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Background: Diabetes mellitus (DM) has been demonstrated to be linked to atrial fibrilla
tion (AF). However, the underlying mechanisms of the DM-associated increase in AF 
susceptibility and the potential effects of DM on atrial remodeling remain unclear.
Methods and Results: Twenty-five C57BL/6 mice were randomly assigned to the normal/ 
control group (Con, n=10) and model group (n=15). Mice in the model group were adminis
tered a high-fat diet combined with multiple injections of low-dose streptozocin (STZ) 
(35 mg/kg). Eleven mice were ultimately included in DM group. Left atrial tissue structural 
and inflammatory alterations were assessed. In our study, the atrial weights of DM mice were 
markedly heavier than those of mice in the Con group. DM mice exhibited significantly 
increased fasting plasma glucose, fasting insulin, and dyslipidaemia. Furthermore, H&E and 
Masson’s staining revealed broadened interstitial spaces, myocyte disarray and atrial fibrosis 
in DM mice. The expression levels of the atrial inflammation-associated factor nuclear factor 
κB (NF-κB) and its pathway were significantly altered in the atria of DM mice.
Conclusion: DM could induce atrial structural remodeling and inflammation in mice.
Keywords: diabetes mellitus, inflammation, atrial remodeling, PARP-1, NF-κB

Introduction
Diabetes mellitus (DM) is one of the most common non-infectious chronic diseases 
and seriously affects human health and longevity. Patients with DM often suffer 
from obesity, hypercholesterolemia, atherosclerosis, microcirculation disorders and 
hypertension, which significantly increase the risk of heart damage, and cardiovas
cular complications are the main cause of death in DM patients.1,2

Atrial fibrillation (AF), the most common tachyarrhythmia, is considered to be 
a growing cardiovascular epidemic. Previous studies have shown that DM, as an 
independent risk factor for AF, is associated with an increased risk of AF.3–5 The 
mechanism of the increased risk of AF caused by DM has not been fully elucidated, 
and existing evidence suggests that oxidative stress and inflammation are important 
causes of DM-induced AF.6

Oxidative stress plays an important role in atrial structural remodeling in DM.7,8 

Reactive oxygen species (ROS) might activate the nuclear factor κB (NF-κB) path
way, increase the expression of tumour necrosis factor (TNF) α and β, and cause atrial 
structural remodeling and fibrosis.9 In addition, increased oxidative stress from 
chronic hyperglycaemia leads to DNA breakage, which renders the DNA unstable, 
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thereby activating the nuclear enzyme poly (ADP-ribose) 
polymerase-1 (PARP-1) in an attempt to repair such 
damage.10 When PARP-1 is overactivated, which occurs in 
DM, intracellular NAD+ is depleted, creating a redox imbal
ance that further exacerbates the oxidative state in the cell. 
NF-κB activation can be regulated by PARP-1 via multiple 
mechanisms.11 The role of PARP activation has been shown 
to alter heart function in DM.10 However, the role of PARP- 
1 in the structural changes in the diabetic atria has not been 
studied. Hence, in this study, we investigated alterations in 
the PARP-1 and NF-κB pathways and structural remodeling 
in the atria of C57BL/6 mice by establishing a DM model 
that was induced by a consistent high-fat diet for 8 weeks 
and a subsequent low-dose streptozocin (STZ) injection, to 
determine the impact of DM on atria and identify the under
lying mechanisms.

Materials and Methods
Experimental Animals
The C57BL/6 mice used in this study were obtained from the 
Laboratory Animal Center of Xi’an Jiaotong University 
(Xi’an, China). The mice were housed in an animal research 
facility with a 12-h light/dark cycle at a room temperature of 
20-25°C with free access to food and water. Ethics approval 
for this study was obtained from the Ethics Committee of 
Xi’an Jiaotong University. Animal experiments in this study 
were performed according to the Guidelines of Animal 
Handling and Experimentation (Xi’an, China).

Type 2 DM Model and Groupings
C57BL/6 mice (n=25) were randomly divided into 
a control group (Con, n=10), which was provided with 
a normal diet, and a model group (n=15), which was 
provided with a high-fat diet consisting of 18% lard, 
20% sucrose, 3% egg yolk and 59% basal feed (Research 
Diets, Laboratory Animal Center of Xi’an Jiaotong 
University), starting at 6–8 weeks of age for 8 weeks. 
After 8 weeks of feeding, DM group mice were adminis
tered weekly intraperitoneal injections of STZ (35 mg/kg) 
for 4 weeks, while control group mice received intraper
itoneal injection with sodium citrate buffer. During these 4 
weeks, the two groups were provided a normal diet. A 12- 
hour fast before each injection of STZ was required in the 
model group. Three days after STZ injections, fasting 
blood glucose was measured, and mice with blood glucose 
above 11.1 mmol/L were selected for formal inclusion in 
the DM group.

Fasting Plasma Glucose (FPG), Fasting 
Insulin (FIns) and Plasma Lipid 
Measurements
From the beginning of feeding, FPG, FIns and plasma 
lipids and body weight were measured and recorded 
every 2 weeks until week 12. The blood was collected 
through the tail vein. Samples were sent to the Clinical 
Laboratory Department of the First Affiliated Hospital of 
Xi’an Jiaotong University to measure the levels of FPG, 
FIns, total cholesterol (TC), high-density lipoprotein cho
lesterol (HDL-C), low-density lipoprotein cholesterol 
(LDL-C) and triglycerides (TGs). FPG was measured by 
a Roche blood glucometer. FIns and plasma lipid levels 
were measured by corresponding ELISA kits. Second, 
according to the measured blood glucose and insulin 
levels, the following indicator was calculated: homeostatic 
model assessment for insulin resistance (HOMA-IR) = 
FPG level (mmol/L) × fasting insulin level (mU/L)/22.5.

Tissue Harvesting and Processing
First, the mice were sedated with phenobarbital and fixed. 
Then, the heart was quickly exposed. After piercing the 
left ventricle and carving the right atrium, the heart was 
perfused with phosphate-buffered saline (PBS), which was 
injected into the left ventricle. After perfusion, the heart 
tissue was cut, and filter paper was used to remove excess 
water. The vessels were rinsed, and the atrial tissue was 
harvested after thoroughly removing the aorta and fat. 
Atrial tissue weight was later measured.

Haematoxylin and Eosin (H&E) and 
Masson’s Staining
Sections (5-µm thick) of atrial tissue were stained with 
H&E and Masson’s staining and then sealed (Con n=10, 
DM n=11). The areas of the blue-purple collagen fibers 
and the percentage of the area relative to the entire field of 
view were assessed using Image-Pro Plus 6.0 analysis 
software (Media Cybernetics, Inc., Rockville, MD, USA).

RNA Extraction and Reverse 
Transcription-Quantitative PCR 
(RT-qPCR)
Total RNA was extracted from mouse atrial tissue (Con 
n=5, DM n=6) using TRIzol reagent according to the 
manufacturer’s instructions. The purity of the isolated 
RNA was determined, and cDNA was synthesized by 
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reverse transcription for use as a template in the subse
quent PCR analysis. Quantitative PCR (qPCR) was then 
performed. The primer sequences used were as follows: 
PARP-1 (forward) 5ʹ-CGG AGT CTT CGG ATA AGC 
TCT-3ʹ and (reverse) 5ʹ-TTT CCA TCA AAC ATG GGC 
GAC-3ʹ; AMP-activated protein kinase (AMPK) (forward) 
5ʹ-TTG AAA CCT GAA AAT GTC CTG CT-3ʹ and 
(reverse) 5ʹ-GGT GAG CCA CAA CTT GTT CTT-3ʹ; 
Sirtuin 1 (Sirt1) (forward) 5ʹ-TAG CCT TGT CAG ATA 
AGG AAG GA-3ʹ and (reverse) 5ʹ-ACA GCT TCA CAG 
TCA ACT TTG T-3ʹ; Akt (forward) 5ʹ-AGC GAC GTG 
GCT ATT GTG AAG-3ʹ and (reverse) 5ʹ-GCC ATC ATT 
CTT GAG GAG GAA GT-3ʹ; IKKα (forward) 5ʹ-GGC 
TTC GGG AAC GTC TGT C-3ʹ and (reverse) 5ʹ-TTT 
GGT ACT TAG CTC TAG GCG A-3ʹ; NF-κB (forward) 
5ʹ-ATG TGG AGA TCA TGA GCA GC-3ʹ and (reverse) 
5ʹ-CCT GGT CCT GTG TAG CCA TT-3ʹ; nucleotide- 
binding oligomerization domain-like receptors 3 
(NLRP3) (forward) 5ʹ-GAT CTT CGC TGC GAT CAA 
CAG-3ʹ and (reverse) 5ʹ-CGT GCA TTA TCT GAA CCC 
CAC-3ʹ; and GAPDH (forward) 5ʹ-TGA TTC TAC CCA 
CGG CAA GTT-3ʹ and (reverse) 5ʹ-TGA TGG GTT TCC 
CAT TGA TGA-3ʹ. The target mRNAs were normalized to 
the GAPDH mRNA level.

Western Blotting
Protein was extracted from mouse atrial tissue (Con n=5, 
DM n=5) after sufficient grinding and lysis. The antibodies 
used in the experiment were as follows: anti-PARP-1 
(1:3000, ab227244; Abcam, Cambridge, UK), anti- 
AMPK (1:3000, ab32047; Abcam, Cambridge, UK), anti- 
Sirt1 (1:1000, cst9475; Cell Signaling Technology Inc., 
Danvers, MA, USA), anti-pan-Akt (1:500, ab8805; 
Abcam, Cambridge, UK), anti-IKKα (1:10,000, ab32041; 
Abcam, Cambridge, UK), anti-NF-κB (1:1000, cst8242; 
Cell Signaling Technology Inc., Danvers, MA, USA), anti- 
NLRP3 (1:3000, ab214185; Abcam, Cambridge, UK), and 
anti-GAPDH (1:5000, sc-25778; Santa Cruz 
Biotechnology, Inc., Santa Cruz, CA, USA).

Statistical Analysis
We first verified whether the results exhibited a normal 
distribution. If not, logarithmic transformation and the 
variance homogeneity test were performed. Then, a t-test 
was used to compare the results between different groups. 
Statistical data are expressed as the mean ± standard 
deviation (SD). A P-value <0.05 was considered statisti
cally significant.

Results
High-Fat Diet and STZ Induced Increased 
Glucose Levels in DM Mice
During 4 weeks of STZ injection, DM mice had weak 
spirit, dull fur, poor activity, and increased water con
sumption and urine output and lost weight in the later 
stage. Unfortunately, there were no detailed statistics on 
the poor activity and increased water consumption and 
urine output in DM mice. Two mice in the model group 
died during model induction with STZ injections. 
Finally, according to the blood glucose levels, 11 mice 
were ultimately included in the DM group. Before the 
dietary intervention, there was no significant difference 
in body weight or baseline metabolic indexes in the two 
groups, including FPG, FIns and HOMA-IR (Figure 1). 
After 8 weeks of dietary intervention, notable insulin 
resistance (IR) was observed in high-fat diet-fed mice 
(HOMA-IR: Con versus DM, 2.09±0.44 versus 6.73 
±1.35, respectively, P<0.001) (Figure 1). Beginning in 
the first 2 weeks of STZ injections, DM mice (n=11) 
displayed significantly higher FPG (Con versus DM, 
4.52±0.91 mmol/L versus 10.93±1.65 mmol/L, respec
tively, P<0.001) and FIns (Con versus DM, 0.45±0.11 
ng/mL versus 0.45±0.09 ng/mL, respectively, P<0.001) 
levels than Con mice (n=10). Moreover, the analysis 
revealed markedly increased atrial weights in DM mice 
(Con versus DM, 0.30±0.04 mg/g versus 0.89±0.24 mg/ 
g, respectively, P<0.05) (Figure 2).

DM Mice Exhibited Dyslipidaemia
In this study, DM mice exhibited significantly upregulated 
levels of TGs (Con versus DM, 1.93±0.27 mmol/L versus 
2.79±0.43 mmol/L, respectively, P<0.05), TC (Con versus 
DM, 1.64±0.33 mmol/L versus 1.93±0.50 mmol/L, respec
tively, P<0.05) and LDL-C (Con versus DM, 0.71±0.12 
mmol/L versus 1.39±0.33 mmol/L, respectively, P<0.05) 
compared to those in the Con group (Figure 3), while there 
was no difference in HDL-C levels (Con versus DM, 1.24 
±0.21 mmol/L versus 1.05±0.33 mmol/L, respectively, 
P>0.05) between these two groups. These results indicated 
disturbed lipid homeostasis in DM mice.

DM Mice Exhibited More Extensive Atrial 
Fibrosis Than Con Mice
H&E staining of atrial paraffin sections revealed broa
dened interstitial spaces among the atrial myofibers, as 
well as a distinctly disordered layout of atrial myocytes, 
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in DM mice instead of a normal myocardial structure 
(Figure 4). Significant fibrosis was observed by Masson’s 
staining in atrial sections from DM mice (Figure 5). 
Extensive fibrosis was particularly visible around atrial 
myocytes, which were disorderly distributed. In contrast, 

the small amounts of collagen fibers in the control mouse 
atria were continuous and complete. In addition, DM mice 
showed marked collagen proliferation compared to that of 
Con mice (Con versus DM, 5.34±0.81% versus 18.70 
±3.10%, respectively, P<0.05) (Figure 6). These results 
revealed that DM may induce and promote atrial fibrosis.

Figure 1 Comparison of body weight (A), FPG (B), FIns (C) and HOMA-IR(D) levels in the 2 groups. The data are expressed as the mean ± SD. Dietary intervention 
started at 6–8 weeks of age (time-point, 0). *P<0.05 vs Con; **P<0.01 vs Con; ΔΔP<0.001 vs Con. 
Abbreviations: FPG, fasting plasma glucose; FIns, fasting insulin; HOMA-IR, HOMA insulin resistance index.

Figure 2 Comparison of atrial weights in the 2 groups. Atrial weight was measured 
and normalized to body weight. The data are expressed as the mean ± SD. 
**P<0.001 vs Control after modelling.

Figure 3 Diabetic mice exhibit dyslipidaemia. Plasma total cholesterol (TC), trigly
ceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipopro
tein cholesterol (HDL-C) levels were determined from independent samples from 
Con and DM mice (means ± SD. *P<0.05 vs Con).
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DM Markedly Altered the mRNA and 
Protein Expression of NF-κB and Its 
Upstream Signaling Pathway Factors
RT-qPCR analysis revealed that the mRNA expression of 
NF-κB and factors in its upstream signaling pathways, 
including PARP-1, Akt, and IKKα and the downstream fac
tor NLRP3, were significantly upregulated in atrial tissue 
from DM mice (Figure 7A and D–G), while the mRNA 
levels of AMPK and Sirt 1 were markedly downregulated 
(Figure 7B and C). Consistent with the RT-qPCR results, 
Western blotting showed significant alterations in the expres
sion of NF-κB and its upstream signaling pathway proteins in 
the atria of DM mice (Figure 7). The marked alterations in 
the expression of NF-κB and its upstream signaling pathway 
proteins and mRNA further suggests that DM could activate 
the PARP-1/Ikkα/NF-κB pathway in the atrium.

Discussion
In this study, C57BL/6 mice underwent dietary interven
tion combined with STZ injection to establish a type 2 DM 
model, and the indicators of subsequent atrial structural 
remodeling and inflammation were analysed. We found 
that DM could affect IR and lipid metabolism, promote 
structural remodeling and alter the expression of mRNA 
and proteins involved in inflammation in mouse atrial 
tissue. The impact of DM on the atrial substrate could 
represent the underlying cause of the development of DM- 
induced atrial remodeling.

According to our results, after 8 weeks of a high-fat 
diet, DM mice showed significant weight increases and IR. 
Subsequently, multiple injections of low-dose STZ were 
performed for 4 weeks. DM mice showed increased water 
intake, polyuria and weight loss and had markedly higher 

Figure 4 Haematoxylin and eosin (H&E) staining of atrial sections from mice in the 2 groups (Con n=10, DM n=11). Atrial myofibers were stained red, while nuclei were 
stained blue-purple. Con mice exhibited complete and regular atrial myocardial structures. In contrast, atrial myofibers were disorderly arrayed in DM mice. Representative 
images are shown at magnifications of ×100 (top panels) and ×200 (bottom panels). Red boxes show the partial magnification.
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levels of FPG, FIns and IR, which suggested successful 
DM modelling.

Previous studies have reported that atrial enlargement and 
fibrosis are the two major components of atrial structural 
remodeling.12,13 Atrial dimensions have been demonstrated 
to determine the persistence of AF maintaining re-entry.14 

Although we could not perform echocardiography for these 
mice, the atrial weight/body weight ratios of DM mice were 
significantly higher than those of Con mice (Figure 2), which 
could indirectly reflect atrial enlargement. In addition, DM 
caused distinctly broadened interstitial spaces among atrial 
myofibers (Figure 4), leading to atrial enlargement. We also 
analysed Masson’s staining to determine whether DM 
induced atrial fibrosis in mice. In this study, increased col

Figure 5 Masson’s staining of atrial sections from mice in the 2 groups (Con n=10, DM n=11). Atrial myocytes were stained red, while collagen fibers were stained blue- 
purple. DM mouse atria exhibited large amounts of disorderly collagen fibers compared to those of Con mouse atrial tissue. Representative images are shown at 
magnifications of ×100 (top panels) and ×200 (bottom panels). Red boxes show the partial magnification.

Figure 6 Semiquantitative assessment of collagen in atrial tissue in the 2 groups 
(Con n=10, DM n=11). Atrial tissue of DM mice exhibited larger collagen areas. The 
results are expressed as the means ± SD; *P<0.05 vs Con.
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lagen hyperplasia was observed in DM mouse atrial tissue 
(Figure 6), and the result was consistent with previously 
described studies. DM could induce marked fibrosis in the 
atrium. These findings indicated that DM could promote 
atrial structural remodeling, including atrial enlargement 
and fibrosis.

In recent years, increasing evidence has shown that the 
inflammatory response could induce atrial structural or 
electrical remodeling and further promote the genesis and 
maintenance of AF,15–17 while the underlying mechanism 
remains unknown. As an important upstream mediator of 
atrial remodeling, the inflammatory response can induce 
atrial remodeling through a series of inflammatory signal
ing pathways, leading to the occurrence and development 
of AF. NF-κB is a transcription factor and an important 
upstream regulator of inflammation and other biological 
processes. In fact, NF-κB can regulate target gene tran
scription, including that of many inflammatory cytokines, 

such as TNF-α, IL-6, IL-8 and IL-1, which are responsible 
for the occurrence and development of AF.15,16,18,19 After 
entering the nucleus, NF-κB can enhance the transcription 
of a number of inflammatory factors, including the NLRP3 
inflammasome, which is one of the mediators of atrial 
remodeling.20 Previous studies have demonstrated that 
the NLRP3 inflammasome, a pattern recognition receptor 
expressed on the surface of macrophages, is activated by 
NF-κB signaling pathways, which in turn promotes the 
electrical activity of the atrium and produces the matrix 
of arrhythmia, which increases atrial remodeling. In this 
study, we observed significantly increased expression of 
NF-κB and NLRP3 in DM mice. In this context, previous 
studies have demonstrated that increased NLRP3 expres
sion could further lead to the expression of IL-1β, which 
could result in prolonged myocyte action potential dura
tion (APD) and atrial fibrosis and increase the risk of 
arrhythmogenesis in DM animals. However, the 

Figure 7 The mRNA (Con n=5, DM n=6) and protein (Con n=5, DM n=5) expression of PARP-1 (A), AMPK (B), Sirt1 (C), Akt (D), IKKα (E), NF-κB (F) and NLRP3 (G) in 
the atria of the 2 groups. The results are expressed as the means ± SD; *P<0.05 vs Con.
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mechanism of NF-κB upstream pathways in the develop
ment of atrial remodeling, especially in the increased risk 
of diabetes-induced atrial remodeling, remains unclear.

PARP-1, a class of ribozymes associated with DNA 
injury repair, mediates apoptosis and regulates gene tran
scription; PARP-1 is closely associated with the pathogenesis 
of tumours, inflammatory injury, cardiac fibrosis, etc.21–24 

PARP-1 can regulate NF-κB and other inflammatory signal 
transduction pathways,11 further promoting the expression of 
many inflammatory factors, such as TNF-α, IL-1β and IL-6. 
The NF-κB pathway is the central pathway by which PARP-1 
regulates inflammation. Zhang25 showed that AF induced 
DNA damage and subsequent PARP-1 activation. PARP-1 
activation resulted in the depletion of NAD+, and the con
sequent exhaustion of ATP led to irreversible structural 
remodeling and ultimately created substrates that impaired 
contractile function and AF persistence. This finding 
revealed that PARP-1 might be involved in the occurrence 
and persistence of AF. Our findings, in conjunction with the 
findings from previous studies, demonstrate a significant role 
for PARP-1 in the pathogenesis of diabetic atria.26 

Downstream effects, such as PARP-1-regulated NF-κB acti
vation, can detrimentally impair atrial function. This investi
gation was the first to show a mechanistic pathway for the 
effect of PARP-1 on DM-induced structural alterations in the 
atrium.

The AMPK/Sirt1 pathway has been shown to be 
involved in the regulation of proinflammatory cytokine 
release.27 Sirt1, a nuclear and cytoplasmic silencing infor
mation regulator 2 (SIR2)-related protein (sirtuin), could 
be downregulated by PARP-1 activation in DM mice.24 It 
has been shown that higher levels of ROS promote activa
tion of the NAD-dependent DNA repair enzyme PARP-1, 
with subsequent NAD depletion and downregulation of 
Sirt1 activity.28 PARP-1 inhibition led to increased Sirt1 
and attenuated oxidative stress, inflammation and fibrosis. 
Moreover, the mechanism of Sirt1 reduction in diabetic 
conditions is not completely understood, but a reduction in 
the phosphorylation of AMPK may play a role.29 Previous 
studies have suggested that AMPK and Sirt1 can promote 
each other and jointly promote downstream responses. 
Papadimitriou30 showed that in the context of DM, Sirt1 
activity was reduced by PARP-1 activation and NAD+ 
depletion due to low AMPK, which increased NOX4 
expression, leading to extracellular matrix (ECM) accu
mulation mediated by transforming growth factor (TGF)- 
beta 1 signaling. In addition, AMPK/Sirt1 may be 
involved in the pathogenesis of DM and diabetic 

cardiomyopathy and may play protective roles in the myo
cardial tissue of DM patients.31 However, the direct rela
tionships between atrial-specific Sirt1, AMPK, and DM 
have not yet been elucidated. In our study, a Western 
blot analysis showed that DM led to decreases in AMPK 
and Sirt1 in atrial myocytes.

There was also an experiment32 suggesting that Sirt1 
could inhibit Akt and IKK activity and then exert myocardial 
protective effects. IKK is the regulatory subunit of an NF-κB 
inhibitory complex. PARP-1 provides the scaffold needed for 
the SUMOylation of IKK, leading to the activation of IKK 
and NF-κB.33 This study showed notable activation of Akt 
and IKK in atrial myocytes in the context of DM.

Inflammation, which arises from IR, hyperglycaemia and 
glucose fluctuations, is largely responsible for DM- 
associated atrial proarrhythmic remodeling. Diabetes has 
long been acknowledged to be a proinflammatory disease, 
and inflammation is known to promote AF by increasing 
atrial electrical instability, promoting atrial fibrosis, and mod
ulating the intrinsic autonomic nervous system of the heart.34

Taking into consideration the aforementioned hypoth
eses, it is reasonable to assume that NF-κB activation plays 
an important role in AF development and maintenance in 
DM via canonical and noncanonical pathways, such as 
inflammation, fibrosis, and atrial enlargement. NF-κB activa
tion is induced by different factors, such as the AMPK/ 
PARP-1/Sirt1 pathway and Akt/Ikk pathway. Increasing 
expression of NLRP3 and its downstream signal factors 
lead to atrial enlargement and fibrosis may serve as important 
substrates for the development of AF.

Besides inflammation, there are many other factors and 
pathways potentially involved in DM-AF relationship, 
such as oxidative stress,34 activation of renin-angiotensin 
system (RAS),34 and the Rock pathway.35

Therefore, we have come to the following assumption 
(Figure 8): DM can cause hyperglycemia, IR and oxidative 
stress, further induce PARP-1 activation, inhibit AMPK and 
Sirt 1, upregulate the NF-κB/NLRP3 pathway, lead to atrial 
inflammation, induce atrial structural remodeling which 
includes of atrial enlargement and fibrosis and electrical 
remodeling, and finally take part in the initiation and main
tenance of AF.

There are several limitations to the present study. We 
measured atrial structural remodeling and inflammation, 
which are considered to be the main causes of AF. 
Although we determined the susceptibility to AF caused 
by DM, the initiation of AF was not examined. We will 
further investigate this aspect in the future. In addition, the 
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specific mechanism of the PARP-1/Sirt1/NF-κB pathway 
during DM-induced AF needs to be explored. In the 
future, we plan to further validate our results by perform
ing drug interventions and constructing transgenic models.

Conclusion
We conclude that DM can promote atrial structural remodel
ing, including atrial enlargement and atrial fibrosis, and alter 
the expression of factors involved in atrial inflammation, 
which can further contribute to the initiation and development 
of AF.
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