)
Median (Q1, Q3) 16.0 (9.0, 25.0) 30.0 (21.0, 42.0) 20.0 (11.0, 30.0)

Risk groupsb < 0.001
Low 1925 (58.5%) 220 (16.7%) 2145 (46.6%)

Moderate 982 (29.8%) 527 (40.1%) 1509 (32.8%)

High 345 (10.5%) 385 (29.3%) 730 (15.8%)
Very high 40 (1.2%) 183 (13.9%) 223 (4.8%)

Notes: aCritical illness was defined as need for invasive mechanical ventilation, transfer to ICU, or in-hospital death. bThe low, moderate, high, and very high risk groups 
correspond to the 50th, 80th, and 95th percentiles of Queralt DxS in the study population, respectively. Q1, Q3: 25th, 75th percentiles. 
Abbreviation: SD, standard deviation.
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Figure 1 Participant distribution according to age, sex, and Queralt risk group (corresponding to the 50th, 80th, and 95th percentiles of the Queralt Index).

Risk Management and Healthcare Policy 2021:14                                                                              https://doi.org/10.2147/RMHP.S326132                                                                                                                                                                                                                       

DovePress                                                                                                                       
4733

Dovepress                                                                                                                                                       Monterde et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Indices that summarize a high number of variables into 
a single numerical index, such as Queralt DxS, also have 
the advantage of allowing more parsimonious models. 
This is particularly important for machine learning 

approaches, which may lose performance when increasing 
the number of variables included in the model. Hence, 
despite losing sight on the individual effect of each diag-
nosis, summarizing the information from thousands of pre- 

Figure 3 Standardized coefficients according to four logistic regression models: baseline (age and sex), Charlson (age, sex, and Charlson index), Elixhauser (age, sex, and 
Elixhauser index), and Queralt (age, sex, and Queralt DxS).

Table 3 Performance of the Baseline Model and Models Including Each of the Investigated Measures of Comorbidity

Model Dev AIC BIC AUROCC 95% CI AUPRC 95% CI

Age + Sex 5301 5307 5326 0.632 0.614 0.650 0.387 0.366 0.415
… + Charlson 5265 5273 5298 0.644 0.628 0.660 0.402 0.373 0.435

… + Elixhauser 5175 5183 5208 0.667 0.650 0.683 0.441 0.415 0.465

… + Queralt 4501 4509 4534 0.787 0.774 0.802 0.600 0.573 0.630

Abbreviations: Dev, Deviance (lower values indicate better performance); AIC, Akaike information criteria (lower values indicate better performance); BIC, Bayes criteria (lower 
values indicate better performance); AUROCC, area under the receiver operating characteristics curve (values range from 0.5 [low discrimination capacity] to 1 [high 
discrimination capacity]); AUPRC, area under the precision–recall curve (values range from 0 [low predictive capacity] to 1 [high predictive capacity]); CI, confidence interval.
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(age, sex, and Queralt DxS index), and the 27 diagnostic codes included in the Elixhauser index. (A) receiver operating characteristics curve. (B) precision–recall curve.
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existing diagnoses into a single index that accounts for the 
relative weights of each one and their prognostic relevance 
for hospital outcomes may enrich other models while 
minimizing the risk of overfitting.

Study Limitations
One of the limitations of Queralt DxS is the lack of 
validation in settings other than Catalonia; however, we 
hope that making the software publicly available for 
research purposes will facilitate external validation mov-
ing forward. Moreover, it is worth mentioning that the 
weights used to estimate the relative contribution of each 
diagnostic group to health risk were calculated using data 
collected between 2018 and 2019, before the COVID-19 
pandemic. Hence, although the source population of the 
eight relevant hospitals has remained unchanged since 
then, the sample of patients admitted with COVID-19 
included in this study, and their clinical and sociodemo-
graphic profiles do differ from those used when develop-
ing the Queralt indices, including Queralt DxS. Therefore, 
this analysis may be interpreted as a pseudo-validation of 
Queralt DxS in a Catalan subpopulation hospitalized with 
COVID-19.

Also, as often occurs in retrospective analyses, our 
dataset was limited to the data recorded in electronic 
records during routine care. Nonetheless, the universal 
coverage of our healthcare system, and the cross-linking 
of healthcare data from the primary care and specialized 
settings allowed us to access various sources and very 
comprehensive health data from our study population and 
consider all possible diagnoses present on admission, as 
well as basic demographic data, such as age and sex. 
Conversely, we were not able to include some pre- 
admission variables such as blood groups, which have 
been associated with COVID-19 severity36 and might 
modulate the weight of comorbidities when estimating 
the risk of critical illness, or the SARS-CoV-2 variant, 
which may influence clinical outcomes of COVID-19 
patients. Nevertheless, even without those pieces of infor-
mation, the performance of Queralt DxS was very robust.

Finally, it is worth mentioning that we did not adjust 
for treatments administered or the type of care received. 
COVID-19 is an evolving pandemic, and the development 
and implementation of pathogenesis-directed therapies37 

and care pathways38 may strongly influence the clinical 
outcome, regardless of the baseline risk factors of hospi-
talized patients. Due to the relatively narrow investigated 
period and early stage of the pandemic (ie, June– 

December 2020), we expect the type of care to be homo-
geneous among study patients. However, future analyses 
are warranted to investigate how newly developed thera-
pies, vaccination, and improved care pathways influence 
the weight of the comorbidity burden on predicting critical 
illness.

Conclusion
Our findings show that the burden of pre-existing comor-
bidities significantly improves the prediction of the risk of 
critical illness in patients hospitalized with COVID-19, 
particularly when measured exhaustively using a tool 
such as Queralt DxS. This comorbidity index, which is 
freely available for research purposes, may improve the 
accuracy of risk models aimed at supporting clinical deci-
sion-making and hospital resource planning in hospitalized 
patients, including those with COVID-19. Future studies 
investigating the influence of the comorbidity burden, 
measured with the Queralt DxS tool, on hospital outcomes 
in the context of vaccination and improved care pathways 
are warranted.
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