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Purpose: To investigate the dysregulated pathways and identify reliable diagnostic biomar-
kers for tuberculosis using integrated analysis of metabolomics and transcriptomics.
Methods: Three groups of samples, untargeted metabolomics analysis of healthy controls 
(HC), latent tuberculosis infection patients (LTBI), and active tuberculosis patients (TB), 
were analyzed using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) 
and ultra-high performance liquid chromatography-quantitative mass spectrometry (UHPLC- 
QE-MS). Both univariate and multivariate and statistical analyses were used to select 
differential metabolites (DMs) among group comparison, and LASSO regression analysis 
was employed to discover potential diagnostic biomarkers. Metabolite set enrichment ana-
lysis was performed to identify the altered metabolic pathways specifically in patients with 
TB. Meanwhile, a transcriptomic dataset GSEG4992 was downloaded from the GEO data-
base to explore the differentially expressed genes (DEGs) between TB and HC identified in 
significantly enriched pathways. Finally, an integrative analysis of DMs and DEGs was 
performed to investigate the possible molecular mechanisms of TB.
Results: Thirty-three specific metabolites were significantly different between TB and HC, 
of which 7 (5-hydroxyindoleacetic acid, isoleucyl-isoleucine, heptadecanoic acid, indole 
acetaldehyde, 5-ethyl-2,4-dimethyloxazole, and 2-hydroxycaproic acid, unknown 71) were 
chosen as combinational potential biomarkers for TB. The area under the curve (AUC) value 
of these biomarkers was 0.97 (95% CI: 0.92–1.00). Metabolites set enrichment analysis 
(MSEA) displayed that there were 3 significantly enriched pathways among all. The genes in 
3 significantly enriched pathways were further analyzed, of which 9(ALDH3B1, BCAT1, 
BCAT2, GLYAT, GOT1, IL4I1, MIF, SDS, SDSL) were expressed differentially. The area 
under the curve (AUC) values of these DEGs enriched in pathways mostly were greater than 
0.8. As a result, a connected network of metabolites and genes in the pathways were 
established, which provides insights into the credibility of selected metabolites.
Conclusion: The newly identified metabolic biomarkers display a high potential to be devel-
oped into a promising tool for TB screening, diagnosis, and therapeutic effect monitoring.
Keywords: biomarker, diagnostic, metabolites, genes, multi-omics

Introduction
Tuberculosis (TB) is a chronic respiratory infection caused by Mycobacterium tubercu-
losis (MTB). Currently, more than a third of the world population is diagnosed with MTB 
infection.1 According to the latest report made by the World Health Organization 
(WHO), it estimates that there are about 10 million cases and 1.4 million deaths in 
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2019 worldwide.2 Despite the recent progress made in TB 
control, the world still has a long way to go to achieve the goal 
of the “End TB Strategy”, which has brought new challenges 
to TB diagnosis and treatment. Consequently, the rapid and 
accurate detection of active tuberculosis remains a challenge 
in global efforts, with less than 60% of the estimated tubercu-
losis diagnosed bacteriologically in 2019.2 Smear microscopy 
is applied more often in countries with underdeveloped econ-
omy and healthcare and it is the main cause of delays in case 
detection and diagnosis. Also, the gold standard that tests 
MTB infection based on the culture, the Mycobacterium cul-
ture method, can usually take 2–6 weeks, let alone some 
testing facilities often lack the required resources for success-
ful culture.3 Furthermore, all these bacteriological diagnosis 
methods require sputum samples, and many patients cannot 
adequately produce sputum samples. Given that the early 
diagnosis is critical to control bacterial infection, reduce the 
chance of transmission, and thus control the prevalence of TB, 
an effective approach is to develop a more accurate and rapid 
identification and diagnosis technology. On account of the 
limitations facing the current diagnostic tool and the critical 
purpose of TB early-stage detection, a more sensitive etiolo-
gical diagnosis method for TB is needed.

Over the last decade, metabolomics has proved to be 
a very effective method to explore and identify novel diag-
nostic and prognostic biomarkers.4 Metabolites, the final 
products of various biological processes, hold promise as 
accurate biomarkers that reflect upstream biological events 
such as genetic mutations and environmental changes. By 
comparing metabolite profiles extracted from sputum, blood, 
breath, and urine samples, many biological processes of TB 
patients were found abnormal and disturbed than that of 
healthy people, specifically patients’ energy consumption, 
glycolysis, lipolysis, amino acid metabolism, and nucleotide 
biosynthesis.5–12 Notably, it is reported that amino acid meta-
bolism changes during the disease progression of TB patients 
when comparing the metabolic characteristics of TB patients, 
latent TB infected people (LTBI), and healthy people (HC).7 

However, biomarkers obtained from previous metabolomic 
studies on TB diagnostic exhibit greater heterogeneity which 
could not thoroughly explain and distinguish the substances 
and signal pathways involved in the development of tuber-
culosis, and the specificity of these biomarkers that distin-
guished TB from healthy controls was lower.9,10 Meanwhile, 
there were discrepancies between the findings from different 
biological samples.6,7,9,11 Besides, given that the disrupted 
metabolic pathways of tuberculosis were constructed mostly 
based on the changes of metabolite levels and that few of 

these biomarkers were validated by other omics techniques, 
the credibility and reproducibility of these diagnostic bio-
markers were low.6,8,12 Therefore, a rigorous research design 
supported by multi-omics integrated analysis is needed to 
identify the exact biomarker of active tuberculosis and illus-
trate a fuller picture of the pathogenesis of tuberculosis. Due 
to the development of system biology and bioinformatics 
tools, there have been studies integrating metabolomics 
data and transcriptomics data, such as cancer-related 
research.13–15 In contrast, fewer studies have specifically 
used this approach in infectious diseases. The integration of 
metabolomics and transcriptomics will improve the credibil-
ity of discovered biomarkers, as well as shed light on tuber-
culosis pathogenesis through the lens of system biology.16 

Although Dutta N K has found new biomarkers in the blood 
for tuberculosis diagnosis in children through the integration 
of metabolomics and transcriptomics, there are few studies 
investigated the pathogenesis of tuberculosis in adult by 
using the multi-omics technique.

In the present study, we integrated metabolomics data 
and transcriptomics data to explore the dysregulated path-
ways and discover more reliable and specific markers that 
can be used to diagnose tuberculosis. The integration of 
metabolomic profiling with transcriptomics data can be 
further used in validating the potential diagnostic biomar-
kers. Pathway and network analyses were then used to 
further explore the relationship between our selected meta-
bolites and genes to substantiate the reliability of our 
results.

Materials and Methods
The complete analysis process regarding the integration of 
metabolomics and transcriptomics data is summarized in 
Figure 1.

Study Population
There were three groups of participants enrolled in this 
study (1) active tuberculosis patients (TB, n = 30), defined 
as patients with active pulmonary TB diagnosed based on 
microbiological, clinical, radiological, and pathological 
data. (2) Latent Tuberculosis Infected participants (LTBI, 
n = 30), defined as (i) no suggestive symptoms of TB; (ii) 
no history of TB; (iii) recent contact with active pulmon-
ary TB patients; and (iv) a positive result from the T.SPOT 
(3) clinically healthy controls (HC, n = 30), the first three 
conditions of whom were the same compared with LTBI, 
but (iv) they had a negative result from the T.SPOT. In this 
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study, a total of 90 subjects signed the consent form and 
participated the entire process.

Blood Samples Collection
Venous blood of each group was collected in polypropy-
lene tubes in the early morning. Fresh blood was stored at 
4°C, and it coagulated naturally after about 30 minutes. 
After centrifugation at 3000 g for 10 min, serum samples 
were obtained, and it was immediately stored at 80°C until 
analysis. A face-to-face investigation was conducted by 
a trained health professional to gather patients’ basic infor-
mation including age, gender, smoking habits, etc.

GC-TOF MS and UHPLC-QE-MS Analysis 
and Data Preprocessing
Untargeted metabolomics analysis of serum samples stored at 
−80°C was performed using GC-TOF-MS and UHPLC-QE- 
MS assay.17 All plasma samples were processed and then 
analyzed by GC-TOF-MS with Agilent 7890 gas chromato-
graphy coupled with a time-of-flight mass spectrometer and 
the samples were also run through UHPLC-QE-MS using 
a UHPLC system (Vanquish, Thermo Fisher Scientific) with 
a UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 μm) 

coupled with a Q Exactive HFX mass spectrometer (Orbitrap 
MS, Thermo). The quality control (QC) sample was prepared 
by mixing an equal aliquot of the supernatant from each 
sample. Details about metabolite extraction and metabolomics 
analysis are in Supplementary Material: Part A. Raw data 
analysis, as for GC-TOF-MS, including peak extraction, base-
line adjustment, deconvolution, alignment, and integration, 
was finished with Chroma TOF (V 4.3x, LECO) software, 
and the LECO-Fiehn Rtx5 database was used for metabolite 
identification by matching the mass spectrum and retention 
index. Finally, the peaks detected in less than half of QC 
samples or RSD >30% in QC samples were removed; simi-
larly, for UHPLC-QE-MS, the raw data were converted to the 
mzXML format using ProteoWizard and processed with an in- 
house program, which was developed using R and based on 
XCMS, for peak detection, extraction, alignment, and integra-
tion. This is followed by applying an in-house MS2 database 
(BiotreeDB) for metabolite annotation.18 The cutoff for anno-
tation was set at 0.3.

As a result, the raw data included 13 quality control 
samples and 90 experiments with 949 peaks; then filtered 
a single peak to remove noise based on the coefficient of 
variation, and peaks whose area was no more than 50% 
null in a single group or no more than 50% in all groups 

Figure 1 An overview workflow of the comprehensive analysis of metabolomics and transcriptomics in tuberculosis.
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were retained, then missing value was recorded based on 
the method of filling by the median value. Metabolomics 
data were normalized by dividing each variable by the 
standard deviation of each variable and then was log- 
transformed before multivariate analysis. There were 586 
peaks retained after the data preprocessing.

Statistical Analysis
Continuous variables were expressed as the mean± (stan-
dard deviation [SD]) or median (interquartile range [IQR]) 
and the categorical variables were expressed as number 
(percent). To complete univariate statistical comparisons, 
chi-square test or Fisher’s exact test, Student’s t-test or 
ANOVA, and Wilcoxon signed rank test or Kruskal Wallis 
test were used to evaluate the corresponding variable, the 
categorical variables, normally distributed continuous vari-
ables, and non-normally distributed continuous variables, 
respectively. Results having a P-value below 0.05 were 
considered statistically significant.

After data transformation and normalized, 
MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) was 
used to carry out multivariate statistical analysis for com-
parison in pairs among the three groups, such as principal 
component analysis (PCA) and orthogonal partial least 
square to latent discriminant analysis (OPLS-DA).19 

Principal component analysis (PCA) is a non-supervised 
statistical approach to get the most primitive sample situa-
tion to find and eliminate abnormal samples.20 Next, to 
produce accurate and objective analysis result, orthogonal 
partial least square to latent discriminant analysis (OPLS- 
DA), a supervised statistical approach, was applied to 
identify the variables most relevant for the discrimination 
between groups.21 The default method of 7-fold internal 
cross-validation was applied to verify the durability and 
effectiveness of the model, from which R2Y (goodness of 
fit parameter) and Q2(predictive ability parameter) values 
with the corresponding permutation tests (n = 100) were 
used for the OPLS-DA model evaluation. The univariate 
nonparametric Mann–Whitney U-test was performed for 
all metabolites in group comparison. The potential biomar-
kers were selected as univariate P value <0.05 and VIP >1, 
and the cutoff denotes a specifically distinguished value of 
metabolites in TB from HC.

A receiver operating characteristic (ROC) curve was 
generated for each biomarker, and specificity and sensitiv-
ity of the biomarker were determined by the AUC value 
and 95% confidence interval (CI). LASSO regression 

analysis was carried out to increase the diagnostic accu-
racy of combined changes in serum metabolites levels.

Specifically, LASSO regression is used for modeling, 
and assigning the slope coefficient of redundant markers to 
value 0. In other words, markers that are highly correlated 
with other markers were retained in the model.22 The 
penalty term in the estimation procedure ensures that 
similar coefficients to equal to 0 and achieve the optimal 
model fit. The penalty term has a tuning parameter that is 
usually referred as lambda and it controls how similar 
biomarkers should be before one of them receives 
a slope coefficient of 0. The optimal lambda, the values 
leading to the smallest prediction error, was determined by 
using cross-validation which was to have 90% of the data 
fit (“train”) the model and the remaining create 
a benchmark or be validated through comparison of 
observed data and predictions from the trained model. 
Optimal lambda values lead to optimal LASSO models. 
The use of cross-validation served as internal validation of 
the signatures. Ten-fold cross-validation carries out such 
comparisons ten times based on a random partitioning of 
the data into ten parts of equal size. However, ten-fold 
cross-validation may not necessarily produce the same 
results if being repeated because it relies on random sam-
pling. Therefore, the five-fold cross-validation step was 
performed to stabilize the results. The LASSO regression 
models simultaneously included all above-mentioned bio-
markers. Estimated intercept and slope coefficients for the 
identified biomarkers were reported. Receiver operating 
characteristic (ROC) curves were also shown and summar-
ized using the area under the curve (AUC).

Joint Analysis of Metabolites and Genes
The integration of metabolomics and transcriptomics can 
efficiently identify the key metabolic pathways and func-
tional genes of tuberculosis. MetaboAnalyst 4.0 (http:// 
www.metaboanalyst.ca) was used for metabolic set enrich-
ment analysis.18 After uploading differential metabolites 
on Metaboanalyst, the metabolites were then mapped to 
KEGG metabolic pathways enrichment analysis. Pathway 
significance was decided based on the total number of 
metabolites; pathway with P < 0.2 (TB vs HC) was con-
sidered as significantly enriched pathways, and candidate 
genes involved in the significantly enriched pathways were 
identified also based on KEGG.23,24 The transcriptomics 
data from the Gene Expression Omnibus (GEO, http:// 
www.ncbi.nlm.nih.gov/geo/) database (accession number 
GSEG4992) comprised serum samples from 9 TB patients 
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and 6 HC subjects were analyzed. Data analysis was con-
ducted using R 4.0.5. The limma package was used to 
select differentially expressed genes (DEGs) that were 
identified in significantly enriched pathways. The dataset 
was normalized using log2 transformation and then 
screened for DEGs. Genes with an adjusted P-value≤0.05 
were considered DEGs. Fully connected networks of meta-
bolites and genes were built and analyzed in Metscape, 
which was a plug-in for Cytoscape. Metscape could help 
us build the network of metabolites and genes, trace the 
connections between them, and visualize compound 
networks.25

Results
Study Subject
A total of 90 participants participated in this study 
(Table 1), among which 30 patients have active pulmonary 
TB (age 54.5, [range 28–65] years; males, n = 25 
[83.3%]), 30 patients have LTBI (age,44.5[range 27–60] 
years; males, n = 17 [56.7%]), and 30 healthy controls 
(age,47.5[range 27–61] years; males, n = 25 [83.3%]). 
There were no differences in baseline characteristics 
among the three groups except for sex.

Differential Metabolite Screening
Multivariate Analysis
As shown in the score scatter plot (Figure 2A), metabo-
lomics data from the 90 samples through principal com-
ponent analysis (PCA) demonstrated that active TB 

patients could be easily distinguished from the others. 
Meanwhile, this multivariate analysis could not distin-
guish participants with LTBI from healthy controls. 
However, to obtain more reliable information about the 
metabolite differences between groups, OPLS-DA can 
filter out the orthogonal variables in the metabolites that 
are unrelated to the classification and analyze the non- 
orthogonal variables and orthogonal variables, respec-
tively. OPLS-DA built based on the comparisons between 
the groups included in the study revealed that serum 
samples from HC show a specific serum metabolic profile 
compared with LTBI patients (Figure 2B, R2Y=0.937, 
Q2= 0.135) and with TB patients (Figure 2C, 
R2Y=0.895, Q2=0.709). Similarly, the serum metabolic 
profile of LTBI and TB subjects showed a distinct meta-
bolic profile of patients (Figure 2D, R2Y=0.952, 
Q2=0.776).

Univariate Analysis
The Mann–Whitney U-test was used to determine the 
difference between groups (HC/LTBI groups, TB/LTBI 
groups, TB/HC groups) for the features in which the VIP 
value was >1 in the OPLS-DA model. The OPLS-DA 
models built for the groups of samples included in the 
study generated the VIP lists of metabolites allowed the 
assignment of the metabolites most relevant for the dis-
crimination between groups. And metabolomics features 
that satisfied p < 0.05 and VIP >1 were filtered out. The 
serum metabolic profile of the LTBI group was character-
ized by 30 statistically different metabolites in comparison 

Table 1 Characteristics (n = 90) for TB Cases, LTBI and HC Subjects*

HC (n=30) LTBI (n=30) TB (n=30) P

Age 47.5 (27–61) 44.5 (27–60) 54.5 (28–65) 0.721

Sex, male 25 (83.3) 17(56.7) 25 (83.3) 0.027

BMI 22.7 (21.3–25.3) 22.5 (20.8–23.9) 22.2 (18.0–23.3) 0.095

Co-morbidities

Hypertension (Yes) 5 (16.7) 3 (10.0) 3(10.0) 0.78

Diabetes mellitus (Yes) 1 (3.3) 1 (3.3) 6 (20.0) 0.119
Other (Yes) 6 (20.0) 1 (3.3) 7 (23.3) 0.076

Pulmonary TB diagnosis
Sputum AFB smear (positive) – – 20 (66.7)

Sputum AFB culture (positive) – – 1 (3.3)

Smoking last 6 months (yes) 12 (40.0) 6 (20.0) 7 (23.3) 0.202
Alcohol past 6 months (yes) 2 (6.67) 0 (0) 4 (13.3) 0.159

Note: *Data are shown as counts and percentages except for age and BMI (summarized using mean and range). 
Abbreviations: TB, tuberculosis; LTBI, latent tuberculosis infection; HC, healthy control; BMI, body mass index; AFB, acid-fast bacillus.
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to HC. Similarly, when comparing HC with TB subjects, 
167 features were statistically significant. Also, 179 meta-
bolites in TB groups were significantly different than that 
of LTBI. The results are in the form of volcano plots 
(Figure 3). According to the Venn diagram, 33 differential 
metabolites were shown only in HC/TB comparison.

Diagnostic Ability of Metabolites
To further explore the clinical potential of the metabolites 
above-mentioned with significant alteration in this study, 
a LASSO regression analysis of the data was performed. To 
this end, when specifically comparing HC and TB patients, 33 
metabolites whose levels showed statistically significant 

Figure 2 Multivariate statistical analyses of the different clinical groups in the study. (A) Principal component analysis (PCA) score plots of the TB patients (TB, red), latently 
infected tuberculosis (LTBI, green) and healthy controls (HC, blue) serum samples. Orthogonal partial least squares-discriminate analysis (OPLS-DA) score plots for the 
comparison between (B) HC (blue) and LTBI (green) (R2Y= 0.937, Q2= 0.135), (C) TB (red) and HC (blue) (R2Y= 0.895, Q2= 0.709) and (D) TB (red) and LTBI (green) 
(R2Y= 0.952, Q2= 0.776).
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changes were evaluated to generate a regression equation. As 
a result, higher levels of 5-hydroxyindoleacetic acid and iso-
leucyl-isoleucine were found to be predictive of active TB in 
serum samples from TB and HC subjects; Heptadecanoic acid, 
indole acetaldehyde, 5-ethyl-2,4-dimethyloxazole, and 
2-hydroxycaproic acid showed negative predictive value 

(Table 2). 5-fold-cross validation of the LASSO regression 
equation was performed by evaluating the AUC values of the 
ROC curves for each metabolite included in the equation and 
for the logistic regression equation. The results showed the 
AUC of combined metabolites was 0.97 (95% CI: 0.92–1.00) 
better than single metabolite (Figure 4).

Figure 3 Volcanic map of differential metabolites. For the LTBI/HC group (A) and LTBI/TB (B) and TB/HC group (C). The abscissa represented the fold change of the group 
compared to each substance (take the base 2 logarithm), the ordinate represented the P-value (take the base 10 logarithm), and the scatter size represented the VIP value of 
the OPLS-DA model. The larger the scattering, the larger the VIP value. The scatter color represented the final screening result. Significantly up-regulated metabolites are 
shown in red (FC ≥1, P < 0.05), significantly down-regulated metabolites are shown in blue (FC ≤-1, P < 0.05), and non-significant differential metabolites are shown in gray. 
(D) The Venn diagrams show the overlap between different health statuses for metabolites with significant abundance differences (VIP ≥1 and P < 0.05) between LTBI/HC 
group, LTBI/TB, and TB/HC group.

Table 2 Coefficient and Cut-off Using Metabolites Biomarkers Distinguishing Between TB and HC Subjects

TB vs HC

Coefficient AUC of a Single Metabolite

(Intercept) 3.10

Heptadecanoic acid −450.99 0.73
Unknown … 71 −1239.80 0.81

Indole acetaldehyde −91.87 0.69

5-hydroxyindoleacetic acid 7727.07 0.69
Iso leucyl-isoleucine 7809.13 0.71

5-ethyl-2,4-dimethyloxazole −3007.57 0.66

2-hydroxycaproic acid −47,620.14 0.76
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Metabolite Set Enrichment Analysis 
(MSEA)
MSEA aimed to identify the metabolic pathways specifi-
cally altered in patients with TB as compared with HC 
subjects. To determine if the specific metabolic alterations 
detected in the comparison between TB and HC groups 

were in keeping with the current knowledge about the 
biology and the metabolic changes associated with the 
active TB disease (Figure 5). A total of 3 out of the 8 
metabolic pathways with a fold enrichment were higher 
than 1, while Phenylalanine, tyrosine, and tryptophan bio-
synthesis, Valine, leucine, and isoleucine biosynthesis, 

Figure 4 Receiver operating characteristic model of the single metabolites included in the LASSO regression equation. The ROC curves of each metabolite showed 
a moderate distinguishing efficiency in TB vs HC group.

Figure 5 Metabolite set enrichment analysis (MSEA) of differentiating metabolites from TB patients and HC subjects. The scatter shows the most altered metabolic 
pathways with fold enrichment higher than 1 (increasing P-value coloured from red to white).
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Phenylalanine metabolism, were statistically and signifi-
cantly altered (P < 0.2).

Integrated Analysis of Transcriptomics 
and Metabolomics Data
To achieve mutual verification in the current work and seek 
more insights through this integrated omic-technology, 
a combination of metabolomics data and transcriptomics 
data analysis was conducted. The transcriptomics data ana-
lysis enabled validation of the metabolism dysregulations 
revealed by metabolomics work. Further, we found genes 
in 3 significant pathways with P < 0.2, and among the 
identified 27 genes in these pathways, 9 genes (33.3%) 
were differentially expressed with adjusted p≤ 0.05, namely 
ALDH3B1, BCAT1, BCAT2, GLYAT, GOT1, IL4I1, MIF, 
SDS, SDSL (Table 3). As shown in Table 3, four genes are 
involved in the biosynthesis of valine, leucine and isoleucine 
and the remaining 5 genes are involved in phenylalanine 
metabolism. The calculated ROC value of these 9 genes 
was greater than 0.8, which denoted a high diagnostic ability 
of TB. To better understand the metabolite mechanism and 
gene dysregulation, a fully connected network of metabolites 

and genes was built with Metscape (Figure S1) in the 3 
selected pathways. Network analysis was conducted using 
the logarithm of the fold changes on levels of both metabo-
lites between the HC and TB subjects and differentially 
expressed genes. A model of network illustrating connections 
of metabolites and genes was assembled. As shown in Figure 
S1 (Supplementary Material: Part B), metabolites and genes 
in the same pathway were found differentially expressed. The 
results therefore further increase the credibility of our 
selected metabolites, genes, and pathways.

Discussion
Effective TB control requires early identification and interven-
tion of TB, and the identification of specific TB biomarkers 
could help better understand the pathogenesis of the disease 
and early-stage diagnosis. Despite a few studies having made 
progress in seeking new biomarkers of TB by using metabo-
lomics, there were still some unclarified questions that ren-
dered low reliability of the results.6–10 For example, various 
biomarkers generated from different types of samples might 
lack potentials to be based on for new diagnostic methods 
development. Also, a single strategy approach is regarded as 

Table 3 Nine Genes Enriched in 3 Pathways

Gene Function Pathway Trend (TB/HC)* AUC

SDS Serine dehydratase Valine, leucine, and isoleucine biosynthesis ↓ 0.981  

(0.930–1.000)

SDSL Serine dehydratase like Valine, leucine, and isoleucine biosynthesis ↓ 1.000  

(1.000–1.000)

BCAT1 Branched chain amino acid 

transaminase 1

Valine, leucine, and isoleucine biosynthesis ↓ 1.000  

(1.000–1.000)

BCAT2 Branched chain amino acid 

transaminase 2

Valine, leucine, and isoleucine biosynthesis ↑ 0.852  

(0.635–1.000)

GLYAT Glycine-N-acyltransferase Phenylalanine metabolism ↑ 1.000  

(1.000–1.000)

ALDH3B1 Aldehyde dehydrogenase 3 

family member B1

Phenylalanine metabolism ↑ 0.981  

(0.930–1.000)

IL4I1 Interleukin 4 induced 1 Phenylalanine metabolism; Phenylalanine, tyrosine, and 

tryptophan biosynthesis

↓ 1.000  

(1.000–1.000)

GOT1 Glutamic-oxaloacetic 

transaminase 1

Phenylalanine metabolism ↓ 1.000  

(1.000–1.000)

MIF Macrophage migration 

inhibitory factor

Phenylalanine metabolism ↑ 0.963 

(0.877–1.000)

Notes: *The trend of marker levels in the active TB group. ↑ and ↓ indicate increased and decreased levels, respectively, compared with the healthy group. 
Abbreviation: TB, tuberculosis.
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inadequate to narrate a comprehensive story about the patho-
genesis of tuberculosis.

Therefore, we performed the non-targeted quantitative 
metabolomics methods of gas chromatography-time-of- 
flight mass spectrometry (GC-TOF-MS) and ultra-high 
performance liquid chromatography-quantitative mass 
spectrometry (UHPLC-QE-MS) with the assistance of 
transcriptomics data analysis to characterize and compare 
the specific serum metabolic profiles of tuberculosis 
patients (TB) and healthy people (HC). The study aimed 
to explore the metabolic characteristics and biomarkers of 
TB. The selected metabolites and corresponding pathways 
were then validated by transcriptomics data from the GEO 
database. A total of 7 metabolites were selected as candi-
date biomarkers for TB diagnosis, the combination of 
which showed promising signs for TB diagnosis and 
screening by having an AUC of 0.97. Meanwhile, the 
AUC values of 9 genes in the 3 significantly enriched 
pathways were greater than 0.8.

Metabolomics studies showed different metabolic char-
acteristics compared between HC, TB, and LTBI patients. 
Further analyses between HC/LTBI and TB/LTBI were con-
ducted and a group of 33 specific metabolites was found to be 
significantly different in HC from TB. The variations in the 
intensities of all the metabolite are crucial in the discrimina-
tion models, which the variation revealed 3 pathways of TB 
patients are significantly altered compared to that of HC. The 
3 pathways in this analysis are found to be associated with 
Amino acid metabolic (Phenylalanine, tyrosine, and trypto-
phan biosynthesis, Valine, leucine, and isoleucine biosynth-
esis, Phenylalanine metabolism). Amino acid metabolism is 
a complex process that involves many metabolites. Amino 
acid balance can be maintained by cells’ regulatory and 
metabolic events, such as proteolysis, gluconeogenesis, and 
oxidative catabolism. Amino acids are important precursors 
of gluconeogenesis, with an increasing level of such meta-
bolic process, the amino acids present cannot be used to 
make protein and may cause disruption of the protein synth-
esis process. Interestingly, studies on the response of C57Bl/ 
6 mice to the aerobic infection of Mycobacterium tubercu-
losis (MTB) have found that the levels of leucine, isoleucine, 
valine, and phenylalanine in rats infected with MTB all 
increased to some degrees, this finding suggested that the 
disorder of amino acid metabolism may be related to proteo-
lysis, oxidative catabolism, and gluconeogenesis.26 

Furthermore, the study focused on the metabolic character-
istics of serum of tuberculosis patients and healthy people 
based on nuclear magnetic resonance (NMR) spectroscopy 

found that the concentrations of phenylalanine and tyrosine 
in TB patients increased and the degradation pathways of 
phenylalanine valine, leucine, and isoleucine significantly, 
which are related to MTB infection, were dysregulated.27 

Furthermore, Song has found tyrosine, phenylalanine, and 
tryptophan to have strong effect on the binding affinity of 
MtbLrpA and vitamins, which provides a possible mechan-
ism for vitamin-assisted treatment of tuberculosis.28 

Additionally, one of the validated and widely recognized 
drug targets against TB, α-Isopropylmalate Synthase (α- 
IPMS) is extremely critical for the synthesis of leucine, 
isoleucine and valine.29 Similarly, studies have found that 
the tryptophan pathway is highly regulated in the host 
response to tuberculosis infection and disease, as well as to 
chemotherapy-mediated bacterial clearance, given which 
some scholars have taken the decreased level of tryptophan 
in tuberculosis patients as a prognostic marker at post- 
treatment stage.30,31 In fact, more and more studies have 
assured the importance of amino acid metabolism in the 
pathogenesis of tuberculosis.

Then a LASSO regression analysis was performed to 
evaluate the clinical potential of the metabolite alterations 
identified for the discrimination between HC and TB 
patients. The equation, with a specific combination of seven 
metabolites, distinguished TB patients from HC by showing 
an AUC value of 0.97. This value of the combined metabo-
lites was better than that of a single metabolite. This suggests 
that 5-hydroxyindoleacetic acid and isoleucyl-isoleucine 
have a positive predictive ability of active TB. On the con-
trary, heptadecanoic acid, indole acetaldehyde, 5-ethyl- 
2,4-dimethyloxazole, and 2-hydroxycaproic acid were 
shown to have showed negative predictive ability. 5-hydro-
xyindoleacetic acid and indole acetaldehyde are both 
involved in the metabolism of tryptophan. 5-hydroxyindo-
leacetic acid is one of the metabolites of serotonin (5-HT) 
which is a metabolite of tryptophan. Studies have used 
5-hydroxyindoleacetic acid as one of the biomarkers of 
vomiting after tumor chemotherapy.32 Acetaldehyde dehy-
drogenase mitochondria can catalyze the conversion of 
indole acetaldehyde to indole acetic acid; thus, the decrease 
of indole acetaldehyde will cause the decrease of indole 
acetic acid. The significant decrease of indole acetic acid 
serum concentration would cause the cytotoxic activity of 
uremia and promote the clearance of neutrophils.26 

Isoleucyl-isoleucine is a dipeptide group composed of two 
isoleucine residues, which is an incomplete decomposition 
product of protein catabolism and has not been elucidated by 
relevant studies. Heptadecanoic acid is an exogenous fatty 
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acid, while 2-hydroxy caproic acid is a hydroxyl fatty acid. 
Some related studies have indicated that fatty acid may be the 
carbon and energy source of Mycobacterium tuberculosis 
when lung tissue is continuously infected. It was also tested 
that an enhanced ketogenic effect of fatty acid in vivo can 
lead to a significant decrease of palmitic acid, phytic acid, 
and anisodeic acid.33,34 Nevertheless, most of these studies 
solely revealed the metabolic pathways of amino acids and 
fatty acids, further analyses with a focus on target analysis 
should be undertaken for these two kinds of metabolites.

Based on metabolite set enrichment analysis, it can be 
inferred that there are significant changes in amino acid 
metabolism occurring in patients with TB. There are 9 
genes involved in the pathways of Phenylalanine, tyrosine 
and tryptophan biosynthesis, Valine, leucine and isoleucine 
biosynthesis, and Phenylalanine metabolism, all varying in 
expression between HC and TB when integrating analysis of 
DMs and DEGs. These genes showed excellent ability to 
distinguish tuberculosis which supports our findings in meta-
bolomics research. The genes found in our study have 
a variety of important features. SDS and SDSL, which are 
found to be down-regulated in tuberculosis, encode one of 
three enzymes involved in metabolizing serine and glycine 
whose encoded protein is found predominantly in the liver. 
GLYAT is found to encode Glycine N-acyltransferase, a vital 
enzyme in the glycine metabolism and detoxification of 
endogenous and xenobiotic acyl-CoAs. Studies have found 
GLYAT as a good candidate to be a novel marker of hepato-
cellular carcinoma and may be a key molecule in the transi-
tion between differentiation and carcinogenesis of liver 
cells.35 Meanwhile, there was evidence showing that glycine 
has immunomodulatory properties and its levels could be an 
indicator to evaluate pulmonary tuberculosis and pulmonary 
tuberculosis with type 2 diabetes mellitus’ pathologic condi-
tions; thus, SDS, SDSL and GLYAT should be considered for 
further research.36 Interestingly, studies have found poly-
morphism of the SDH gene may be associated with the 
onset of diabetic retinopathy.37 BCAT1 and BCAT 2, related 
to encoding a branched-chain aminotransferase have been 
characterized to be responsible for the biosynthesis of all 
branched-chain amino acids (leucine, isoleucine, and valine) 
in tuberculosis, were down-regulated in TB patients while 
several studies only focused on exploring their prognostic 
significance in cancers.38 Providing that Robert S Jansen has 
verified aspartate biosynthesis as potential species-selective 
drug targets in M. tuberculosis, GOT1 and GOT2 come into 
sight because they play a role in aspartate metabolism and the 
tricarboxylic acid cycles.39 IL4I1 was found to be down- 

regulated in TB patients whose expression is induced by 
the cytokine interleukin 4 in B cells to play a role in immune 
system escape. Studies have found certain levels of IL4I1 
metabolic products in the infected lungs.40 A series of genes 
(GLYAT, ALDH3B1, MIF) were over-expressed in TB 
patients. Similarly, ALDH3B1 encoded aldehyde dehydro-
genase, which may be related to the metabolism of 
5-Hydroxyindoleacetate and indole-3-acetaldehyde, also 
play a major role in the detoxification of aldehydes generated 
by alcohol metabolism and lipid peroxidation and protection 
from oxidative stress.41 MIF encodes a lymphokine involved 
in cell-mediated immunity, immunoregulation, and inflam-
mation. It takes part in regulating macrophage function in 
host defense through the suppression of anti-inflammatory 
effects of glucocorticoids. Studies have found MIF expres-
sion in COPD patients is more likely to be a consequence of 
disease-related factors rather than a cause of the disease.42 

Overall, these DEGs may play important roles in the patho-
genesis, therapy, and prognosis of pulmonary diseases. Given 
these points, there needs further studies to validate functions 
of the above genes in tuberculosis. In the meanwhile, net-
work analysis revealed close connection between the identi-
fied metabolites and genes in our study, and indicated 
disturbances of their corresponding pathways.

By integrating metabolomics and transcriptomics in 
this study, the results revealed the significant alterations 
of 3 pathways in TB at both transcriptional and metabolic 
levels. Transcriptomics study complementarily validated 
the metabolomics studies and comprehensive analysis of 
these two omics data provided a systems-level perspective 
of dysregulated pathways that could facilitate the develop-
ment of therapy and biomarkers for tuberculosis.

There are several limitations to our studies. To strengthen 
the study conclusion, some follow-up studies can be con-
ducted for additional results validation by the inclusion of 
independent cohorts, and comparison with other pulmonary 
infectious diseases. Although the metabolomics and tran-
scriptomics data of TB and HC were generated from different 
populations and technology platforms, the differences in 
metabolomics and transcriptomics data studies can generate 
more reliable results from a data analysis perspective. To 
conclude, integration of metabolomic and transcriptomic in 
biomarkers analysis has the potential to be applied as diag-
nostic models for early TB screening.

Conclusion
In summary, a comprehensive analysis of metabolomics 
and transcriptomics was performed to explore tuberculosis 
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metabolism characteristics. We found a combination of 7 
biomarkers that have been tested to show excellent perfor-
mance in distinguishing TB and HC, the performances of 
which indicate a high potential for these biomarkers to be 
developed into promising and non-invasive tools for tuber-
culosis diagnosis and screening. Further, we explained the 
aberrant metabolism of tuberculosis at both transcriptional 
and metabolic levels, explored the roles of 9 key genes in 
tuberculosis which show great diagnostic ability of TB, 
and demonstrated that the comprehensive analysis of 
metabolomics and transcriptomics can be a promising 
method to discover more reliable biomarkers that aid 
early diagnosis and staging of TB.
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