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Background: For patients with non-epidermal non–small-cell lung cancer (NSCLC), mole-
cular alterations should always be investigated, especially in non-smokers, who have a very 
high frequency of targetable alterations (EGFR 52%; ALK 8% in particular). MET exon 14 
alterations are identified in 3–4% of NSCLCs and MET gene amplification and high protein 
expression are associated with a poor prognosis. The French recommendations only author-
ize the use of capmatinib and crizotinib if the mutation concerns exon 14. However, several 
different types of mutation in exon 14 of MET and its flanking introns can induce a jump in 
exon 14, activate the MET gene and thus be sensitive to anti-MET tyrosine kinase inhibitors.
Case Summary: This case concerns a 76-year-old Caucasian male with a medical history 
including idiopathic thrombocytopenic purpura, chronic myelomonocytic leukemia (CMML), 
atrial fibrillation, arterial hypertension, obesity (BMI 36kg/m2), and a 5–10 pack-per-year 
smoking history. A left upper lobe pulmonary nodule of 12.4 mm was discovered in 
March 2019. The patient received adjuvant chemotherapy with carboplatin AUC 5 and vinor-
elbine 25.00 mg/m2. At the end of the adjuvant treatment, the patient was in complete remission 
for 5 months. In February 2020, the CT scan revealed a mediastinal lymph node progression. 
A complementary molecular analysis was realized on the initial surgical specimen. A c.3082 
+3A>T mutation in the MET gene was identified. This mutation confers susceptibility to anti- 
MET tyrosine kinase inhibitors. Treatment with crizotinib was initiated with an initial dose of 
250 mg/day for 15 days and then increased to 250 mg twice a day. After 7 months of treatment 
with crizotinib, the disease was still stable according to RECIST 1.1.
Conclusion: We report here the original case of a patient presenting a lung adenocarcinoma 
with an intron 14 mutation and having a durable TKI response.
Keywords: crizotinib, next-generation sequencing, MET intron 14 mutation, non-small-cell 
lung cancer

Introduction
In patients with metastatic non–small-cell lung cancer (NSCLC) onset or metastatic 
relapse in first-line treatment, chemotherapy based on platinum salts in combination 
with anti-PD1 immunotherapy is recommended for PS 0–1 patients under 70 years 
of age.1,2 For patients with PDL1 ≥ 50%, pembrolizumab could be used alone 
instead of chemotherapy.3

For patients with non-epidermal NSCLC, molecular alterations should always 
be investigated, especially in non-smokers (<100 total cigarettes smoked), who 
have a very high frequency of targetable alterations (EGFR 52%; ALK 8% in 
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particular).4 Driver mutations for which a specific inhibitor 
is available that were sought in first intention are epider-
mal growth factor receptor [EGFR], anaplastic lymphoma 
kinase [ALK], c-ROS oncogene 1 [ROS1], and BRAF 
V600E. Different tyrosine kinase inhibitors (TKI) are 
used in first-line treatment for EGFR activating mutations 
(afatinib, erlotinib, gefitinib, osimertinib), ALK-rearrange-
ment (alectinib), and ROS1 rearrangement (crizotinib). 
Patients with a BRAF V600E mutation benefit from 
a therapeutic combination of dabrafenib and trametinib.5 

Other clinically relevant mutations (HER2 mutations, 
MET alterations, RET and other fusions) are less common, 
while MET exon 14 alterations are identified in 3–4% of 
NSCLCs.

MET exon 14 mutations are more common in adeno-
carcinomas than in squamous cell carcinomas and large- 
cell carcinomas.6 Patients with MET exon 14 mutations 
are generally elderly, predominantly female and include 
a significant proportion of non-smokers.7

MET gene amplification and high protein expression 
are associated with a poor prognosis.8,9 MET copy gain 
was initially recognized in association with secondary 
resistance to EGFR inhibitors,10 prompting the develop-
ment of targeted therapies that showed disappointing 
results.11 More recently, interest in targeting MET has 
been rekindled by the discovery of activating mutations 
that may respond to targeted inhibition. Indeed, recent 
studies report that patients with MET amplification or 
MET exon 14 mutation can be sensitive to crizotinib6,12– 

15 and according to NCCN recommendations, capmatinib 
and crizotinib can be used in first line therapy or subse-
quent therapy for patients with MET exon 14 skipping 
mutation.

As recommended by the European Society for Medical 
Oncology (ESMO), as none of the respective targeted 
agents has regulatory approval, routine MET molecular 
testing is not advised.16 In France, the search for mutations 
in the exon 14 of MET is recommended as an option at the 
initial diagnosis and always before second-line treatment. 
Several studies have shown that MET exon 14 mutations 
represent a clinically unique molecular subtype of 
NSCLC, therefore making it necessary to include MET 
as part of larger testing panels performed either initially or 
when routine EGFR, ALK, and ROS1 testing is 
negative.8,17–22

Anti-MET TKIs (crizotinib, capmatinib, tepotinib, 
savolitinib) do not currently have marketing authorization 
in France. In the case of MET exon 14 mutations, a request 

for a temporary recommendation of crizotinib use is pend-
ing at the time of writing. This request does not apply to 
other MET alterations. It concerns treatment of adult 
patients with non-emergent locally advanced or metastatic 
small-cell bronchial cancers with a mutation of exon 14 of 
c-MET, after at least one treatment line based on 
a platinum dipole with or without immunotherapy. 
Capmatinib is available in nominative temporary use 
authorization for patients with advanced or metastatic 
non–small-cell lung cancer with a c-MET mutation affect-
ing exon 14 who have already received first-line treatment 
and are not eligible for a clinical trial currently underway 
in France.

Thus, contrary to the American recommendations 
which authorize the use of capmatinib and crizotinib in 
the case of a mutation skipping exon 14 of METs, the 
French recommendations only authorize the use of these 
treatments if the mutation concerns exon 14. However, 
several different types of mutation in exon 14 of MET 
and its flanking introns can induce a jump in exon 14, 
activate the MET gene and thus be sensitive to anti-MET 
tyrosine kinase inhibitors.12

We report here the original case of a patient presenting 
a NSCLC with an intron 14 mutation and having a durable 
TKI response.

Case Report Presentation
This case concerns a 76-year-old Caucasian male with 
a medical history including idiopathic thrombocytopenic 
purpura, chronic myelomonocytic leukemia (CMML), 
atrial fibrillation, arterial hypertension, obesity (BMI 
36kg/m2), and a 5–10 pack-per-year smoking history.

A left upper lobe pulmonary nodule of 12.4 mm was 
discovered in March 2019 following symptoms of cough-
ing (Figure 1). A PET scan showed an hypermetabolism of 
the left upper lobe pulmonary nodule (SUVmax: 3.29) and 
an intense hypermetabolic focus in the left interlobular 
lymph node (SUVmax: 5.55) (Figure 2). The rest of the 
spreading assessment was negative.

A left upper lobectomy with mediastinal lymph node 
dissection by lateral thoracotomy was performed on 
April 3, 2019.23 Anatomopathological examination of the 
surgical specimen prompted the diagnosis of primary inva-
sive pulmonary adenocarcinoma, associated with 
a sarcomatoid contingent with spindle cells (10%) of 
1 cm, not infiltrating the visceral pleura, and complete 
exeresis, but with the presence of endolymphatic tumor 
emboli. PDL1 was 70%. Six metastatic lymph nodes and 9 
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lobar and peribronchial lymph nodes were present. No 
mediastinal lymph nodes were involved. The tumor was 
classified pT1aN1M0, stage IIB (TNM 8th edition).

The patient received adjuvant chemotherapy with car-
boplatin AUC 5 and Vinorelbine 25.00 mg/m2, for which 
he received four courses from June 6 to August 30, 2019, 
instead of taxol-carboplatin because he did not want an 
alopecia-causing treatment.24 At the end of the adjuvant 
treatment (September 2019), the patient was in complete 
remission for 5 months. In February 2020, the CT scan 
revealed a mediastinal lymph node progression (RECIST 
1.1) with a 21 mm adenopathy in front of the aortic arch 
and a second one of 18 mm in the pretracheal space 
(Figure 3). At that time, a complementary molecular ana-
lysis by next-generation sequencing (NGS) was realized 
on the initial surgical specimen. A c.3082+3A>T mutation 
in the MET gene was identified with no EGFR mutation, 
ALK or Ros 1 translocation. This substitution is in the 
splice donor site of intron 14 and most likely causes 
a jump in exon 14. This mutation confers susceptibility 
to anti-MET tyrosine kinase inhibitors.25

Based on his history of idiopathic thrombocytopenic 
purpura, his age, the COVID-19 pandemic and the pre-
sence of a mutation in MET intron 14, treatment with 
crizotinib was initiated with an initial dose of 250 mg/ 
day for 15 days and then increased to 250 mg twice a day, 
in accordance with recommendations for use.

An early CT scan at six weeks (April 9) showed an 
excellent and almost complete response to mediastinal 
lymph node involvement, according to RECIST 1.1 (ade-
nopathy of the aortic arch at 5 mm and of the pretracheal 
space at 5 mm) with a good clinical and hematological 
tolerance (Figure 4).

After an additional two months of treatment, the re- 
evaluation CT scan (June 2020) found a continuation of 
the partial response aspect (RECIST 1.1), while the initial 

target mediastinal adenopathies were no longer measurable 
and appeared partly calcified (3 mm in front of the aortic 
arch or prevascular upper mediastinal). In 
September 2020, after 7 months of treatment with crizoti-
nib, the disease was still stable according to RECIST 1.1. 
However, at the end of September 2020, the patient devel-
oped anemia and deep thrombocytopenia, which led to the 
discontinuation of crizotinib. The myelogram revealed 
70% of medullary blasts in favor of acutization of the 
CMML in acute myeloid leukemia (AML), excluding 
a toxicity of crizotinib. In December 2020, 3 months 
after discontinuation of crizotinib, the patient presented 
a lymph node and pleural progression (Figure 5).

To date, no case of transformation of CMML in acute 
leukemia on crizotinib has been described in the literature. 
Studies have shown the efficacy of crizotinib in cases of 
AML with ALK rearrangement/ALK expression, which in 
some cases resulted in a reduction in cell load until normal 
hematopoiesis was restored.26,27

Discussion
The new-generation sequencing used in our center to 
search for the recommended mutations in first-line meta-
static recurrent pulmonary adenocarcinomas has allowed 
us to identify a molecular alteration of MET that is not 
accessible to targeted therapy according to the recommen-
dations in force in our country (mutation c.3082+3A>T of 
intron 14) (Figure 6). However, the analysis of the litera-
ture shows that this substitution is in the splice donor site 
of intron 14 and most likely causes a jump in exon 14 and 
that this mutation confers susceptibility to anti-MET tyr-
osine kinase inhibitors.25 In a multidisciplinary consulta-
tion meeting, we therefore decided to initiate treatment 
with crizotinib with early re-evaluation in order to limit 
hematological toxicity in this elderly, fragile patient also 
presenting chronic myelomonocytic leukemia, particularly 

A B
C

Figure 1 Chest CT scan of February 19, 2019 representing a left upper lobe pulmonary nodule of 12.4 mm in lung window (A) and a prevascular adenopathy in mediastinal 
window of 12.7 mm (B). Chest X-Ray with the cross-sectional height at which pulmonary nodule is located (C).
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in this COVID-19 pandemic period when oral treatments 
were widely recommended.

The MET gene encodes the receptor for hepatocyte 
growth factor (HGFR), a tyrosine kinase receptor for hepa-
tocyte growth factor (HGF), present in epithelial cells. The 
binding of active HGF to the MET receptor induces activa-
tion of MET tyrosine kinase by dimerization and trans- 

phosphorylation of carboxy-terminal tail-clustered tyrosine 
residues of tyrosine kinase. Its activation results in down-
stream signaling pathways activation, including mitogen- 
activated protein kinase (MAPK), phosphoinositide-3 kinase 
(PI3K/AKT), and signal transducer and activator of tran-
scription 3 (STAT3) pathway, which promote cell migration, 
proliferation, and survival.28–31 MET protein receptor 

A

B

C

Figure 2 Pre-therapeutic TEP scan of March 19, 2019 representing a hypermetabolism of the left upper lobe pulmonary nodule (SUVmax: 3.29) (A and B); and an intense 
hypermetabolism focus in the left interlobular lymph node (SUVmax: 5.55) (C).
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stability and degradation are regulated by the intracellular 
juxtamembrane domain which is encoded in part by MET 
exon 14 and contains the tyrosine Y1003 residue that, when 
phosphorylated, serves as the binding site for the casitas 
B-lineage lymphoma (CBL) E3 ubiquitin ligase (Figure 7). 
CBL-mediated ubiquitination results in receptor internaliza-
tion from the cell membrane to endocytic vesicles and sub-
sequent proteasomal degradation (Figure 8).32

Different mechanisms of the MET gene activation lead-
ing to oncogenesis are as follows: an amplification of the 
MET gene resulting in high expression of the receptor, 
tyrosine kinase domain mutations resulting in constitutive 

activation of the receptor,33 and splicing mutations resulting 
in the skipping of exon 14 and loss of Y1003 during pre- 
mRNA splicing, resulting in loss of the casitas B-lineage 
lymphoma (CBL)-binding site and increased half-life of the 
MET receptor. In the absence of Y1003, CBL is unable to 
regulate ubiquitin-mediated degradation of the MET recep-
tor by the lysosomes, leading to decreased turnover of MET 
and increased MET signaling that drives oncogenesis.32,34

Many somatic splice site alterations resulting in MET 
exon 14 skipping have been reported (more than 100). 
Mutations at the splice sites of MET exon 14 have been 

Figure 3 CT scan of February 5, 2020 revealing a mediastinal lymph node progres-
sion (RECIST 1.1) with a 21 mm adenopathy in front of the aortic arch and a second 
one of 18 mm in the pretracheal space.

A B

Figure 4 CT scan of June 11, 2020 showing a partial response aspect (RECIST 1.1) of two mediastinal lymph node involvements, the first in front of the aortic arch (A) and 
a second one of 18 mm in the pretracheal space (B).

Figure 5 CT scan of December 28, 2020 representing a lymph node and pleural 
progression.

OncoTargets and Therapy 2021:14                                                                                                 https://doi.org/10.2147/OTT.S312889                                                                                                                                                                                                                       

DovePress                                                                                                                       
3953

Dovepress                                                                                                                                                           Leyrat et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


found in 2–3% of lung tumors, with a higher frequency for 
adenocarcinoma and sarcomatoid tumors. These mutations 
are very diverse, with numerous variants, including dele-
tions, insertions, or point mutations.35 Although most of 
the exon-skipping mutations involve canonical splice sites, 
some are located further into the intronic sequence, up to 
25 base pairs, adjacent to the splice acceptor sites. These 
mutations in exon splicing, especially the intronic noncod-
ing region, can be difficult to interpret or may be missed 
by assays examining only exons and the immediately 

adjacent 50 and 30 splice acceptor and donor sites. 
Among the population of patients with a mutated MET 
exon 14, the prevalence of each type of mutation has been 
listed. Deletion of the acceptor splice site (polypyrimidine 
sequence or branching point) is involved in approximately 
41% of mutations, deletion of donor splice site in approxi-
mately 11%, and point mutation of the donor splicing site 
in approximately 48%.6,35 This large degree of variation 
will have to be taken into account when designing clinical 
diagnostic sequencing assays to capture all possible 

EXON 14 Intron 14Intron 13

c2942 c3082

Splice site point mutation
c.3082+3A>T 

…AGATCTGG…         …CAGAAGGTA…

Figure 6 Schematic representation of a part of MET gene, including exon 14, its splicing site, and the site of the mutation.
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activating MET mutations.12 Many MET inhibitors could 
be used in patients with a MET exon-14-skipping 
mutation.

According to the different combination of MET kinase 
domain structure, MET-TKIs can be divided into three 
types (type I, II, III), with type I inhibitors which can be 
subdivided into Ia and Ib.29,36 Type I inhibitors bind to the 
active conformation of the kinase in the ATP pocket; type 
II inhibitors bind to the inactive conformation of the 
kinase in the ATP pocket; and type III inhibitors are non- 
ATP-competitive allosteric inhibitors and bind outside the 
ATP pocket.

Recent reports demonstrated that patients with MET 
amplification or MET exon 14 mutation are sensitive to 
crizotinib.13,15 Crizotinib is a multi-tyrosine kinase 

inhibitor discovered through pharmacological screening. 
Among 120 human kinases, 13 kinases are inhibited by 
crizotinib, including c-MET and ALK, which shares 36% 
kinase domain sequence identity with c-MET.37

Crizotinib is used for the treatment of ALK- or ROS1- 
rearranged advanced NSCLCs.38,39 A type Ia inhibitor, it 
was the first MET tyrosine kinase inhibitor to be explored 
in MET-exon-14-altered NSCLCs and has shown its effec-
tiveness in patients with MET amplification and MET exon 
14 mutation.25 Drilon et al showed that among 65 patients 
with MET exon-14-altered NSCLCs treated with crizoti-
nib, an objective response rate (ORR) was 32%, with 
a median progression-free survival (PFS) of 7.3 months, 
independent of the molecular heterogeneity or concurrent 
increased MET copy number.40

A B

Figure 8 Mechanism of MET signaling regulation. Normal MET signaling (A) and abnormal signaling with MET-exon-14 skipping mutation (B).
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Recently, highly selective type Ib MET-TKI, more 
selective than crizotinib and potentially more potent in 
preclinical models, have been created, such as 
capmatinib,41 tepotinib,42 and savolitinib,43 which are 
under study in clinical trials.

Wolf et al showed in a recent Phase II GEOMETRY 
mono-1 study that the ORR with capmatinib was 67.9% 
and median PFS was 9.69 months among 28 patients with 
treatment-naïve disease; the overall response rate was 
40.6% and median PFS was 5.42 months among 69 pre-
viously treated patients.41 Capmatinib has been approved 
by the Food and Drug Administration (FDA) for adult 
patients with a MET exon-14-skipping mutation. Paik 
et al showed in a single-arm phase II trial of 152 patients 
with MET exon-14 skipping mutations, the overall 
response rate with tepotinib was 46%, with a median 
response duration of 11.1 months.44 For these molecules, 
toxicity was acceptable, with essentially peripheral edema 
and nausea. While these are promising results, studies are 
still ongoing, and a longer follow-up is needed to know if 
these molecules are more effective than crizotinib. Other 
drugs such as cabozantinib45 and glesatinib,46 which are 
multi-targeted inhibitors (type II MET-TKI), are also being 
studied.

Nevertheless, patients showing initial benefits from these 
treatments invariably develop acquired resistance, leading to 
a disease progression. Drug resistance mechanisms have 
already been explored in diverse cases reports of patients 
with MET exon 14-altered lung cancer treated with MET- 
TKIs. The main mechanisms described were the decrease of 
mutation abundance and the change of MET mutation site 
after treatment with crizotinib.36 Guo et al (ASCO) tried to 
set out to identify potential resistance mechanisms among 74 
lung cancer patients with stage IV MET exon 14 mutation 
treated with MET-TKI, of whom 91% received crizotinib at 
first-line treatment. Tumor samples underwent targeted 
NGS. This research showed that a lack of MET expression 
or RAS pathway activation is associated with poor MET- 
TKI outcomes in MET exon 14-altered lung cancers. On- 
target acquired resistance was found in less than 25% of 
patients and HGF amplification was found as a novel 
mechanism. Potential off-target acquired drug resistance 
mechanisms could be mediated by RAS/MDM2/EGFR 
pathway activation.47 Many studies suggest that switching 
from a type I MET-TKI (essentially crizotinib) to type II 
MET-TKI such as glesatinib or cabozantinib may overcome 
resistance mutations.36,48,49

Conclusion
In this case of pulmonary adenocarcinoma harboring 
intron 14 MET mutation, crizotinib was responsible for 
an effective therapeutic response, despite the transforma-
tion of LMMC in AML which is probably not linked with 
crizotinib based on the literature data. Several alterations 
in the exon or in the intron sequence including splicing 
sites can be involved in MET exon-14-skipping mutation, 
and thus leading to sensitivity to anti-MET tyrosine kinase 
inhibitors. Given their wide variability and complexity, 
mutations in MET splicing sites require the optimisation 
of molecular biology techniques. Targeted NGS-based 
assays interrogating MET as part of a larger gene panel 
should be preferred for screening purposes. The detection 
of mutations in MET exon 14 splice sites requires the 
development of specific techniques capable of identifying 
intronic alterations. For DNA-based tests, the test design 
must allow accurate and complete sequencing of exon 14 
and its adjacent introns. The quantity of material (DNA 
and cells) can be limiting factors in detecting them. The 
search for an exon 14 jump by mRNA sequencing could 
be a solution, but currently its use in current practice is not 
possible given its cost and liability.
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