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Abstract: Checkpoint-based immunotherapies, such as programmed cell death-1 (PD-1)/ 
programmed cell death ligand-1 (PD-L1) inhibitors, have shown promising clinical outcomes 
in many types of cancers. Unfortunately, the response rate of immune checkpoint inhibitors is 
low. It is very important to discover novel therapeutic targets and prognostic biomarkers. 
Cholesterol metabolism has been demonstrated to be related to the occurrence and develop-
ment of a variety of tumors and may provide a new breakthrough in the development of 
immunotherapy. First of all, cholesterol metabolism in the tumor microenvironment affects 
the function of tumor-infiltrating immune cells. In addition, intracellular cholesterol home-
ostasis is an important regulator of immune cell function. Furthermore, drugs that act on 
cholesterol metabolism affect the efficacy of immunotherapy. What is more, peripheral blood 
cholesterol level can be a biomarker to predict the efficacy of immunotherapy. In this review, 
we aimed to explore the potential role of cholesterol metabolism on immunotherapy. By 
summarizing the major findings of recent preclinical and clinical studies on cholesterol 
metabolism in immunotherapy, we suggested that cholesterol metabolism could be 
a potential therapeutic target and a prognostic biomarker for immunotherapy. 
Keywords: cholesterol metabolism, immunotherapy, immune cell, therapeutic target, 
biomarker

Introduction
Immunotherapy for tumors, which has recently achieved clinical success, is revolutioniz-
ing cancer treatment.1 Checkpoint-based immunotherapies are agents that target the 
inhibitory receptors expressed on activated T cells.2–4 Immune checkpoint inhibitors 
(ICIs) take effect by overcoming or alleviating tumor-induced immunosuppression, 
thereby releasing inhibitory T-cell-mediated antitumor responses.5,6 Programmed 
death-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitors have been approved as 
a systematic treatment for various types of cancers, such as melanoma, non-small cell 
lung cancer (NSCLC), hepatocellular carcinoma, renal cell carcinoma and so on.7–10 

Although immunotherapy has shown the application potential in a variety of malignan-
cies, a relatively small proportion of patients have so far benefited from ICIs.11,12 Thus, 
the discovery of more effective immunotherapy targets and the identification of pre-
dictive biomarkers for immunotherapy become urgently warranted.

Cholesterol, a subtype of lipids, plays an important role in cell homeostasis, 
from the basic components that maintain the integrity and stability of cell mem-
branes to the precursors of different forms of important sterols such as vitamins and 
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hormones.13,14 Both clinical and experimental studies sup-
port the link between changes in cholesterol metabolism 
and cancer development.15–17 On the one hand, elevated 
serum cholesterol levels have been reported to increase the 
incidence rate of colorectal, prostate and other cancers.18 

Considering the concomitant relationship between obesity 
and hyperlipidemia, a prospective study investigating the 
association between prediagnosis blood lipid concentra-
tions and breast cancer risk reported that serum cholesterol 
levels did correlate with breast cancer risk regardless of 
BMI.19 On the other hand, accumulated reports have 
shown that cholesterol can suppress immune cells, regulate 
cell survival and modulate cancer stem cells.20,21 By sum-
marizing the major findings of recent preclinical and clin-
ical studies on cholesterol metabolism in immunotherapy, 
this review aimed to explore the potential effects of cho-
lesterol metabolism on immunotherapy. We present the 
following article in accordance with the narrative review 
reporting checklist.

Cholesterol Metabolism in the 
Tumor Microenvironment Affects 
the Function of Tumor-Infiltrating 
Immune Cells
The tumor microenvironment is composed of tumor cells, 
local stromal cells, blood vessels, infiltrating immune cells 
and other related tissue cells.22 Different tumor microen-
vironments are formed during the development of tumors 
and have different beneficial or adverse influences on the 
occurrence of tumors.23,24 Tumor-infiltrating immune 
cells, such as macrophages, lymphocytes, and neutrophils, 
can be altered to enhance tumor cell invasion and metas-
tasis, angiogenesis, and immune escape.25

In the tumor microenvironment, some tumor-derived 
molecules have been reported to inhibit different kinds of 
immune cells, thereby inhibiting tumor-specific immune 
response.26 Indeed, cholesterol and products of cholesterol 
metabolites, such as oxysterols and cholesterol ester pro-
duced by tumor cells, have been investigated in different 
tumor models. Cholesterol metabolism has been confirmed 
to affect the phenotype and ability of different types of 
cells that form the microenvironment, especially tumor- 
infiltrating immune cells (see Figure 1).27

Tumor-Derived Cholesterol
Cholesterol released by tumor cells has been proved to 
induce a dysfunctional state of CD8+ T cells with loss of 

antitumor function by overexpressing inhibitory 
receptors.28 CD8+ T cells in the dysfunctional state in 
cholesterol-rich tumor tissues are positively correlated 
with the up-regulated expression of PD-1, 2B4 (CD244, 
SLAM4), T cell immunoglobulin-3 (TIM-3) and lympho-
cyte-activation gene 3 (LAG3).19 Further research con-
cludes that cholesterol increases endoplasmic reticulum 
(ER) stress in CD8+ T cells and the ER stress sensor 
x-box binding protein 1 (XBP1) was activated which 
regulated PD-1 and 2B4 transcription.19 Besides, CD8+ 
T cells can differentiate into different subsets under var-
ious cytokines.29 In these subsets, the cytotoxic T 9 (Tc9) 
cells have a stronger antitumor effect than cytotoxic T 1 
(Tc1) cells.30 However, cholesterol has been shown to 
inhibit the antitumor function of Tc9 cells by activating 
the LXR signaling pathway and lowering (interleukin-9) 
IL-9 expression.30 To sum up, cholesterol regulation can 
be an effective method to upregulate the anti-tumor effect 
of T cells.

Tumor-Derived Oxysterols
Liver X receptors (LXRs), a member of the nuclear receptors, 
are transcription factors that can be activated by ligands.31,32 

Oxysterols, such as 20(S) -hydroxylcholesterols (20HC), 24 
(S) -hydroxylcholesterols (24HC), and 27- hydroxylcholester-
ols (27HC), are oxidized cholesterol metabolites that have 
been proved to be natural ligands of LXRs both in vitro and 
in vivo.33,34 The in-depth analyses of the LXR ligands/oxy-
sterols axis have demonstrated their functions in cholesterol 
metabolism and associations with the pathological state, such 
as coronary heart disease and cerebrovascular disease.35,36 In 
addition, oxysterol is also associated with proliferation, migra-
tion and apoptosis of tumor cells.34

Oxysterols have been reported to influence the thera-
peutic effects of immunotherapy in experimental mice.37 

Cancer cells release oxysterols and inhibit the expression of 
CC chemokine receptor type 7 (CCR7) in mature dendritic 
cells (DCs), thereby inhibiting the migration of DCs to 
draining lymph nodes and anti-tumor immune response.38 

According to Carpenter et al, triple-negative breast cancer 
(TNBC)-produced oxysterols can inhibit the activation of 
macrophage and promote M2 polarization of macrophages 
by binding to LXR in immune cells in the tumor 
microenvironment.39 Moresco and colleagues have also 
found that tumor-derived oxysterols promoted the growth 
of 4T1 implanted tumor-bearing mice via creating a tumor- 
promoting microenvironment, especially by recruiting 
tumor-promoting neutrophils.40 As a member of the 
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oxysterols, 27HC inhibits CD8+ T cell activity and creates 
an immunosuppressive microenvironment through 
a complex and mostly unknown mechanism.41 

Furthermore, another study has suggested that tumor- 
derived oxysterols in the microenvironment promote the 
recruitment of neutrophils by binding and activating CXC 
receptor 2 (CXCR2) in an LXR-independent manner.42 

Recruited neutrophils have been shown to release large 
amounts of total matrix metalloprotein-9 (MMP-9) and 
enhance mRNA levels of the prokineticins PK1 and PK2 
(Bv8), contributing to neoangiogenesis and immunosup-
pression and ultimately promoting tumor growth.42 But 

now, the roles of the LXR/oxysterol axis in facilitating 
tumor invasion and metastasis by immune cells need further 
study. Altogether, these findings imply that the inhibition of 
the synthesis of cholesterol or oxysterol is a potential way to 
improve immunotherapy effectiveness.

Intracellular Cholesterol 
Homeostasis is an Important 
Regulator of Immune Cell Function
Cholesterol, an important component of cell membranes, is 
therefore obviously needed for cell reproduction.43 

Figure 1 Cholesterol metabolism in the tumor microenvironment affect the function of tumor-infiltrating immune cells: Tumor-derived cholesterol can induce 
a dysfunctional state of CD8+ T cells with loss of antitumor function by overexpressing inhibitory receptors, inhibit the antitumor function of Tc9 cells by activating the 
LXR signaling pathway and lowering IL-9 expression. Tumor-derived oxysterols can reduce the expression of CCR7 in mature DCs and ultimately inhibit the migration of 
DCs to draining lymph nodes and anti-tumor immune response. In addition, tumor-produced oxysterols promote the recruitment of neutrophils by binding and activating 
CXCR2 and recruited neutrophils have been shown to promote tumor growth by releasing large amounts of total MMP-9 and enhance mRNA levels of Bv8. What’s more, 
oxysterols released by cancer cells can inhibit the activation of macrophage and promote M2 polarization of macrophages by binding to LXR in immune cells. 
Abbreviations: XBP1, x-box binding protein 1; LAG3, lymphocyte-activation gene 3; TIM-3, T cell immunoglobulin-3; PD-1, programmed death-1; Tc9, cytotoxic T 9 cells; 
ER, endoplasmic reticulum; LXR, liver X receptor; TNF-α, tumor necrosis factor α; CXCR-2, CXC receptor 2; MMP-9, matrix metalloprotein-9; CCR-7, CC chemokine 
receptor type 7.
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Cholesterol in the free state is an important part of lipid 
rafts.44 T cell receptors (TCRs) reside in lipid rafts, thus 
cholesterol homeostasis in the plasma membrane can affect 
T cell function by changing TCRs.45 Cholesterol metabolism 
can regulate the function of immune cells by controlling 
a variety of immunobiological activities.46 Newly activated 
CD8 T cells increase cholesterol biosynthetic and input and 
decrease outflow via the action of sterol regulatory element 
binding protein (SREBP) and LXR transcription factors.46 

In addition, intracellular cholesterol metabolism can also 
affect the activation and proliferation of macrophages and 
neutrophils by enriching cholesterol in the lipid raft.47

Additionally, it was reported that cholesterol esterifica-
tion genes, specifically acetyl-coA acetyltransferase 1 
(ACAT1), were significantly downregulated in activated 
CD8 T cells.48 ACAT1 is involved in an limiting step in 
the cholesterol esterification pathway, converting choles-
terol into cholesterol ester for storage.49 Previous studies 
have shown that ACAT1 is abnormally expressed in some 
tumors, such as breast, pancreatic, and colon cancers.50,51 

It has been reported that the downregulation of ACAT1 
can inhibit the synthesis of cholesterol esters, thus activat-
ing CD8+ T cells.48,52

Major histocompatibility complex class II (MHC-II) 
which is located on the surface of antigen-presenting cells 
(APCs) can bind peptides derived from exogenous antigens, 

which is important for adaptive immune response.8,53 The 
association of MHC II and lipid raft is indispensable for 
effective T cell stimulation.54 A study suggests that choles-
terol seems to affect adaptive immune response via changing 
MHC II function.55 Therefore, cholesterol is essential for the 
host’s immune response, and drugs that inhibit cholesterol 
synthesis may reduce the immune response (see Figure 2).

Drugs That Act on Cholesterol 
Metabolism Affect the Efficacy of 
Immunotherapy
Recent studies have provided insights into the efficacy and 
safety of drugs primarily used to lower blood cholesterol 
levels, where these drugs act as immune adjuvants either 
alone or in combination with immunotherapy in mouse 
tumor models.56 The characteristics of drugs that act on 
cholesterol metabolism which can affect the efficacy of 
immunotherapy are listed in Table 1.

Cholesterol-Lowering Drug
Statins are drugs that inhibit the reductase of 3-hydroxy 
3-methylglutaryl coenzyme A (HMG-CoA), which is 
a vital rate-limiting enzyme in the cholesterol de novo 
synthesis.57 Statins also play a crucial role in preventing 
tumor growth by promoting tumor apoptosis, inhibiting 
angiogenesis, and regulating immune cell function.58 

Figure 2 Cholesterol homeostasis in the activated CD8+ T cell: Newly activated CD8 T cells increase cholesterol biosynthetic and input and decrease outflow via the 
action of SREBP and LXR transcription factors. In addition, cholesterol esterification genes, specifically ACAT1, were significantly downregulated in activated CD8 T cells. 
Abbreviations: TCR, T cell receptors; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ACAT-1, acetyl-coA acetyltransferase 1; HMGCR, 3-hydroxy-3- 
methylglutaryl-Coenzyme A reductase; LXR, liver X receptor; SREBP, sterol regulatory element binding protein.
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Statins have been reported to inhibit the growth of many 
cancer cell types, such as breast, prostate and pancreatic 
cancer.58,59 However, the sensitivity to statin-induced cell 
death differs among different cancer cell types. 
Nevertheless, there is no consensus on the influence of 
statins on the efficacy of ICIs.

To explore the effects of statins on immunotherapy, 
a prospective study with statins as a clinical factor was 
conducted.60 Sixty-seven patients with mNSCLC who 
were treated with nivolumab were included in this study. 
Consequently, during nivolumab treatment, patients who 
received statins exhibited an increased response rate and 
prolonged TTF than those who did not, and the difference 
was statistically significant. Unfortunately, there was no 
significant difference in OS between the statin group and 
the non-statin group.

Cantini et al have conducted a prospective study to 
demonstrate the relationship between statins and better 
clinical outcome of ICIs in thoracic cancer patients.61 All 
enrolled patients with malignant pleural mesothelioma 
(MPM) or mNSCLC received ICIs therapy after first - 
or second-line treatment failure. The results showed that 
the objective response rate (ORR), PFS, and OS of MPM 
patients using statins were improved compared with those 
without statins. For mNSCLC patients, the use of statins 
during ICIs therapy improved ORR and prolonged PFS, 
but not OS. Moreover, the intensity of statins is associated 
with improved efficacy of statins in ICIs, especially the 
high ones. Interestingly, this study also included 77 MPM 
patients receiving standard chemotherapy as a control 
group. In this control group, no improvement in the effi-
cacy of chemotherapy with statins was observed, suggest-
ing that the influence of statins on ICIs was not associated 

with its cholesterol-lowering effect, but with the drugs 
used in combination.

The influence of statins on immunotherapy needs to be 
confirmed by large sample studies, and the exact mechan-
ism is not clear. Statins have been shown to extend antigen 
retention, strengthen antigen presentation, and activate 
T cells through the mevalonate pathway.62 Atorvastatin 
has been reported to affect the activated T cell function 
by inhibiting the mitogen-activated protein kinase 
(MAPK) and PI3K-Akt pathways activated by RAS, and 
the subsequent mammalian target of rapamycin (mTOR) 
signaling pathway promotes the overall down-regulation 
of inhibitory receptors, such as PD-1, CTLA-4 and lag-3.63 

Moreover, statins reduce the production of inflammatory 
cytokines that affect immune cells and activate CD8+ 
T cells.64 Ulivieri et al also reported that simvastatin 
inhibited lymphocyte migration, antigen presentation, 
T cell activation, and eventually led to humoral and cel-
lular immune damage in mice.65 Further studies are neces-
sary to verify the role of statins as immunotherapy 
adjuvant. In addition to statins, proprotein convertase sub-
tilisin/Kexin type 9 (PCSK9) inhibitors, such as evolocu-
mab and alirocumab, are a new class of drugs that are 
becoming increasingly important in the treatment of 
hypercholesterolemia.66 PCSK9 plays a key role in cho-
lesterol metabolism, which can regulate cholesterol levels 
by promoting the degradation of low-density lipoprotein 
receptor (LDLR) in lysosomes.67 Recent studies have 
shown that PCSK9 inhibitors synergistically inhibit 
tumor growth in mouse tumor model with anti-PD1 
antibodies.68 It has been reported that the inhibition of 
PCSK9 can significantly increase the expression of MHC 
II on the surface of tumor cells, thereby promoting infil-
tration of cytotoxic T-cells.68

Drugs Acting on LXR/Oxysterol Axis
Zaragozic acids (ZAs), a family of fungal metabolites, are 
capable of blocking oxysterols formation.69 ZAs seem to 
affect the function of immune cells by inhibiting the for-
mation of methotrexate and maintaining the formation 
integrity of isoprenoids.69,70 Studies have shown that 
ZAs enhanced the anti-tumor effect of immunotherapy 
and significantly extended the overall survival period of 
tumor-bearing mice, indicating that ZAs are promising 
anti-tumor immune response adjuvant and can be com-
bined with immunotherapy to treat cancer patients.71

LXR/oxysterol axis has been shown to affect the acti-
vation of CD8+T cells.30 Inhibition of LXR by inverse 

Table 1 Characteristics of Drugs That Act on Cholesterol 
Metabolism Which Can Affect the Efficacy of Immunotherapy

Types of Drugs Targets of 
Drugs

Representative 
Drugs

Statins HMG-CoA 

reductase

Atorvastatin 

Simvastatin
PCSK9 inhibitors PCSK9 Evolocumab 

Alirocumab

Drugs acting on LXR/ 
oxysterol axis

LXR/oxysterol 
axis

Zaragozic acids

ACAT1 inhibitor ACAT1 Avasimibe

Abbreviations: HMG-CoA, 3-hydroxy 3-methylglutaryl coenzyme A; PCSK9, pro-
protein convertase subtilisin/Kexin type 9; LXR, liver X receptor; ACAT1, acetyl- 
coA acetyltransferase 1.
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agonists can lead to the migration of DC cells to lymph 
nodes and depress the infiltration of myeloid-derived sup-
pressor cells (MDSCs) in the TNBC microenvironment.39 

What’s more, LXR inhibition is also related to the activa-
tion and proliferation of CD8+T cells and shrink of immu-
nodependent tumors in vivo.39 LXR reverse agonist is 
supposed to a potential target of immunotherapy, which 
is expected to alter the poor efficacy of immunotherapy in 
TNBC patients.39

The effects of LXR agonists in multiple mouse cancer 
models and Phase I trials have also been explored. In 
contrast with the above study, the results showed that 
LXR agonists induced activation of CD8+ T cells in 
a variety of tumor in the apolipoprotein E (ApoE) depen-
dent manner.72 At the same time, this study also suggested 
that the combined application of LXR agonist and anti-PD 
-1 therapy produced a synergistic effect in killing tumor 
cells in the mouse model of lung cancer.72 In a word, LXR 
agitation may prevent metastasis, inhibit progression, and 
improve the effectiveness of ICIs therapy, especially in 
patients with ICIs resistance.

ACAT1 Inhibitor
Avasimibe is an ACAT1 inhibitor that is safe for humans and 
has been used to treat atherosclerosis.73,74 Recent studies 
have shown that avasimibe can inhibit tumor growth by 
damaging cell proliferation. Like other ACAT1 inhibitors, 
avasimibe can also enhance the effector function of CD8+ 
T cells ex vivo.48 Researchers further tested the combination 
of avasimibe and PD-1 inhibitors in tumor-bearing mice.48 

The results showed that combination therapy was superior to 
monotherapy in inhibiting tumor progression and improving 
survival.48 It has been reported that avasimibe and anti-PD-1 
play roles in cancer immunotherapy through different path-
ways, thus producing additive effects.48 Therefore, as 
a target of atherosclerosis, ACAT1 is also a potential target 
of cancer immunotherapy.

Peripheral Blood Cholesterol Level 
Can Be a Biomarker to Predict the 
Efficacy of Immunotherapy
Immunotherapy plays a vital role in the treatment of many 
kinds of tumors. However, a large number of patients 
remain unresponsive to immunotherapy. In addition, it is 
necessary to find biomarkers that can predict the efficacy 
of immunotherapy.75,76 The expression of PD-L1 in tumor 
cells is most commonly used to predict the efficacy of 

immunotherapy, but better predictors of response and 
resistance are still needed.77 At present, some peripheral 
blood-related biomarkers, such as neutrophil to lympho-
cyte ratio, C-reactive protein and lactate dehydrogenase 
level, have been proved to predict the efficacy of 
immunotherapy.78–81 Qin et al evaluated the influence of 
blood cholesterol level on the growth of liver tumor cells 
in vitro models.82 They found a negative correlation 
between blood cholesterol levels and tumor growth. 
Further studies have shown that cholesterol in the blood 
take effect by enhancing the function of natural killer 
cells.82 Therefore, the cholesterol level in the blood can 
be a biomarker to predict the efficacy of immunotherapy.

A retrospective study collected data of metastatic non- 
small cell lung cancer (mNSCLC) patients treated with 
ICIs.83 Multivariate analysis confirmed that hypercholes-
terolemia was associated with prolonged progression-free 
survival (PFS) and overall survival (OS), with statistically 
significant differences. In a word, hypercholesterolemia 
has a positive impact on the prognosis of mNSCLC treated 
with ICIs.

Perrone and his colleagues did a retrospective study by 
enrolling 187 patients with metastatic tumors treated with 
ICIs.84 Seventy percent of the enrolled patients were 
NSCLC patients, and other tumor types included mela-
noma, urinary tract cancer and so on. Patients with high 
peripheral blood cholesterol levels showed longer OS and 
PFS than those with low plasma cholesterol. Multivariate 
analysis confirmed the prognostic effect of high peripheral 
blood cholesterol on survival. Nevertheless, the prolonga-
tion of PFS was not statistically significant. In conclusion, 
this study confirms that hypercholesterolemia is associated 
with a better prognosis in cancer patients treated with ICIs.

The reason why blood cholesterol levels can predict the 
efficacy of ICIs may be multifaceted and warrants further 
study.85 Researchers found that high plasma cholesterol 
levels, as a low-grade inflammatory state, might promote 
the proliferation and migration of tumor-associated macro-
phages (TAMs) and MDSCs into the tumor microenviron-
ment, releasing many inhibitory factors and inhibiting 
tumor growth.86 Aguilar-Ballester et al also found that 
hypercholesterolemia induced the activation and prolifera-
tion of immune cells, including macrophages, neutrophils, 
and T cells.47 However, limited by small sample size, 
prospective studies with large sample sizes are needed to 
verify the predictive role of baseline blood cholesterol 
levels in patients with ICIs treatment.
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Discussion
Cholesterol is getting increasingly attention in cancer 
research because of its significant role in the prevention 
and treatment of cancer.58 Some retrospective studies have 
confirmed an association between serum cholesterol levels 
and the development of certain tumors, while others have 
found no association.34 Cholesterol in lipid rafts plays 
a role in maintaining the integrity of the cell membrane 
and assuring the signal of transmembrane receptors.47 The 
proliferation of cell membranes is essential not only for 
cancer cells, but also for immune cells. Accumulated evi-
dence has shown that dysregulation of cholesterol meta-
bolism plays a role in the development of cancer via 
affecting the function of immune cells.50 At present, the 
role of cholesterol metabolism in immunotherapy is poorly 
understood. In this review, we summarize the evidence on 
the association between cholesterol metabolism and immu-
notherapy, in order to identify new targets and biomarkers 
for efficacy prediction in immunotherapy.

In the tumor microenvironment, cholesterol released by 
tumor cells has been proven to induce a dysfunctional state 
of CD8+ T cells.28 In addition, cholesterol has been shown 
to inhibit the antitumor function of Tc9 cells, which has 
a stronger antitumor effect than Tc1 cells.29 Moreover, 
tumor-derived oxysterols can inhibit the migration of 
DCs to draining lymph nodes and promote the recruitment 
of neutrophils.38 In the meantime, recent studies show that 
CD8+ T cells are activated with elevated cholesterol levels 
in both the whole cells and cell membranes.46 Therefore, 
the accumulation of cholesterol can facilitate nanocluster-
ing in T cells, ultimately promoting the antigen-presenting 
capacity and upregulating cholesterol synthesis and influx. 
Cholesterol metabolism in the tumor microenvironment 
suppresses immune cells; however, the accumulation of 
cholesterol in immune cells facilitates its activation. It 
has been reported that tumor-derived factors lead to intra-
cellular accumulation of different types of oxidized-neutral 
lipids (triglycerides, cholesterol esters, and fatty acids) in 
differentiated dendritic cells, reducing the expression of 
MHC-type complexes on the cell surface, and thus block-
ing antigen cross-presentation.87 The inconsistent role of 
cholesterol in immune cells is not well understood. We 
hypothesize that tumor-derived factors in the tumor micro-
environment may affect cholesterol homeostasis immune 
cells, thereby inhibiting the anti-tumor function. However, 
the function of cholesterol metabolism is complex, and 
this controversial conclusion requires further study.

Furthermore, several retrospective studies show the posi-
tive influence of hypercholesterolemia on the outcome of 
cancers treated with immunotherapy.83,84 High blood choles-
terol levels in the blood are associated with prolonged PFS 
and OS. Obviously, cholesterol in peripheral blood has 
a different influence on immune cells from that in the micro-
environment. Current evidence suggests that hypercholester-
olemia may promote cholesterol accumulation in lipid rafts 
and facilitate the activation of immune cells.47 Other studies 
have shown that hypercholesterolemia inhibits tumor growth 
by improving the proliferation and migration of TAMs and 
MDSCs.86 Therefore, cholesterol level in peripheral blood, 
which is readily available, is a potential biomarker for pre-
dicting the efficacy of immunotherapy.

Statins have been shown to improve survival and 
reduce mortality in metastatic cancer patients.58 Due to 
the influence of cholesterol metabolism on immune cells, 
drugs that act on cholesterol metabolism may also affect 
the efficacy of immunotherapy. During ICIs treatment, 
NSCLC patients who received statins exhibited an 
increased response rate and longer TTF than those who 
did not.60,61 In other words, statins, which inhibit the 
synthesis of cholesterol and reduce cholesterol levels in 
the blood, may increase the efficacy of immunotherapy. 
Current studies suggest that the influence of statins on ICIs 
is not associated with its cholesterol-lowering effect, but 
with its influence on the immune system, which may 
explain the opposite influence of statins on immunother-
apy compared to hypercholesterolemia.

Conclusions
By summarizing the major findings of recent preclinical 
and clinical studies on cholesterol metabolism in immu-
notherapy, we found that cholesterol metabolism plays an 
important role in regulating immune cell function and can 
be used as a target to enhance the efficacy of immunother-
apy and a biomarker to predict the efficacy of 
immunotherapy.

Abbreviations
ICIs, Immune checkpoint inhibitors; PD-1, Programmed 
death-1; PD-L1, Programmed death ligand-1; NSCLC, 
Non-small cell lung cancer; CTLA-4, Cytotoxic lympho-
cyte antigen 4; IM-3, T cell immunoglobulin-3; LAG3, 
Lymphocyte-activation gene 3; BP1X-box binding pro-
tein 1; Tc9, Cytotoxic T 9 cells; Tc1, Cytotoxic T 1 
cells; IL-9, Interleukin-9; LXRs, Liver X receptor; 
20HC, 20(S) –hydroxylcholesterols; 24HC, 24 (S) – 
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