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Purpose: Recently, our group found exosome-like extracellular vesicles (EVs) in Apis 
mellifera honey displaying strong antibacterial effects; however, the underlying mechanism 
is still not understood. Thus, the aim of this investigation was to characterize the molecular 
and nanomechanical properties of A. mellifera honey-derived EVs in order to elucidate the 
mechanisms behind their antibacterial effect, as well as to determine differential antibiofilm 
properties against relevant oral streptococci.
Methods: A. mellifera honey-derived EVs (HEc-EVs) isolated via ultracentrifugation were 
characterized with Western Blot and ELISA to determine the presence of specific exosomal 
markers and antibacterial cargo, and atomic force microscopy (AFM) was utilized to explore 
their ultrastructural and nanomechanical properties via non-destructive immobilization onto 
poly-L-lysine substrates. Furthermore, the effect of HEc-EVs on growth and biofilm inhibi-
tion of S. mutans was explored with microplate assays and compared to S. sanguinis. AFM 
was utilized to describe ultrastructural and nanomechanical alterations such as cell wall 
elasticity changes following HEc-EV exposure.
Results: Molecular characterization of HEc-EVs identified for the first time important con-
served exosome markers such as CD63 and syntenin, and the antibacterial molecules MRJP1, 
defensin-1 and jellein-3 were found as intravesicular cargo. Nanomechanical characterization 
revealed that honey-derived EVs were mostly <150nm, with elastic modulus values in the low 
MPa range, comparable to EVs from other biological sources. Furthermore, incubating oral 
streptococci with EVs confirmed their antibacterial and antibiofilm capacities, displaying an 
increased effect on S. mutans compared to S. sanguinis. AFM nanocharacterization showed 
topographical and nanomechanical alterations consistent with membrane damage on S. mutans.
Conclusion: Honey is a promising new source of highly active EVs with exosomal origin, 
containing a number of antibacterial peptides as cargo molecules. Furthermore, the differ-
ential effect of HEC-EVs on S. mutans and S. sanguinis may serve as a novel biofilm- 
modulating strategy in dental caries.
Keywords: atomic force microscopy, honey, biofilms, dental caries

Introduction
Despite multiple efforts, dental caries continues to be a highly prevalent pathology 
across populations worldwide. Caries is considered a multifactorial disease with 
a strong microbiological component, associated to the dysregulation of resident 
microbiota within the dental biofilm.1 This dysregulation is mostly determined by 
the dominance of crucial acid-producing bacteria, such as Streptococcus mutans, 
over non-acidogenic species of oral streptococci.2,3 As a result, increased 
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acidification of the dental biofilm can lead to the progres-
sive demineralization of the underlying tooth surface 
resulting in cavitation and progression of the disease.4 

On the other hand, the commensal Streptococcus sanguinis 
has been described as an important antagonistic species to 
S. mutans, and its prevalence within the biofilm is mostly 
associated to healthy conditions.5–7 Thus, current efforts to 
prevent and control dental caries are focused on finding 
novel approaches such as selectively targeting S. mutans 
over S. sanguinis and other non-acidogenic strains.

In recent years, Apis mellifera honeybee-derived pro-
ducts such as honey and royal jelly have shown promise as 
novel antibacterial agents against both Gram-positive and 
Gram-negative bacteria. Honey is a product generated by 
adult worker bees from flower nectar and different 
enzymes obtained from secretions of salivary glands, 
mainly the hypopharyngeal glands.8,9 In the past, the anti-
bacterial effect of these substances has been mostly attrib-
uted to compounds such as methylglyoxal and peroxide, as 
well as factors such as pH and osmolarity.10,11 Recently, 
our group has demonstrated for the first time the presence 
of exosome-like extracellular vesicles (EVs) in 
A. mellifera products such as royal jelly, bee pollen and 
honey.8 These EVs were found to be in the size range 
<150nm and display interkingdom effects, such as influen-
cing human mesenchymal stem cell migration, as well as 
antibacterial and antibiofilm effects on the model Gram- 
positive bacterium Staphylococcus aureus.8 This promis-
ing antibacterial effect was also observed for bee-derived 
EVs released from type-I collagen matrixes, further dis-
playing their potential as therapeutic agents for biofilm 
control.12 Despite demonstrating the presence of EVs in 
bee-derived products, and their effect on human and bac-
terial cells, questions remain regarding their specific cargo 
as well as the mechanisms behind their observed antibac-
terial and antibiofilm effect. Furthermore, their potential 
effect on other Gram-positive biofilm-forming bacteria 
such as S. mutans and S. sanguinis has not yet been 
explored. Overall, the use of honey-derived EVs against 
relevant oral streptococci strains may potentially aid in 
developing novel approaches for the prevention and treat-
ment of dental caries.

Thus, the aim of this investigation was to characterize 
the molecular and nanomechanical properties of 
A. mellifera honey-derived EVs in order to elucidate the 
mechanisms behind their antibacterial effect, as well as to 
determine their antibiofilm properties against the relevant 
caries-associated S. mutans.

Materials and Methods
Honey Samples and Extracellular Vesicle 
Isolation
Apis mellifera monofloral honey from Eucryphia cordifo-
lia (HEc) was obtained in crude, unprocessed form from 
controlled, organic beekeepers in Chile (Terra Andes, 
Chile). Honey samples were initially diluted 1:20 in parti-
cle-free phosphate-buffered saline (pf-PBS), and centri-
fuged at 500 x g, 1500 × g and 2500 × g for 15 min 
each. Subsequently, supernatants were filtered (0.2 µm) 
and ultra-centrifuged 100,000 × g for 60 min (Hanil 5 
ultracentrifuge, Hanil). The final EV-containing pellet 
was resuspended in pf-PBS and stored at −80°C until 
experimentation (HEc-EVs, Figure 1A).

Nanoparticle Tracking Analysis (NTA) 
and Transmission Electron Microscopy 
(TEM) Imaging of Isolated Honey-Derived 
Extracellular Vesicles
As a first step, isolated HEc-EVs were characterized for 
size distribution using nanoparticle tracking analysis 
(NTA; NanoSight NS 3000, Malvern, UK). HEc-EVs 
were diluted 1:100 with pf-PBS and measured at 25°C 
(temperature controlled), at camera level 8 and detection 
threshold 3 for 30 seconds. Every sample was measured 5 
times for 30 seconds.

To confirm vesicle presence, HEc-EVs were further 
visualized under a Transmission Electron Microscope 
(TEM), using carbon-coated copper meshes and uranyl 
acetate counterstaining, as previously described.8

Analysis of Cell Surface Markers and 
Cargo Proteins
To determine MRJP1 cargo and to verify exosomal 
origin, HEc-EVs were analyzed for presence of tetra-
spanin CD63 and syntenin using Western Blot. For 
cargo analysis, HEc-EVs were sonicated for 15 min 
prior to analysis. Proteins were separated in reducing 
conditions (syntenin) and non-reducing conditions 
(CD63) utilizing a 10% polyacrylamide gel. After 
blotting onto nitrocellulose, membranes were blocked 
over night with 5% bovine serum albumin (BSA) and 
subsequently incubated with respective antibodies 
(anti-CD63, 1:500, mouse monoclonal, Abcam; anti- 
syntenin, 1:1000, rabbit polyclonal, Abcam; anti- 
MRJP1, 1:1000, rabbit polyclonal, Cusabio) in 5% 
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BSA overnight. Finally, membranes were thoroughly 
washed and incubated with secondary antibody (IR- 
Dye anti mouse, 1:15.000, LiCor; IR-Dye anti-rabbit, 
1:15.000, LiCor), in 5% skim milk for 1 hour. For 
imaging, an Odyssey CLx imaging system was used, 
and results were analyzed with image studio lite ver-
sion 5.2.5.

Peptides defensin-1 and jellein-3 were quantified with 
direct ELISA. HEc-EVs were sonicated for 15 min and 
protein concentration measured with BCA assay (Pierce, 
US). One microgram of HEc-EV protein as well as defen-
sin-1 and jellein-3 peptides (standard: 1µg/mL to 7.8ng/ 
mL, GeneCust, France) and negative controls (pre-bleed 
serum 1:1000, human mesenchymal stem cell protein 30 
µg) were incubated overnight on a high binding 96-well 
polystyrene plate (R&D systems, US). Subsequently, 
plates were washed and blocked with 5% BSA for 2 
hours. Plates were incubated with respective detection 
antibodies diluted in reagent diluent (R&D systems) (anti 
Apis mellifera defensin-1, 50 ng/mL; rabbit polyclonal, 
GeneCust; anti Apis mellifera jellein 3; 50 ng/mL, rabbit 
polyclonal, GeneCust) for 2 hours. HRP-conjugated anti- 
rabbit antibody was used at a dilution of 1:1000 (Cell 
signalling, UK), and developed for 10 min using substrate 
solution (R&D systems). After addition of 2N H2SO4, 
plates were measured in a microplate reader (Tecan 
Sunrise,Tecan, Austria) at 450nm.

Non-Destructive Immobilization of 
Honey-Derived Extracellular Vesicles and 
Bacteria for Atomic Force Microscopy 
Experiments
For AFM-based experiments, freshly cleaved 12-mm dia-
meter mica discs (Electron Microscopy Sciences, US) were 
coated with 50 µL of a 0.1 M solution of poly-L-lysine 
(PLL, Sigma) for 5 minutes, washed 3x with ultrapure H2 

O and dried under a gentle stream of N2. Subsequently, 
a 50μL droplet of either HEc-EVs solution or bacterial 
suspension was incubated on the PLL-coated mica for 30 
minutes at room temperature. Substrates were then washed 
3x with ultrapure H2O, and experiments were carried out on 
the AFM immediately after sample preparation.

Atomic Force Microscopy Imaging and 
Nanomechanics of Honey-Derived 
Extracellular Vesicles
For all AFM imaging, an Asylum MFP 3D-SA AFM 
(Asylum Research, US) was utilized in intermittent contact 
mode (AC mode) with TAP300GD-G cantilevers 
(BudgetSensors, Bulgaria), obtaining height, amplitude, 
and phase channel images of substrates in air. For HEc- 
EV nanomechanical analysis, individually calibrated 
MNSL-10 cantilevers (0.1N/m, Bruker, US) were 

Figure 1 Morphological and biochemical characterization of Apis mellifera HEc-EVs. (A) Schematic representation of HEc-EV extraction and isolation from monofloral A. mellifera 
honey utilizing ultracentrifugation (UC). Created with BioRender.com. (B) Nanoparticle tracking analysis (NTA) demonstrating particle sizes mostly <150 nm, with a mode of 138 
nm. (C) Transmission electron microscopy (TEM) of HEc-EVs confirming the presence of isolated vesicles. (D) Western blot analysis for Major Royal Jelly Protein-1 (MRJP1), CD63 
and Syntenin obtained from three independent HEc-EV isolations, and (E) ELISA quantification for Defensin-1 and Jellein-3. (F) Diagrammatic depiction of the structure of HEc-EVs, 
including the antibacterial cargo molecules MRJP1, Defensin-1 and Jellein-3, and surface markers CD63 and Syntenin. Created with BioRender.com.
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employed to obtain force-distance curves on the surface of 
selected EVs in buffer, with a soft loading force of 0.5nN 
and a 2µm/s rate. HEc-EVs from three independent sample 
preparations were utilized for all AFM-based experiments.

Bacterial Strains and Growth Conditions
For all experiments and assays, Streptococcus mutans 
UA159 (ATCC® 700610) and Streptococcus sanguinis 
SK 36 were grown on brain heart infusion (BHI) agar 
(BD, USA) and Columbia agar supplemented with 5% 
blood respectively at a temperature of 37°C and 5% CO2.

Bacterial Growth and Biofilm Inhibition 
by Honey-Derived Extracellular Vesicles
To determine the effect of HEc-EVs on growth and biofilm 
inhibition, we utilized an adaptation of a previously pub-
lished approach.8 Briefly, 5×104 colony forming units 
(CFU) of either S. mutans or S. sanguinis were inoculated 
into a 96-well plate with HEc-EVs at ratios of 5:1, 1:1, 0.5:1 
and 0.1:1 vesicles per CFU, in a total volume of 100 µL per 
well (in BHI supplemented with 1% sucrose). Bacteria were 
then incubated in a multimodal microplate reader (Synergy 
HT, Biotek, USA) for 24 hours at 37°C, and hourly mea-
surements of absorbance at OD630 were utilized for growth 
curve tabulation. For determining the antibiofilm effect of 
HEc-EVs, 24-hour-old biofilms in 96-well plates were 
gently washed with 1xPBS to eliminate unbound cells, 
dried, stained with a crystal violet solution (0.1% in 
dH2O) for 1 h, and washed with dH2O.8 Subsequently, 
after a 30-minute wash with 95% ethanol, supernatants 
were transferred to a fresh 96-well plate and biofilm bio-
mass was determined by absorption at 570 nm.

Nanoscale Bacterial Characterization 
After Honey-Derived Extracellular 
Vesicles Exposure
Similar to HEc-EV AFM experiments, control and HEc-EV- 
treated bacterial cells were initially imaged in intermittent 
contact mode, obtaining 3×3 µm scans of immobilized 
S. mutans and S. sanguinis. From resulting scans, bacterial 
cell and septum roughness (RMS) calculations were carried 
out with Gwyddion v2.56 software. Furthermore, for 
S. mutans, force-distance curves were obtained on the sur-
face of individualized bacterial cells with calibrated 
TAP300GD-G cantilevers, with a loading force of 3nN 
and a 2µm/s rate.

Data and Statistical Analysis
All data was tabulated and analyzed utilizing GraphPad Prism 
9. After outlier detection and normality determination, statis-
tical significance was assessed with either t-test or ANOVA 
tests, considering a significance value of p<0.05. Young´s 
modulus were calculated from resulting data utilizing the 
Derjaguin, Muller, and Toporov (DMT) model in proprietary 
Asylum Research AFM software (v. 16.10.211). AFM image 
visualization was performed in the Gwyddion v2.56 software.

Results and Discussion
Honey-Derived Extracellular Vesicles 
Contain Antibacterial Cargo and Specific 
Exosomal Markers
Recent reports from our group have demonstrated the presence 
of EVs in Apis mellifera bee-derived products such as royal 
jelly and honey.8,12 In the present study, EVs from a monofloral 
source of honey such as Eucryphia cordifolia (Ec) were iso-
lated employing a similar ultracentrifugation-based approach 
(HEc-EVs). These vesicles were found to be mostly in the size 
range of <150nm, with a mode of 138nm (Figure 1B), con-
sistent with previous reports of exosome-like EVs derived 
from bee products.8 TEM imaging confirmed the vesicle mor-
phology of isolated particles with sizes mostly in the <100nm 
range (Figure 1C), which was also confirmed by AFM inter-
mittent-contact mode.

To date, there are no reports verifying the exosomal 
origin of honey-derived extracellular vesicles. Typical exo-
somal markers are tetraspanins (eg, CD63, CD81, CD9) and 
molecules associated to biogenesis of exosomes (eg, Alix, 
syntenin, clathrins). However, most exosome markers have 
been defined for mammalian cells, and with the field of insect 
exosomes just recently being discovered, exosomal markers 
that may also be conserved in honeybee cells have not been 
defined yet. Differences between the mammalian and insect 
kingdom have to be considered in the search for kingdom- 
specific exosomal markers, since for example honeybees are 
lacking the tetraspanin CD81.13 We were able to identify two 
conserved exosome markers in honeybees: CD63 and synte-
nin (KEGG: exosome: Apis mellifera; entry 552721 CD63; 
entry 551650 syntenin) and could verify their presence in 
HEc-EVs (Figure 1D). CD63 and syntenin are an important 
part of the endosomal sorting complex required for transport 
(ESCRT) machinery, with syntenin recruiting CD63 in early 
endosome formation,14,15 demonstrating the exosomal origin 
of the isolated HEc-EVs.
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As cargo proteins we were able to identify MRJP1, defen-
sin-1 and jellein-3 (Figure 1D and E). MRJP1 is the most 
abundant protein in honey and plays an important role in 
honeybee development, and has demonstrated a number of 
interesting characteristics in regenerative medicine including 
wound healing, anti-cancer effects and immune modulation.16 

Recent reports have also demonstrated its antibacterial proper-
ties against a range of Gram-positive and Gram-negative 
bacteria.16,17 It is believed that the antibacterial effect of 
MRJP1 is due to its ability to alter cell permeability and induce 
bacterial membrane lysis.18 Furthermore, jellein-3 is a well- 
described short antimicrobial peptide (AMP) of 9 amino acid 
residues19 that has shown an important antibacterial effect on 
Gram-positive cocci.19 We also found defensin-1, another 
important bee-derived peptide with antibacterial properties, 
as cargo in HEc-EVs20,21 (Figure 1F). Several mechanisms 
are believed to explain the action of AMPs, the most important 
of these being a direct effect due to membrane disruption of 
bacterial cells via pore formation, stiffening, or reorganization 
of the membrane amongst other mechanisms (reviewed 
by22,23).

Atomic Force Microscopy 
Characterization of Honey-Derived 
Extracellular Vesicles and Their 
Nanomechanical Properties
Following microscale and molecular analysis, the nanoscale 
topographical and mechanical properties of HEc-EVs were 
explored with AFM (Figure 2A). For this, individualized HEc- 

EVs were effectively immobilized onto PLL-coated mica 
surfaces throughout experimentation for both AFM imaging 
and nanoindentation (Figure 2B). HEc-EVs were found to 
display a similar morphology and size (<100nm diameter) to 
EVs from other sources,24 with a stretched out half-spherical 
shape due to the electrostatic interaction between the posi-
tively charged PLL and EVs (Figure 2C and D). Due to this 
stretching out effect, the mean height for immobilized vesicles 
was found to be 10.34 ± 3.3nm (Figure 2E), which is consis-
tent with previous reports for EVs.24

Subsequently, AFM nanoindentation was utilized to deter-
mine the elastic properties of immobilized HEc-EVs. 
A reduced loading force of 0.5nN was utilized in order to 
preserve the structural integrity of EVs and avoid rupture of 
vesicles during experimentation. Overall, the majority of 
immobilized HEc-EVs were found to have Young´s modulus 
values <50MPa, with a median of 34.19MPa (Figure 2F). This 
is the first report to characterize the elasticity of honey-derived 
EVs, but comparisons can be made with the elasticity of EVs 
from other sources in literature. For example, Whitehead et al 
demonstrated that the elastic modulus of human malignant 
bladder cell-derived EVs were mostly in the ~95–280 MPa 
range.25 Furthermore, Zhang et al found elasticity values for 
human-derived EVs to be in the range of 25–400 MPa, with 
a subpopulation of large-exosome vesicles (mean diameter = 
147.8 nm) ranging from ~26–73 MPa.24 Interestingly, elasti-
city of HEc-EVs ranged between ~3–165 MPa with the major-
ity of vesicles falling in the ~25–75 MPa range. This 
observation suggests that HEc-EVs (size mode 138 nm) 
share remarkably similar nanomechanical properties to 

Figure 2 Nanoscale characterization of the morphology and nanomechanical properties of HEc-EVs with atomic force microscopy (AFM). (A) Diagrammatic representation 
of HEc-EV immobilization onto poly-L-lysine (PLL) coated mica surfaces, and subsequent nanoindentation with AFM. Created with BioRender.com. (B) Phase contrast image, 
(C) surface profile and (D) 3D reconstruction (from height image) of immobilized HEc-EVs on PLL-coated mica surfaces. (E) Histogram of the mean z-height of immobilized 
HEc-EVs (curve represents Gaussian fit) showing average height to be ~10 nm. (F) Young’s modulus of nanoindented HEc-EVs, obtained by applying the Derjaguin, Muller, 
and Toporov (DMT) model, demonstrating elasticity values mostly below 100 MPa.
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human EVs in the same particle size range, and could poten-
tially explain previous observations that honey-derived EVs 
have a functional effect on human cells such as increased 
migration.8 This is strengthened by recent observations that 
nanoparticle elasticity influences cellular uptake, and it is 
believed that this property remains true for EV internalization 
into cells.26,27 Overall, the present study probes into the nano-
metrology of bee-derived EVs and suggests that EVs across 
different kingdoms and species conserve similar topographical 
and nanomechanical properties at the nanoscale.

Honey-Derived Extracellular Vesicles 
Show Selective Antibacterial and 
Antibiofilm Properties Against Relevant 
Oral Streptococcal Strains
As previously mentioned, the bee-derived molecules MRJP1, 
jellein-3 and defensin-1 were found contained as cargo within 

HEc-EVs, all of which are known to exert important antimi-
crobial properties.17,19,20 Thus, to assess the effect of isolated 
HEc-EVs on the bacterial growth of relevant oral streptococci, 
Streptococcus mutans UA159 and Streptococcus sanguinis 
SK36 were grown in the presence of increasing concentrations 
of EVs. Both of these species are crucial tooth surface coloni-
zers within the pathogenesis of dental caries, where the pre-
dominance of S. mutans over S. sanguinis is vital for disease 
progression.1 For experiments, a previously published 
approach was utilized to standardize EV concentrations as 
a ratio between EVs and bacteria.8 Thus, streptococci were 
grown in BHI in ratios of either 5, 1, 0.5 or 0.1 HEc-EVs per 
bacterial cell (Figure 3A and B). For S. mutans UA159, ratios 
of 5:1, 1:1 and 0.5:1 were found to completely inhibit bacterial 
growth after a 24-hour incubation period. However, for 
S. sanguinis SK36, only the higher 5:1 ratio of HEc-EVs 
was found to impede growth, as the 0.1:1, 0.5:1 and 1:1 ratios 

Figure 3 Antibacterial and antibiofilm properties of HEc-EVs against Streptococcus mutans and Streptococcus sanguinis. 24-hour growth curves for (A) Streptococcus mutans 
UA 159 and (B) Streptococcus sanguinis SK 36 in the presence of increasing ratios of HEc-EVs. Ratios represent HEc-EVs: CFU (Colony Forming Units). Results expressed as 
mean ± SEM (**p<0.01, ****p<0.0001, compared to control; two-way ANOVA with Dunnett’s multiple comparisons test; n=3, 3 technical replicates per group). Biofilm 
biomass assays for 24-hour growth for (C) S. mutans UA 159 and (D) S. sanguinis SK 36. Overall, results show a differential effect of HEc-EVs against both oral streptococci, 
with a pronounced inhibition of S. mutans UA 159 growth and biofilm formation compared to S. sanguinis (results shown as mean ± SD, **p<0.01, ***p<0.001; one-way 
ANOVA with Dunnett’s multiple comparisons test; n=3, 3 technical replicates per group).
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showed varying bacterial growth after 24-hour incubation 
times (Figure 3B). Previous work showed a growth inhibitory 
effect of honey-derived EVs against another gram-positive 
species, Staphylococcus aureus, at a ~1:1 ratio and biofilm 
growth inhibition at a 10:1 ratio,8 suggesting that honey- 
derived EVs have an antibacterial effect on several strains of 
Gram-positive bacteria.8 Most importantly, the present data 
demonstrates that despite displaying an antibacterial effect on 
both strains of oral streptococci, HEc-EVs have a pronounced 
activity against S. mutans compared to S. sanguinis.

Furthermore, as dental caries is a biofilm-mediated dis-
ease, it is important to not only assess the inhibitory effect of 
HEc-EVs on bacterial growth but also their potential anti-
biofilm capacity. Thus, the effect of HEc-EVs on S. mutans 
UA159 and S. sanguinis SK36 biofilm establishment after 
24-hour incubation times was also assessed. For S. mutans, 
biofilm formation was only observed at the 0.1:1 ratio 
(Figure 3C), which is consistent with the growth data seen 
in Figure 3A. S. sanguinis, on the other hand, displayed 
biofilm formation in the presence of 0.1:1 and 0.5:1 ratios 
that was comparable to the positive control. This suggests 
that despite showing some level of growth inhibition, 
S. sanguinis can still adhere to the surface and establish an 
early biofilm when exposed to lower concentrations of HEc- 
EVs (Figure 3B and D). However, although allowing some 

growth of S. sanguinis in solution, increased ratios of 1:1 EV: 
CFU completely inhibit its ability to form biofilm on the 
surface. Overall, this effect of HEc-EVs on S. mutans could 
potentially aid in the development of novel approaches 
against dental caries. Similar investigations are already 
being performed for other antibacterial compounds such as 
D-cysteine and other free D-amino acids.5,28 Future work in 
this field should focus on exploring the impact of honey- 
derived EVs on dual or multispecies biofilm formation, in 
order to confirm the differential effect observed between 
S. mutans and S. sanguinis within the context of caries 
biofilm formation.

Nanoscale Honey-Derived Extracellular 
Vesicles Induced Alterations on S. mutans 
and S. sanguinis
Finally, the effect of HEc-EVs on oral streptococci was also 
assessed at the nanoscale, by employing AFM-based 
approaches. Following incubation with a 5:1 ratio of HEc- 
EV, both S. mutans and S. sanguinis were immobilized onto 
PLL-coated mica and imaged with intermittent contact mode 
to avoid damaging the bacterial surface or dislodging cells 
due to strong lateral scanning forces. For both strains, control 
bacteria were observed with a very defined morphology and 
marked division features, such as septa (Figure 4A and B). 

Figure 4 AFM-based nanocharacterization of oral streptococci after HEc-EV exposure. (A and B) Control and (C and D) HEc-EV-exposed (5:1 ratio) S. sanguinis and 
S. mutans cells, respectively, immobilized to PLL-coated mica surfaces and imaged with intermittent contact AFM (1 µm scale bars). Images show clear markers for bacterial 
wall disruption such as flattening, swelling, loss of dividing septa, and surface disorganization (asterisks). (E) Nano-roughness analysis (RMS) of the cell surface and dividing 
septa regions, confirming a significative reduction of septa roughness following HEc-EV exposure for S. mutans UA 159 (**p<0.01; Mann–Whitney test, 30 cells per group). 
(F) Diagrammatic representation of AFM nanoindentation of PLL immobilized S. mutans cells, demonstrating a significative increase in elastic modulus following incubation 
with a 5:1 ratio of HEc-EVs (****p<0.0001; Mann–Whitney test, 150 force-curves per group). Created with BioRender.com.
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On the other hand, bacteria treated with HEc-EVs displayed 
an altered and irregular morphology, where cells appear 
enlarged, with a less pronounced division septa and the 
presence of wrinkling and other features consistent with 
cell damage and surface disorganization (Figure 4C and D, 
asterisks). These nanomorphological changes are consistent 
with the membrane disruption effect expected from AMPs 
observed with AFM in previous reports.29 Furthermore, 
Orasmo et al analysed the effect of the antibacterial triclosan 
on S. mutans with AFM, reporting similar nanoscale mor-
phological alterations including cell wrinkling and irregular 
surface morphology.30 As one of the main mechanisms 
behind the antimicrobial effect of triclosan is bacterial mem-
brane disruption, our AFM observations suggest that HEc- 
EVs may generate direct membrane damage on S. mutans 
cells. Similar AFM morphological observations reported by 

Cross et al when analyzing S. mutans cells defective in 
glucosyltransferases (Gtfs) also showed flattening of cells 
and loss of division septa as main cellular changes.31

To further characterize bacterial topographical changes, 
nanoroughness measurements on the surface of individua-
lized bacterial cells was performed, confirming reduced 
roughness values for the septa of HEc-EV-treated 
S. mutans (8.39 nm) compared to controls (11.75 nm; 
p<0.01, Mann–Whitney test), but not for S. sanguinis. 
A reduced roughness in the septal region potentially sug-
gests that HEc-EV exposure may decrease cell division in 
S. mutans (Figure 4E), and further confirms an increased 
susceptibility of S. mutans to HEc-EVs compared to 
S. sanguinis. Subsequently, nanomechanical changes in 
S. mutans following HEc-EV treatment were determined 
by indenting surface-bound cells with 3nN loading forces 

Figure 5 Proposed effect of HEc-EVs on oral streptococci. Schematic representation of the effect of HEc-EVs including growth suppression and inhibition of bacterial 
adhesion and biofilm formation onto surfaces. Created with BioRender.com.
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(Figure 4F). Results showed that HEc-EV treated 
S. mutans was found to have a significant increase in 
Young´s modulus compared to control bacteria 
(p<0.0001, Mann–Whitney test), further supporting the 
hypothesis that HEc-EV exposure significantly alters cell 
wall morphology and properties in S. mutans (Figure 5). 
Previous research has demonstrated that AMP exposure 
can increase stiffness of Gram-positive and Gram-negative 
bacterial membranes,32,33 but further research is necessary 
to elucidate the particular effect of honey-derived EVs on 
streptococcal elastic properties.

Conclusions
Summarizing, our findings confirm the presence of extra-
cellular vesicles in a Chilean monofloral honey derived 
from Eucryphia cordifolia. These extracellular vesicles 
contained cargo molecules unique to the honeybee origin 
and with known antibacterial properties, which displayed 
a pronounced effect on S. mutans and could be associated 
to nanomechanical alterations consistent with membrane 
damage. We would like to highlight that this is the first 
study reporting the exosomal origin of honey-derived EVs 
by identifying the conserved exosome markers CD63 and 
syntenin. Overall, the use of isolated honey-derived EVs 
may serve as a novel approach for modulating the micro-
biological aspect behind the onset of dental caries and 
other biofilm-mediated diseases.
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