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Abstract: MET exon 14 skipping mutation (MET∆ex14) is present about 3% of non-small 
cell lung cancers (NSCLCs). NSCLC patients with MET∆ex14 are characterized by an 
average age of over 70 years at diagnosis, a smoking history and a higher frequency in 
pleomorphic carcinoma and adenosquamous cell carcinoma than in adenocarcinoma. It has 
also been reported that NSCLCs with MET∆ex14 often have codriver alterations such as 
EGFR amplification (6–28%), FGFR1 alterations (5–17%), KRAS alterations (~8%), BRAF 
alterations (~21%), or PIK3CA mutation/amplification (~14%). In 2020, the approval of two 
MET-tyrosine kinase inhibitors (TKIs), capmatinib and tepotinib, for NSCLCs carrying 
MET∆ex14 dawned a new era for MET-targeted therapy. These drugs yielded progression- 
free survival of 5.4−12.4 months in clinical trials; however, it has also been reported that 
one-third to half of patients show inherent resistance to MET-TKIs. In addition, the emer
gence of acquired resistance to MET-TKIs is inevitable. In this review, we summarize the 
clinical and molecular characteristics of NSCLCs with MET∆ex14, the efficacy and safety of 
capmatinib and tepotinib, the inherent and acquired resistance mechanisms to MET-TKIs, 
and new treatment strategies for NSCLCs with MET∆ex14 in the near future. 
Keywords: non-small cell lung cancer, MET exon 14 skipping, capmatinib, tepotinib, 
resistance mechanisms, immune checkpoint inhibitors

Introduction
The MET proto-oncogene, located in the 7q31 locus of chromosome 7, encodes 
a receptor tyrosine kinase (RTK) for hepatocyte growth factor (HGF), also known as 
scatter factor. MET is essential for embryonic development, organogenesis and wound 
healing.1 The MET gene was originally discovered as a part of an oncogenic fusion with 
the TPR (translocated promoter region) gene in a chemically induced human osteosar
coma cell line in 1984.2 MET was named after the first three letters of the chemical 
mutagen “N-methyl-N’-nitro-N-nitrosoguanidine.” Subsequently, increased MET 
expression and/or MET gene copy number gain was reported to be correlated with 
a poor prognosis in several types of carcinoma,3–6 and thus, molecular targeted therapies 
against MET have been developed and tested in many clinical trials. However, the results 
of all these trials, which enrolled unselected populations or patients with MET protein 
overexpression, were disappointing.7–9 These failures are attributable mainly to the 
insufficient selection of patients with tumors that are truly driven by MET.

Several types of MET aberrations, such as MET gene amplification, point mutations, 
gene fusions, exon 14 skipping mutations, or protein overexpression, have been reported 
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in many types of carcinoma.10–13 Among these MET aberra
tions, MET exon 14 skipping mutation (MET∆ex14) in non- 
small cell lung cancer (NSCLC) became the first target for 
which MET-targeted therapy was approved in 2020. In this 
review, we summarize the normal structure and function of 
MET, the activation mechanism of MET by exon 14 skipping, 
the clinicopathological characteristics of NSCLCs with 
MET∆ex14, the efficacies of currently available MET-TKIs 
(capmatinib and tepotinib) in this cohort, the inherent and 
acquired resistance mechanisms to MET-TKIs, and future 
directions to improve treatment outcomes of NSCLC patients 
with MET∆ex14.

Normal MET Structure and 
Function
In human cells, the MET protein is first synthesized as 
a 190 kDa single-chain precursor that is cleaved within the 
SEMA domain by the intracellular endoprotease furin 

during transport to form the mature MET protein. The 
mature MET protein consists of a 50 kDa α chain and 
a 145 kDa β chain connected through disulfide bonds 
(Figure 1).14 The extracellular domain contains the sema
phorin (SEMA), plexin-semaphorin-integrin (PSI) and 
immunoglobulin-plexin-transcription (IPT) domains fol
lowed by a single-pass transmembrane segment. The intra
cellular domain contains juxtamembrane, tyrosine kinase, 
and multifunctional docking site domains.

HGF and its two shorter splicing isoforms (the 
N domain and kringle 1 and 2 (NK1 and NK2)) are the 
only known ligands for MET. NK1 acts as a partial ago
nist, while NK2 acts as an antagonist. The binding of HGF 
to the SEMA domain induces MET homodimerization, 
which causes the autophosphorylation of tyrosine residues 
at codons 1234 and 1235 (Y1234 and Y1235) in the 
activation loop of the tyrosine kinase domain. 
Subsequently, Y1349 and Y1356 in the carboxy-terminal 

Transmembrane domain

A

B

Figure 1 (A) Relationship between the MET protein and mRNA coding region and (B) the structure of normal MET. Mature MET consists of a 50 kDa alpha chain and a 145 
kDa beta chain heterodimer through disulfide bonds. The extracellular domain of MET consists of the semaphorin (SEMA), plexin-semaphorin-integrin (PSI), and 
immunoglobulin-plexin-transcription (IPT) domains; the intracellular domain consists of juxtamembrane, tyrosine kinase and multifunctional docking site domains.
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tail are phosphorylated and serve as docking sites for 
several SRC (SRC proto-oncogene, non-receptor tyrosine 
kinase) homology (SH)2 domain-containing intracellular 
molecules, such as PI3K, GRB2 (growth factor receptor- 
bound protein 2), GAB1 (GrB2-associated binder 1), 
PLCγ (phospholipase C), SRC, STAT3 (signal transducer 
and activator of transcription 3), CRK (CT10 regulator of 
kinase), and SHP2 (Figure 1B). Recruitment of these 
molecules results in the activation of several downstream 
pathways, including the RAS/RAF/MEK/ERK and PI3K/ 
AKT/mTOR pathways.15,16 The MET protein is often 
expressed on epithelial cells, while HGF is secreted by 
mesenchymal cells such as fibroblasts. HGF/MET signal
ing has important roles in cell motility, proliferation, 
embryogenesis, organogenesis, liver regeneration, and 
wound healing.15,17–19

Discovery of MET exon 14 Skipping 
and Its Activation Mechanisms
MET exon 14 skipping was originally discovered as an 
alternative splicing variant in cDNA isolated from normal 
mouse kidney, liver and brain tissues without any changes 
that disrupted the so-called splicing consensus sequence in 
1994.20 More than 10 years later in 2005, MET∆ex14 was 
first reported in human NSCLC tissues as a result of 
a somatic mutation.21 In NSCLCs, MET∆ex14, deletion 
of the entire juxtamembrane amino acid (∆aa963-1009), is 
caused by several molecular aberrations, such as point 
mutations, insertions, deletions, or indels, that disrupt con
sensus sequences such as branch sites, polypyrimidine 
tracts, splice acceptors and splice donor sites for RNA 
splicing (Figure 2A).22 It has been reported that there are 
more than 500 different mutations at the genomic DNA 
level that cause MET exon 14 skipping from the analysis 
of 1387 patients carrying this MET mutation.23 Among 
these numerous aberrations, point mutations at the splice 
donor site are the most common. As expected, no pheno
typic or therapeutic differences were recorded according to 
the difference in the molecular mechanisms.

The molecular mechanism by which MET∆ex14 elicits 
oncogenic activity in NSCLCs was clarified by Kong- 
Beltran et al in 2006.24 MET exon 14 contains Y1003, 
which forms a binding site for CBL, an E3 ubiquitin 
ligase, which was reported by Peschard et al.25 

Therefore, when exon 14 is skipped, CBL-mediated 
MET protein degradation is impaired, leading to the 

accumulation of MET receptors and the aberrant activation 
of MET oncogenic signaling (Figure 2B).

However, later studies have suggested additional 
molecular mechanisms by which MET∆ex14 confers 
oncogenic activity. First, Lu et al showed that the half- 
life of the MET protein lacking the MET exon 14 region 
generated using the CRISPR/Cas9 system is extended 
only by 15% compared with the wild-type MET protein 
in airway epithelial cells.26 This result may suggest that 
accumulation of the MET protein is not the sole molecular 
mechanism of MET activation. The authors also observed 
that MET∆ex14 induced by editing the endogenous MET 
gene using the CRISPR/Cas9 system in Trp53flox mice 
was not oncogenic, whereas MET∆ex14 in Trp53flox 

mice induced by a lentivirus system that could express 
MET lacking the exon 14 region stably from cDNA suc
cessfully induced a cancer phenotype.26 This phenomenon 
suggests that the additive effect of increased MET expres
sion, in addition to the skipping of exon 14, plays impor
tant roles in tumorigenesis driven by MET. In addition, 
other groups reported the role of the S985 residue, which 
is also located in exon 14 of MET. The phosphorylation of 
this amino acid residue by protein kinase C negatively 
regulates the kinase activity of MET (Figures 1B and 
2B).27,28

Clinical Characteristics of NSCLC 
Patients with MET exon 14 Skipping
MET∆ex14 is present in up to 3% of NSCLCs, and this 
incidence is comparable to that of ALK fusions in 
NSCLCs.29–31 NSCLC patients with MET∆ex14 tend to 
be older and have a smoking history than patients with 
other driver mutations. In addition, they have a higher 
frequency in pleomorphic carcinoma and adenosquamous 
cell carcinoma than in adenocarcinoma.29,30,32 Among the 
histologic subtypes of lung adenocarcinoma, some studies 
have reported that MET∆ex14 is associated with the acinar 
or solid predominant subtype.30,33,34 The correlation 
between the frequency of MET∆ex14 and race, sex, 
stage, and histological grade has not yet been reported or 
is still controversial. Some studies reported the detection 
of MET∆ex14 in squamous cell carcinoma (~2%) and 
large cell carcinoma (0.8%).30,33,35,36

There are several methods to detect MET∆ex14 in 
NSCLCs. These include next-generation sequencing 
(NGS)-based panel tests with RNA-based or DNA-based 
technique. In Japan, an anchored multiplex PCR-based 
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PIK3CA mutation

PTEN loss
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-9-24-29

c.3028c.2888c.2887c.2730

141 bp194 bp

AG GT

Intron 13 Intron 14

Poly-pyrimidine tractBranch site Splice acceptor site Splice donor site

A Splicing consensus sequence

B Molecular aberrations that cause MET exon 14 skipping

Accumulation of MET and continuous activation of the MET signal

More than 500 types of alterations

Alterations disrupting the BS

Alterations disrupting the SA

Alterations disrupting the PPT

Alterations disrupting the SD

* Mixed cases of these mutations and deletion of the entire exon 14 have also been reported.

(PPT) (SA) (SD)(BS)

Deletion of other negative regulators 
within the MET exon 14 region

Increased MET expression

MET-dependent carcinogenesis

MET S985?

MET gene amplification

Acquisition of  other oncogene mutations
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The presence of codriver mutation
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Exon 13

Exon 15Exon 15

Exon 15
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Exon 14

Exon 14Exon 13Exon 12 Exon 15 Exon 16

Figure 2 (A) Splicing consensus sequence consisting of a branch site, polypyrimidine tract, splice acceptor site and splice donor site. (B) Activation mechanism by MET exon 
14 skipping. A large number of alterations, such as point mutations or insertions or deletions in the 3ʹ or 5ʹ splice site in MET exon 14, cause the mis-splicing of MET exon 14 
by disrupting the splicing consensus, which results in an abnormal MET protein lacking a CBL-binding site. This causes the accumulation of shrinked MET receptors followed 
by increased MET signaling.
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method (ArcherMET®) is approved to detect MET exon 14 
skipping using RNA from tissue or ctDNA from liquid 
samples. Because there are more than 500 patterns of 
genomic DNA aberrations which cause MET exon 14 
skipping as described above, as long as the quality of 
RNA is ensured, it has been reported that the sensitivity 
of RNA-based tests are better than DNA-based tests.37,38 

Among DNA-based NGS panel tests, it is suggested that 
the sensitivity of hybrid capture based NGS (represented 
by Foundation One® that are approved in US and in Japan) 
is better than that of amplicon-based NGS.37

Clinical Efficacies of MET-TKIs in 
NSCLCs with MET exon 14 Skipping
In 2015, Paik et al first reported the clinical efficacy of 
crizotinib and cabozantinib as 3rd-line therapies in NSCLC 
patients with MET∆ex14.39 In this report, crizotinib 
showed antitumor activity in three of four patients, and 
cabozantinib showed stable disease in one patient, suggest
ing that tumors with MET∆ex14 depend on the MET path
way. Currently, there are many MET-TKIs under clinical 
development.40 In 2020 and 2021, two MET-TKIs, capma
tinib and tepotinib, were approved in the USA and Japan 
for use as monotherapies in NSCLC patients carrying MET 
exon 14 skipping. Both MET-TKIs are potent and highly 
selective ATP competitors for MET in in vitro or in vivo 
models carrying MET∆ex14. Both drugs are classified as 
type Ib MET-TKIs and bind to an activated form of MET 
through interaction with the Y1230 residue in the activa
tion loop of MET. It has also been reported that these type 
Ib MET-TKIs do not interact with the solvent front residue 
G1163 (homologous to G1202 and G2032 in the ALK and 
ROS1 genes, respectively).41–44

Capmatinib (Tabrecta®, INC280; 
Novartis)
The efficacy and safety of capmatinib were evaluated in 
the GEOMETRY mono-1 Phase II clinical trial 
(NCT02414139). A total of 97 NSCLC patients with 
MET∆ex14 were recruited, consisting of the untreated 
(n=69) and previously treated (n=28) cohorts (Table 1). 
In this study, MET∆ex14 was confirmed by qRT-PCR in 
a central laboratory using tumor tissues. Patients 
received a 400 mg dose of capmatinib twice daily. The 
objective response rates (ORRs) for the pretreated and 
treatment-naïve cohorts were 40.6% (95% CI, 28.9–53.1) 
and 67.9% (95% CI, 47.6–84.1), respectively. The 

median progression-free survival (PFS) times were 9.7 
months (95% CI, 5.6–13.0) and 12.6 months (95% CI, 
5.6-NE), respectively.45 Based on this result, health 
authorities in the USA and Japan approved the use of 
capmatinib for NSCLC patients with MET∆ex14 in 
May 2020 and June 2020, respectively.

Tepotinib (TEPMETKO®, EMD1214063, 
MSC2156119J; Merck [Darmstadt, 
Germany])
The efficacy and safety of tepotinib were evaluated in 
a phase II trial (VISION trial, NCT02864992). A total of 
152 NSCLC patients with MET∆ex14 were recruited 
regardless of previous treatment (Table 1). The patients 
were divided into two cohorts: those diagnosed by liquid 
biopsy (DNA-based assay) and those diagnosed by tissue 
biopsy (RNA-based assay). These patients received 
a 500 mg dose of tepotinib once daily.

In the total cohort, the ORR and median PFS were 46% 
(95% CI, 36–57) and 11.1 months (95% CI, 7.2-NE), respec
tively. The ORRs of patients diagnosed by liquid biopsy and 
tissue biopsy were 48% (95% CI, 36–61) and 50% (95% CI, 
37–63), respectively.46 In addition, the median PFS times 
were 8.5 months (95% CI, 6.7–11.0) and 11.0 months (95% 
CI, 5.7–17.1), respectively. The patients who received tepo
tinib in the first-line setting (n=43) showed an ORR of 
44.2% (95% CI, 29.1–60.1), and those who received tepoti
nib in the second-line or later setting (n=56) showed an ORR 
of 48.2% (95% CI, 34.7–62.0).46

Based on this favorable result, in March 2020, tepoti
nib became the first approved MET-TKI for NSCLCs with 
MET∆ex14 in Japan. In February 2021, the USA FDA also 
approved its use. In addition, the European Medicines 
Agency is now validating the approval of tepotinib for 
the treatment of advanced NSCLCs carrying MET∆ex14.

Toxicities of Type Ib MET-TKIs
Common toxicities that will lead to the dose reduction or 
discontinuation of capmatinib and tepotinib are peripheral 
edema and increased serum creatinine.45,46 Because per
ipheral edema has also been observed in clinical trials of 
antibody drugs targeting HGF or MET,47,48 it is considered 
an on-target side effect of MET-HGF axis inhibition. 
Growth factors, including HGF, increase vascular endothe
lial barrier function, and inhibition of this barrier function 
is speculated to be a potential molecular mechanism.49

Lung Cancer: Targets and Therapy 2021:12                                                                                      https://doi.org/10.2147/LCTT.S269307                                                                                                                                                                                                                       

DovePress                                                                                                                          
39

Dovepress                                                                                                                                                           Fujino et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Ta
bl

e 
1 

C
lin

ic
al

 E
ffi

ca
cy

 o
f C

ap
m

at
in

ib
 a

nd
 T

ep
ot

in
ib

C
om

po
un

d/
C

lin
ic

al
 T

ri
al

/ 
D

os
e

H
is

to
lo

gy
D

ia
gn

os
ti

c 
M

et
ho

d
P

ri
or

 T
re

at
m

en
t

N
um

be
r 

of
 

E
va

lu
at

ed
 

P
at

ie
nt

s

O
R

R
 (

%
) 

[9
5%

 C
I]

D
C

R
 (

%
) 

[9
5%

 C
I]

M
ed

ia
n 

D
ur

at
io

n 
of

 
R

es
po

ns
e 

(M
on

th
s)

 
[9

5%
 C

I]

M
ed

ia
n 

P
FS

 
(M

on
th

s)
 

[9
5%

 C
I]

R
ef

C
ap

m
at

in
ib

/G
EO

M
ET

RY
 

m
on

o-
1 

(N
C

T
02

41
41

39
)/

 

40
0 

m
g 

BI
D

N
SC

LC
 

(A
d 

89
%

)

RT
-P

C
R

Tr
ea

tm
en

t-
 

na
ïv

e

(c
oh

or
t 

5b
)

28
68

%
 

[4
8–

84
]

96
%

 

[8
2–

10
0]

12
.6

 [
5.

6 
- 

N
E]

12
.4

[8
.2

 -
 N

E]
[4

5]

N
SC

LC
 

(A
d 

77
%

)

Pr
e-

 

tr
ea

te
d

Pr
ev

io
us

 1
 o

r 
2 

lin
es

 o
f t

he
ra

py
 

(c
oh

or
t 

4)

69
41

%
 

[2
9–

53
]

78
%

 

[6
7–

87
]

9.
7[

5.
6–

13
.0

]
5.

42
[4

.2
–7

.0
]

Pr
ev

io
us

 1
 li

ne
 o

f 

th
er

ap
y 

(c
oh

or
t 

6)

31
N

/A
N

/A
N

/A
N

/A

Po
st

-h
oc

 

an
al

ys
is

Pa
tie

tn
s 

w
ith

 p
ri

or
 

IO

32
62

.5
%

 

[4
3.

7–
78

.9
]

87
.5

%
 

[7
1.

0–
96

.5
]

9.
95

[5
.5

5–
19

.5
2]

N
/A

[8
7]

Pa
tie

tn
s 

w
ith

ou
t 

pr
io

r 
IO

68
33

.8
%

 
[2

2.
8–

46
.3

]
79

.4
%

 
[6

7.
9–

88
.3

]
6.

93
[4

.1
7–

11
.1

4]
N

/A

Te
po

tin
ib

/V
IS

IO
N

 s
tu

dy
 

(N
C

T
02

86
49

92
)/

50
0 

m
g 

Q
D

N
SC

LC
 

(A
d 

90
%

)
C

om
bi

ne
d 

bi
op

sy
 (

Li
qu

id
 

+ 
T

is
su

e)

A
ll 

pa
tie

nt
s

1s
t-

, 2
nd

-, 
3r

d-
lin

e
99

46
.5

%
 

[3
6.

4–
56

.8
]

65
.7

%
 

[5
5.

4–
74

.9
]

8.
5 

[6
.7

–1
1.

0]
[4

6]

Li
qu

id
 b

io
ps

y 

(D
N

A
)

A
ll 

pa
tie

nt
s

1s
t-

, 2
nd

-, 
3r

d-
lin

e
66

48
.5

%
 

[3
6.

0–
61

.1
]

65
.2

 

[5
2.

4–
76

.5
]

8.
5 

[5
.1

–1
1.

0]

Tr
ea

tm
en

t-
 

na
ïv

e

15
58

.8
%

 

[3
2.

9–
81

.6
]

N
/A

Pr
e-

 

tr
ea

te
d

31
45

.2
%

 

[2
7.

3–
64

.0
]

N
/A

T
is

su
e 

bi
op

sy
 

(R
N

A
)

A
ll 

pa
tie

nt
s

1s
t-

, 2
nd

-, 
3r

d-
lin

e
60

50
.0

%
 

[3
6.

8–
63

.2
]

68
.3

%
 

[5
5.

0–
79

.7
]

11
.0

[5
.7

–1
7.

1]

Tr
ea

tm
en

t-
 

na
ïv

e

18
44

.4
%

 

[2
1.

5–
69

.2
]

N
/A

Pr
e-

 

tr
ea

te
d

33
45

.5
%

 

[2
8.

1–
63

.6
]

N
/A

N
ot

es
: *

A
ss

es
se

d 
by

 in
ve

st
ig

at
or

. *
* 

C
al

cu
la

te
d 

by
 a

ut
ho

r. 
A

bb
re

vi
at

io
ns

: O
R

R
, o

bj
ec

tiv
e 

re
sp

on
se

 r
at

e;
 D

C
R

, d
is

ea
se

 c
on

tr
ol

 r
at

e;
 N

SC
LC

, n
on

-s
m

al
l c

el
l l

un
g 

ca
nc

er
; A

d,
 a

de
no

ca
rc

in
om

a;
 P

SC
, p

ul
m

on
ar

y 
sa

rc
om

at
oi

d 
ca

rc
in

om
a;

 G
C

N
, g

en
e 

co
py

 n
um

be
r;

 q
PC

R
, q

ua
nt

ita
tiv

e 
po

ly
m

er
as

e 
ch

ai
n 

re
ac

tio
n;

 O
R

R
, o

bj
ec

tiv
e 

re
sp

on
se

 r
at

e;
 D

C
R

, d
is

ea
se

 c
on

tr
ol

 r
at

e;
 P

FS
, p

ro
gr

es
si

on
-fr

ee
 s

ur
vi

va
l; 

O
S,

 o
ve

ra
ll 

su
rv

iv
al

; N
/A

, n
ot

 a
va

ila
bl

e;
 N

E,
 n

ot
 e

va
lu

ab
le

.

https://doi.org/10.2147/LCTT.S269307                                                                                                                                                                                                                                

DovePress                                                                                                                                               

Lung Cancer: Targets and Therapy 2021:12 40

Fujino et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


The increase in serum creatinine is suspected to be due 
to the inhibitory effects of organic cation transporters 
(OCTs) and multidrug and toxin extrusion protein trans
porters (MATEs) in the human kidney by capmatinib and 
tepotinib. OCTs and MATEs are known as the major 
transporters for cation drugs (such as capmatinib and 
tepotinib) from the blood and into the urine.50 Because 
10–20% of eliminated creatinine is due to creatinine secre
tion via these transporters in the renal tubules,51 it is 
hypothesized that capmatinib or tepotinib will antagonize 
serum creatinine. Therefore, it is believed that the 
increases in serum creatinine levels are due to the inhibi
tion of creatinine transport by capmatinib or tepotinib and 
are not due to true renal function failure.

Inherent and Acquired Resistance 
Mechanisms to MET-TKIs
With the approval of capmatinib and tepotinib, these drugs 
will be used for the treatment of NSCLC patients carrying 
MET∆ex14 in clinical practice. However, the results of 
clinical trials have shown that approximately one-third to 
one-half of patients show initial resistance to capmatinib 
or tepotinib.45,46 In addition, even in patients who show an 
initial clinical response to capmatinib or tepotinib, the 
emergence of acquired resistance is almost inevitable.52 

In this section, we summarize inherent and acquired resis
tance mechanisms to MET-TKIs and potential therapeutic 
strategies to overcome resistance.

Potential Factors Related to Inherent 
Resistance to MET-TKIs
As described above, the ORRs of two approved MET- 
TKIs in NSCLC patients carrying MET∆ex14 in each 
clinical trial were 44–68%, even in treatment-naïve 
patients.45,46 These numbers are much lower than those 
in epidermal growth factor receptor (EGFR)-mutated 
NSCLC patients treated with EGFR-TKIs or NSCLC 
patients with ALK fusions treated with ALK-TKIs.53–56 

Therefore, some clinical trials of MET-TKIs for NSCLCs 
with MET∆ex14 have explored factors that are associated 
with the efficacy of MET-TKIs by performing molecularly 
defined subgroup analyses based on (1) the location of the 
splicing site mutation at the genomic DNA level, (2) the 
coexistence of MET amplification, and (3) the presence of 
codriver gene alterations. Among them, it has been 
reported that the mutation site at the genomic DNA is 
not associated with the efficacy of MET-TKIs.46,57

The frequency of coexisting MET amplification is 
reportedly approximately 4–40% among NSCLCs with 
MET∆ex14 (Table 2). 29,30,35,45,46,57–59 Although EGFR 
amplification or ALK amplification has been reported as 
an acquired resistance mechanism to EGFR-TKIs or ALK- 
TKIs, respectively, some studies have reported that the 
ORRs of MET-TKIs are better in MET∆ex14-positive 
NSCLC patients with coexisting MET amplification than 
in patients without MET amplification. This result may 
indicate that the coexistence of MET amplification sug
gests that tumors depend solely on MET signaling.60,61 On 
the other hand, Guo et al reported that some patients with 
MET∆ex14 had no detectable MET protein expression on 
MET immunohistochemistry (IHC)/mass spectrometry.61 

The authors found that these tumors, without a detectable 
MET protein, had a high frequency of codriver alterations 
in the RAS/RAF/MAPK or PI3K/AKT pathway, suggest
ing that these tumors are refractory to MET-targeted 
therapies.

Another possible reason for the low sensitivity of 
NSCLCs with MET∆ex14 to MET-TKIs is (3) the pre
sence of codriver gene alterations. As summarized in 
Table 2, tumors with MET∆ex14 often harbor codriver 
mutations/amplifications. Potential codrivers include 
alterations of other RTKs, such as EGFR amplification 
(6.4–28.5%) or FGFR1 alteration (4.8–16.6%); aberrant 
activation of the RAS-RAF-MAPK pathway, such as 
KRAS alteration (~8%) or BRAF alteration (~21.4%); and 
activation of the PI3K-AKT pathway, such as PIK3CA 
mutation/amplification (~14.2%).58,59 As a preclinical 
model, the NCI-H596 lung cancer cell line harbors 
MET∆ex14; however, this cell line is resistant to MET 
inhibition. The coexistence of PIK3CA mutation is the 
mechanism of resistance to MET inhibition, and it was 
reported that NCI-H596 cells were effectively killed by the 
combination of a PI3K inhibitor and a MET-TKI.62,63 

Indeed, a retrospective analysis reported that the coexis
tence of these mutations resulted in primary resistance to 
MET-TKIs or a short response duration in NSCLC patients 
with MET∆ex14.58,59,61,64

Mutations of the TP53 gene (27–50%) and the ampli
fication of MDM2 (2–46%), which is an E3 ubiquitin 
ligase for TP53, are frequently identified in NSCLCs 
with MET∆ex14. In addition, they are reportedly mutually 
exclusive.13 Although the coexistence of TP53 mutation is 
associated with reduced efficacy in EGFR-mutated 
NSCLCs treated with EGFR-TKIs,65 we could not find 
evidence that showed the impact of TP53 or MDM2 
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alterations on the efficacy of MET-TKIs in NSCLC 
patients with MET∆ex14. Taken together, these results 
indicate that the coexistence of gene aberrations in the 
p53 pathway may be involved in the process of oncogenic 
transformation in NSCLC with MET∆ex14.

Acquired Resistance Mechanisms to 
MET-TKIs
As with other TKI therapies, such as EGFR-TKIs or ALK- 
TKIs, for NSCLCs with a driver mutation, acquired resis
tance to MET-TKIs is also inevitable Some studies have 
reported acquired resistance mechanisms to MET-TKIs in 
patient specimens obtained after MET-TKI treatment fail
ure. In addition, we reported potential acquired resistance 
mechanisms that were identified by in vitro experiments. 
Acquired resistance mechanisms to MET-TKIs can be 
classified into secondary mutations of MET (on-target 
resistance mechanisms) and activation of bypass signaling 
(off-target resistance mechanisms). Recondo et al analyzed 
resistance mechanisms to MET-TKIs (mainly crizotinib) in 
20 patients with MET∆ex14 and reported that the on-target 
and off-target mechanisms accounted for 35% and 45%, 
respectively.52 However, it is not clear whether more spe
cific MET-TKIs, capmatinib and tepotinib show similar 
frequencies of on-target and off-target resistance mechan
isms because crizotinib is a multitarget TKI.

As acquired resistance mechanisms to capmatinib or 
tepotinib, we found through an in vitro analysis using Ba/ 
F3 models that MET secondary mutations involving D1228 
or Y1230 in the activation loop are common as on-target 
resistance mechanisms.43 In a clinical case report, it was 
reported that a variety of amino acid substitutions at codons 
D1228 and Y1230 occurred in a single patient.66 As an 
acquired resistance mechanism to crizotinib, the MET sol
vent front mutation G1163R has been reported.67 However, it 
has been shown that capmatinib and tepotinib do not interact 
with the MET G1163 residue; therefore, secondary mutations 
involving G1163 will not occur as a resistance mechanism to 
capmatinib or tepotinib.43 Our in vitro study also showed that 
the potential on-target resistance mechanisms to capmatinib 
or tepotinib, D1228 or Y1230 secondary mutations, can be 
overcome by so-called type II MET-TKIs43 such as meresti
nib, cabozantinib and glesatinib, which bind to the inactive 
state of MET.68 However, in clinical cases, type II MET- 
TKIs, cabozantinib and glesatinib showed antitumor activity 
against Y1230X-mediated resistance but not against 
D1228X-mediated resistance.52,69–71

As off-target resistance mechanisms to MET-TKIs, 
genetic alterations that cause activation of the RAS/RAF/ 
MAPK pathway (such as KRAS amplification or KRAS 
mutations) and/or the PI3K/AKT pathway (such as 
PIK3CA mutation) have been reported.52,58,64,72 

Preclinical studies have shown that combination therapy 
with trametinib, a MEK inhibitor, or GDC0941, a PI3K 
inhibitor, can overcome these acquired resistance mechan
isms to MET-TKIs.46,59,64,72 A few studies reported that 
EGFR, HER3, and MDM2 amplification was detected after 
acquired resistance to MET-TKIs; however, it is not clear 
whether amplification of these genes is truly associated 
with acquired resistance to MET-TKIs.58,66

Future Treatment Strategies for 
NSCLCs with MET exon 14 Skipping
At present, after capmatinib or tepotinib treatment failure, 
NSCLCs with MET∆ex14 are treated following the recom
mendations for NSCLCs with no detectable driver muta
tion or an unknown mutational status. As a future 
treatment strategy, MET antibody drugs are now being 
evaluated in clinical trials. In addition, some recent studies 
have reported the superior efficacy of immune checkpoint 
inhibitors (ICIs) in NSCLC patients with MET∆ex14. In 
this section, we summarize the efficacies of these treat
ments in NSCLC patients with MET∆ex14.

MET Antibodies
Antibodies targeting MET are designed to bind to the SEMA 
domain of MET, which is important in HGF binding to 
MET. These MET antibodies are also expected to promote 
receptor internalization and degradation, resulting in inhibi
tion of the MET signaling pathway, and to enhance comple
ment-dependent cytotoxicity (CDC) and antibody- 
dependent cell-mediated cytotoxicity (ADCC). MET antibo
dies have been clinically developed for some time.7,73 In 
a Phase III trial (NCT01456325) that compared the efficacy 
of onartuzumab (a MET monoclonal antibody) plus erlotinib 
with placebo plus erlotinib in advanced NSCLC patients 
exhibiting MET expression (>50% by IHC), improved clin
ical outcomes were not observed. This disappointing result 
could be attributed to insufficient patient selection. At pre
sent, it is believed that MET overexpression itself does not 
necessarily indicate a truly MET-driven state from the two 
findings that MET overexpression coexists with various 
oncogenic mutations74 and that MET overexpression is inde
pendent of MET∆ex14.74,75 On the other hand, these 
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findings may show antitumor activity for NSCLC patients 
with MET∆ex14, which results in accumulation of the MET 
protein. Selecting patients with both MET∆ex14 and Met 
overexpression may be a useful strategy to test anti-MET 
antibodies.

One MET antibody being developed for use in NSCLC 
patients with MET∆ex14 is Sym015 (Symphogen, 
Copenhagen, Denmark) (Table 3). This drug consists of 
two recombinant humanized IgG1 monoclonal antibodies 
targeting different epitopes of MET. MET internalization/ 
degradation and the stimulation of CDC/ADCC have been 
observed in in vitro and in vivo experiments after treat
ment with Sym015.76 A phase I/II trial (NCT02648724) of 
Sym015 in NSCLC patients with MET∆ex14 who pro
gressed on a MET-TKI is currently ongoing.

Immunotherapies
Immunotherapy with/without chemotherapy has become 
a standard front-line therapy for NSCLCs without detectable 
driver mutations. On the other hand, it has been reported that 
the efficacy of immunotherapies is low in NSCLC patients 
with EGFR mutations or ALK fusions.77,78 However, as 
described above, the clinicopathological characteristics of 
NSCLC patients with MET∆ex14, such as smoking status 
or histology, are different from those of NSCLC patients with 
EGFR mutations or ALK fusions. Therefore, it is not surpris
ing that some retrospective studies showed that the expres
sion of PD-L1, a potential biomarker used to predict the 
efficacy of ICIs, is high in NSCLCs with MET∆ex14 (43–
91% if 1% ≧ PD-L1 is used as a cutoff) (Table 4).23,79–85 This 
high PD-L1 expression may be due not only to so-called 

adaptive immune resistance but also to activated MET sig
naling; a preclinical study showed that MET activation 
induced the expression of several immune checkpoints, 
including PD-L1, through a JAK2-independent pathway.86 

Therefore, the efficacy of ICIs in NSCLC patients with 
MET∆ex14 has received a great deal of attention. Some 
retrospective studies have reported the efficacy of ICI mono
therapy in NSCLC patients with MET∆ex14. However, the 
efficacy of ICI monotherapy is controversial because any 
reported results were obtained from retrospective, small 
cohort analyses, and the efficacy varied depending on the 
report.79–81 On the other hand, the efficacy of ICI + che
motherapy in NSCLCs with MET∆ex14 is currently 
unknown, and further analysis is warranted.

Combination or sequential treatments involving ICIs and 
MET-TKIs could be promising strategies in the treatment of 
NSCLC patients with MET∆ex14. In the post hoc analysis 
that compared the type of prior therapy before capmatinib in 
the GEOMETRY phase II trial, there was a large difference in 
the response rate to capmatinib: 32% in the chemotherapy- 
pretreated group and 64% in the ICI-pretreated group (Table 
1).87 One possible reason for this difference is that the 
residual effect of ICIs used in the previous treatment was 
boosted by the use of MET-TKIs because MET signaling 
reportedly affects the immune system.88 For example, 
Glodde e2t al showed the synergistic efficacy of MET inhibi
tion and ICIs regardless of the tumor’s MET status in vivo.89 

The authors reported that MET-expressing neutrophils are 
mobilized from the bone marrow to tumors in response to 
ICIs, these neutrophils confer immunosuppressive properties 
in tumors, and MET inhibition impairs reactive neutrophil 

Table 3 MET Antibody Under Clinical Development for NSCLC Patients Carrying MET Exon 14 Skipping Mutation

Compound/ 
Clinical Trial

Dose Class Prior 
Treatment

Number 
of 

Evaluated 
Patients

ORR 
(%) 

[95% 
CI]

DCR 
(%) 

[95% 
CI]

Median Duration 
of Response 

(Months) [95% 
CI]

Median 
PFS 

(Months) 
[95% CI]

Ref

Sym 015/Phase 

1/2a 

(NCT002648724)

Loading: 18mg/ 

kg C1D1 

Maintenance: 
12mg/kg

IgG1 

mAb

MET-TKI 

naïve

3 100% 100% 6.5 [3.8–9.2] 9.2 

[7.4–11.0]

[76]

MET-TKI 

pre-treated

9 0.00% 55.60% (-) 5.4 

[1.2–9.7]

REGN5093/ 

Phase I/II 

(NCT04077099)

NA Human 

bispecific 

antibody

MET-TKI 

naïve

Recruting NA

Note: *Assessed by investigator. 
Abbreviations: ORR, objective response rate; DCR, disease control rate; NSCLC, non-small cell lung cancer; Ad, adenocarcinoma; PSC, pulmonary sarcomatoid 
carcinoma; GCN, gene copy number; qPCR, quantitative polymerase chain reaction; ORR, objective response rate; DCR, disease control rate; PFS, progression-free 
survival; OS, overall survival; N/A, not available; NE, not evaluable.
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recruitment to tumors. It has also been reported that the 
combination of ICIs plus MET-TKIs is tolerable in NSCLC 
patients.90 In addition, in January 2021, the FDA approved 
the combination of nivolumab and cabozantinib, a type II 
MET-TKI, as a first-line treatment for patients with advanced 
renal cell carcinoma based on the results of a phase III trial.91

Conclusion
The approval of two MET-TKIs, capmatinib and tepotinib, 
for NSCLCs with MET∆ex14 marked a new revolution of 
MET-targeted therapy. However, as summarized in this 
review, NSCLCs with this mutation often have codriver 
mutations and are highly heterogeneous; therefore, it is 
understandable that some patients show inherent resistance 
to MET-TKIs. In addition, some studies reported on-target 
and off-target mechanisms of acquired resistance to MET- 
TKIs. In addition to immunotherapy, novel treatments, 
including novel MET-TKIs, MET antibodies, and novel com
bination therapies, are now being evaluated in clinical trials.
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