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Abstract: The research of interactions between the pathogens and their hosts is key for 
understanding the biology of infection. Commencing on the level of individual molecules, 
these interactions define the behavior of infectious agents and the outcomes they elicit. 
Discovery of host–pathogen interactions (HPIs) conventionally involves a stepwise laborious 
research process. Yet, amid the global pandemic the urge for rapid discovery acceleration 
through the novel computational methodologies has become ever so poignant. This review 
explores the challenges of HPI discovery and investigates the efforts currently undertaken to 
apply the latest machine learning (ML) and artificial intelligence (AI) methodologies to this 
field. This includes applications to molecular and genetic data, as well as image and language 
data. Furthermore, a number of breakthroughs, obstacles, along with prospects of AI for 
host–pathogen interactions (HPI), are discussed. 
Keywords: virus, deep learning, virus-cell interaction, sequence analysis, computer vision, 
natural language processing, NLP, DL

Introduction
The causative agents of infectious diseases come in a great variety of shapes, 
biochemistry, and genetic makeup. They originate from a variety of population 
reservoirs and only cross their barriers on occasion,1,2 due to the subtle changes in 
the dynamic ecological equilibrium. In the face of climate changes of as yet unseen 
proportions, the change in ecological balances will inevitably cause emergence of 
new infectious diseases.3,4 This makes further pandemics highly plausible. To 
tackle the outbreaks of the future we must improve our understanding of infectious 
diseases caused by the interactions between a pathogen and a host. In this review 
we will explore how novel techniques for computational analysis of interactions 
between a pathogen and its host may foster such understanding. For the purpose of 
this review, we will focus primarily on viruses, however some aspects of interac
tions between viruses and their hosts may be generalized to other pathogens.

Viruses require host cells to procreate and spread their progeny. For this, they 
enter cells, replicate and egress in a stepwise process occurring through interactions 
between molecules of the host cell and the pathogen molecules. Such interactions 
are commonly referred to as host–pathogen interactions (HPI).5 HPIs include 
mediating various host mechanisms’ exploitation by the pathogen. Typically, this 
occurs through direct interactions between the molecules of the pathogen and the 
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molecules of the host cell (Figure 1A). For example, 
SARS-CoV2 virus enters human host cells through the 
binding of its S protein to Angiotensin-converting 
Enzyme 2 (ACE-2) of the cells. Next, in brief, particles 
get endocytosed, fuse with endosomes and uncoat their 
genome, perform primary protein translation, and viral 
RNA synthesis. Consecutively, virus forms replication 
factories, producing progeny building blocks, and assem
bles progeny, which subsequently egress the infected host- 
cell.6 Needless to say, on a mechanistic level this process 
involves dozens of HPIs which give the virus its advan
tages and may be exploited as antiviral strategies. 
Additionally, these mechanisms vary greatly for other 
viruses7 (Figure 1B) and even other human coronaviruses 
(HCoV).

For example, S proteins of the predominant seasonal 
HCoV-OC43 (Betacoronavirus 1) and HCoV-229E 
(Alphacoronavirus)8,9 bind to 9-O-acetylsialic acids and 
Amino-peptidase N as primary receptors in human cells 
rather than ACE-2. Similarly, the primary receptor of the 
HCoV-HKU1 responsible for the first severe acute respira
tory syndrome (SARS) outbreak is 9-O-acetylsialic acids 
rather than ACE-2.10 In other words, human pathogenic 
viruses constantly change and adapt. Therefore, under
standing biological mechanisms of virus entry, replication, 
and egress may allow to develop general strategies for 
fighting infectious diseases. However, identifying HPIs 
on a mechanistic level is often a laborious manual 

experimental task. Furthermore, due to the ability of the 
virus to change and adapt, deciphering HPI mechanisms in 
a timely fashion is akin to chasing a moving target. In the 
currently ongoing SARS-CoV2 outbreak, identifying 
important mechanistic changes in the emerging virus var
iants fast is the question of life and death. Perhaps the 
most promising weapon to tackle laborious manual tasks 
that humanity has in its arsenal to date are machine learn
ing (ML) and artificial intelligence (AI). While experimen
tal validation remains a must, these computational 
techniques may significantly narrow down the number of 
experiments required for HPI identification through pre
dicting putative interaction partners. Such HPI prediction 
tasks include predicting host–pathogen protein–protein 
interactions11,12 (e.g., using protein sequences and infec
tion phenotypes13), prediction of a putative host or 
a receptor for the specific pathogen.14

Historically, the field of AI originates from an attempt to 
create fundamental and applied basics for machines with 
“intelligent properties”.15 ML, often considered an AI sub
field, has significantly facilitated AI by providing a tangible 
toolset. Conversely, the traction some ML algorithms like 
artificial neural networks have gained in recent years may be 
to a larger extent attributed to the effort to make progress in 
AI. Taken together, these methodologies refer to a group of 
computational techniques that enable computers to perform 
specific tasks without the use of explicit rules or 
instructions.16 This is usually accomplished by creating 

Figure 1 Schematic overview of host–pathogen interactions. (A) simplistic depiction of a pathogen (green hexagon in blue circle) surface protein (red circle) binding to 
a receptor (black Y-shape) on a host cell surface. (B) A generalized and simplified overview of a pathogen life-cycle stages involving interactions with the host cell.
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ML models from real world or computer simulated data. 
Typically, an ML model is trained on a data set of engi
neered features (e.g., extraction of cell size, signal intensity, 
etc.) in a user-supervised or unsupervised manner. 
Conventionally, a supervised data set consists of the features 
(X) and targets (Y), where Y corresponds to an objectively 
known property (i.e., the ground truth). An approach like 
this is well suited to automating biological data processing, 
where formulating a detailed and finite set of rules denoting 
related events is difficult.17–19

Beyond classical ML, a subset of approaches named 
Deep Learning (DL) uses algorithms like deep artificial 
neural networks (DNN) to provide a methodology for 
pattern recognition with unprecedented accuracy.20 This 
is achieved through a combination of approaches includ
ing representation learning, allowing automated feature 
generation,21 as well as, stacking multiple hidden layers 
(modules) of artificial neural networks. Combining var
ious kinds of connections and linear algebra operations 
between individual neurons in a layer allows to construct 
a broad variety of DNN layers including, for example, 
convolutional layers,22 recurrent layers,23 attention 
layers,24 Sigmoid or SoftMax classification layers. 
Modern DNN architectures reach expressive capacity of 
billions or even trillions25 trainable parameters.26 

Noteworthy, as a rule of thumb, the larger the expressive 
capacity of a DNN the more data points are required to 
train while avoiding overfitting. This bears design choice 
constraints in the domain specific fields like HPI analy
sis. To facilitate training of such advanced architectures, 
Practicality of DL relies on the modern parallel comput
ing, which allows it to represent the features of the input 
data (e.g., micrographs or CT scans) through non-linear 
transformations in the so-called vector latent space. 
Recently, adoption of these methodologies has dramati
cally increased in the field of Infections Biology. 
Applications of AI, ML and DL span molecular and 
genetic data (Figure 2A), microscopy (Figure 2B) and 
language data (Figure 2C). Here we will review specific 
examples of these applications and discuss the future 
outlook for ML and AI for the prediction of HPIs.

Host–Pathogen Interactions 
Analysis from Genetic and 
Molecular Data
Perhaps one of the most direct applications of AI and ML 
for HPIs is to reveal patterns on the level of host and 

pathogen molecules and genes. The genetic or molecular 
information is typically represented on a single-character 
sequence level (Figure 2A). Small molecule information is 
often represented using a simplified molecular-input line- 
entry system (smiles).27 In such a setting ML can assist in 
RNA and DNA accessibility analysis, transcription analy
sis (reviewed in28), protein–protein interactions,11–13,29 as 
well as, sequence-based host organism or receptor 
prediction.14 Noteworthy, in well-defined tasks simple 
ML algorithms like Random Forest (RF)30 classification, 
Multilayer Perceptron (MLP) or kernel-based SVM31 per
form remarkably well. For example, Karabulut et al show 
that on the task of adenovirus infection genus prediction 
kernel-based SVM reaches performance of 0.96 F1 score 
and 0.89 area under the receiver operating characteristics 
curve (AUC) with RF and MLP algorithms trailing 
remarkably close.29 In such cases, more advanced algo
rithms like DL are not very likely to deliver a significant 
further improvement. However, in the settings outside of 
the very specific data set these algorithms may deliver 
a boost in generalization.

Identification of genetic variations in either host or 
pathogen genomes conferring higher pathogenicity may 
also be improved using DL.28 Other examples of success
ful ML application for HPIs include base calling and SNP 
analysis32 and clinical metagenomics.33 Algorithms of 
choice most commonly include recurrent neural networks 
(RNN), for example architecture known as long short- 
term memory (LSTM) RNN.23 In some cases, more spe
cialized CNNs are employed34 or even a consecutive 
combination of CNN and LSTM.35 Traditionally, RNN 
(and sometimes CNN) architectures have dominated the 
algorithmic landscape for sequence-based analysis, 
demonstrating state-of-the-art performance. However, 
recently introduced transformer architecture,26 which is 
currently dominating natural language ML, is slowly 
entering the field.36 Yet data-hungriness remains the big
gest hurdle for the transformers to overcome in the HPI 
domain.

Beyond simple pattern recognition AI and ML algo
rithms trained on a large number of examples may be used 
to generate putative new molecules. This approach is 
showing promising results in the novel antiviral space. 
Beck and colleagues, for example, described prospective 
antivirals for the pandemic SARS-CoV2 using a DL model 
of drug-target interaction from a large number of commer
cially available antivirals. For this, they developed the 
Molecule Transformer - Drug Target Interaction 
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architecture. Using this technique, authors identified 
human immunodeficiency virus drug as a potential 
candidate.37

Host–Pathogen Interactions 
Analysis from Image Data
HPIs may be observed visually or using digital microscopy. 
On a subcellular level microscopic imaging may be 
employed to capture image-based data of individual virus 
particle interactions with host-cell proteins.38,39 These data 
are typically obtained using fluorescence light microscopy 
at high magnification (e.g., 64x-100x), supperresolution 

microscopy38,40,41 or electron microscopy.42–44 Various 
ML techniques may be employed to analyze HPIs subcel
lular data, ranging from support vector machines45 to 
DL.46–50

Infection manifestation on a single-cell level is typi
cally hallmarked by the onset of cytopathic effect 
(CPE).51,52 Synchronized with virus entry, uncoating, and 
replication through a virus genetic program, virus-induced 
CPE involves dramatic changes of cell morphology,51,52 

which can be observed in cell culture using conventional 
light microscopy. These include, among other, cell round
ing and swelling, focal patterns emergence, cytoplasmic 
vacuolization53 pyknosis (cytoplasmic shrinkage),51 

Figure 2 Overview of machine learning and artificial intelligence application for host–pathogens interactions research. (A) Schematic representation of machine learning 
applications for genetic and molecular data. (B) Schematic representation of machine learning applications for image data. (C) Schematic representation of machine learning 
applications for language data. Gray parathesis separate respective downstream tasks.
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syncytia formation,54 and may be linked with pathogen- 
related cell death,51 apoptosis55 or motility.56 The HPIs 
occurring on molecular level drive CPE. CPE can be 
observed in cell culture using conventional light micro
scopy techniques without specific labeling at a moderate 
magnification (e.g., 5×-20×). Its manifestation often differs 
substantially for various pathogens, cell types, and multi
plicity of infection (MOI).57

Downstream tasks (Figure 2B) for which ML is 
employed on such data typically include pathogen image 
segmentation49 (often using a variety of the U-Net 
architecture58), HPI events or virus classification from 
full or cropped field-of-view,47,48,50 pathogen object 
detection59 or infection detection.60 Other examples 
include understanding structure and function relationships 
with the pathogens40 or time-lapse analysis.45,60

Being strongly related to the field of computer vision, 
HPI image analysis remains, thus far, strongly dominated 
by the CNN DL algorithms. Indeed, unsurprisingly for 
pathogen image classification tasks both shallower and 
deeper CNNs outperform conventional RF and MLP ML 
algorithms in metrics like F1 often by more than 30– 
40%.47,60

Host–Pathogen Interactions 
Analysis from the Language Data in 
the Scientific Publications
ML for natural language processing (NLP) has recently seen an 
incredible boost in performance through the introduction of the 
transformer-based models.26 Specifically, in their work Devlin 
et al reported that BERT transformer mode significantly out
performed bidirectional LSTM (state-of-the-art at that time) on 
the General Language Understanding Evaluation (GLUE)61 

benchmark with 71 and 82 average GLUE performance, 
Transformer models leverage large text corpora, akin to 
BookCorpus62 or the English Wikipedia data set, and high 
expressive capacity to define the new state-of-the-art perfor
mance on a plethora of NLP tasks. These tasks include text 
classification, named entity recognition (NER), semantic text 
similarity (STS), text summary, question answering (QA), 
reading comprehension, knowledge discovery (KD) and map
ping and other (reviewed in63). Further boost in performance in 
the novel transformer architectures is achieved through the 
multi-headed attention mechanism.24 Building upon it through 
transfer learning (i.e., repurposing a pretrained model), the 
general-purpose deep bidirectional transformers model was 
fine-tuned by Lee and colleagues to the domain of biomedical 

research texts.64 This work, in turn, sparked a surge in biome
dical NLP research.

With respect to HPI research, adoption of this novel 
methodology was limited by the availability of data sets 
large-enough to warrant a successful domain adaptation 
until a few years ago. However, amid the global SARS- 
CoV2 pandemic Wang and colleagues constructed the so- 
called COVID-19 open research data set (CORD-19).65 

This data set, in turn, inspired a plethora of HPI analysis 
approaches using the language data in scientific publica
tions. A great number of NLP downstream tasks have been 
attempted on this and similar data sets in the past 12–18 
month alone (Figure 2C).

Specifically, Koksal et al proposed a search engine 
approach to finding protein-compound pairs in COVID-19 
literature formulated in the CORD-19 corpus.66 Wang and co- 
authors have formulated a NER task data set that covers 75 
detailed entity types.67 These types include biomedical entities 
like genes, chemicals and diseases, as well as, entity types 
related explicitly to the SARS-CoV2 and COVID-19 research 
including coronaviruses, viral proteins, materials, evolution, 
immune responses and substrates. To capture subtle domain 
specific similarities in the CORD-19 data set Guo et al for
mulated an STS data set.68 For the KD task on CORD-19 data 
set Tam and co-authors proposed a transformer-based target- 
query method they named Transformer Query-Target 
Knowledge Discovery (TEND).69 Reddy and colleagues pro
posed a QA task domain adaptation for COVID-19 related 
questions70 using a combination of CORD-19 and several 
COVID-19 QA data sets.71–73 Their data suggest that pre
trained models may successfully be fine-tuned for HPI domain, 
gaining 4–7% performance over the baseline. Noteworthy, 
many of these recent approaches remain to be peer-reviewed 
and the impact these techniques will have on the SARS-CoV2 
and HPI research remains to be demonstrated.

Conclusion
Prior to the surge of AI-community interest in the biomedical 
domain, ML techniques have been only sporadically applied in 
analysis of interactions between pathogens and their hosts 
(reviewed in74). However, in the wake of SARS-CoV2 pan
demic ML and AI techniques application for HPI analysis sees 
an ever-growing interest. Transcending the status of a niche 
application of novel AI algorithms, pathogens and HPI 
research found itself in the spotlight of AI-researchers atten
tion. This manifested in a variety of fundamentally new 
approaches to analyze molecular, image-based and more 
recently language-based HPI data mentioned in this review. 
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Admittedly, the knowledge gap between AI and HPI research 
remains great. This is especially evident in the case of lan
guage-based data. Yet, given the sheer effort from both fields to 
bridge this gap, we may see fruition of these efforts in a not-so- 
distant future.

The lack of large HPI data sets remains one of the main 
hurdles for further penetration of AI and ML into the HPI 
field. However, recent years have seen a significant 
improvement in that matter. In case of image-based data, 
the advent of resources like Bio-Image Archive,75 data- 
dedicated journals and social coding platforms fostered 
deposition of specialized image data sets, including those 
focused on HPI.46,76 The influence of CORD-1965 on the 
adoption of NLP techniques in HPI research was unequi
vocally self-evident. Perhaps, it is the access to open 
research data sets akin to CORD-19 together with image- 
based data repositories that will become the missing piece 
for AI and ML to become a viral case in HPI research.
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