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Background: The bacterial endotoxin lipopolysaccharide (LPS) was the classic inducer to
establish many inflammatory disease models, especially multiple organ injury. Evidences
indicated that the mechanism that causes inflammation response is not just related to
cytokine release. The main aim of this study was to better elucidate the possible links
between metabolic changes and the pathogenesis of LPS-induced acute liver and kidney in
order to understand the mechanisms and screening therapeutic targets for developing early
diagnostic strategies and treatments.

Methods: An experimental rat model was established by intraperitoneal injection of 10 mg/
kg LPS. An untargeted metabolomics analysis of the serum in the LPS and control groups
was carried out using ultra-performance liquid chromatography/quadrupole time-of-flight
mass spectrometry (UPLC/QTOF-MS). LPS-induced pathological damage in the lungs,
liver, kidneys, and colon was observed, along with changes in biochemical indexes, indicat-
ing that there was a severe inflammatory response in many organs after administration of
LPS for 8 h. Principal component analysis (PCA) and partial least squares-discriminant
analysis (PLS-DA) showed distinct separation in the serum metabolite profiles between the
LPS and control groups, indicating significant changes in endogenous metabolites.
Results: The untargeted metabolomics analysis showed that there were 127 significantly
different serum metabolites and 53 altered pathways after LPS administration, including
pathways related to the metabolism of D-glutamine and D-glutamate, taurine and hypotaur-
ine, beta-alanine, glutathione, and butanoate, which are involved in the inflammatory
response, oxidative stress, and amino acid metabolism.

Conclusion: The study suggested that LPS-induced acute liver and kidney injury mainly
involves inflammatory response, oxidative stress, and protein synthesis, finally causing
multi-organ damage. Correcting the disturbances to the metabolites and metabolic pathways
may help to prevent and/or treat LPS-induced acute liver and kidney damage.

Keywords: untargeted metabolomics, LPS, acute kidney injury, acute liver injury, amino

acid metabolism

Increasing studies have reported that the bacterial endotoxin lipopolysaccharide
(LPS) could impact levels of inflammatory mediators, playing an important role in
the development of systemic inflammatory response which may trigger sepsis and
be linked to acute kidney and liver injury. Thus, LPS has been administered to
animals to create reliable experimental models that provide mechanistic insights
into how cells and organs respond to inflammation; then these models have been
extensively employed to assess strategies to prevent or attenuate systemic
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inflammatory response or multiple organ failure.'”
Responses in organs and tissues to endotoxemia are clo-
sely associated with alterations in metabolism and cata-
bolic signals. Metabolites, including lipids, amino acids
and glucose, have been identified during the process of
inflammatory process in plasma.>* There is a dual direc-
tional regulation between metabolite levels and inflamma-
tory defenses,” and understanding the alterations in the
serum metabolome during injuries is critical for making
and directing more precise and personalized therapeutic
intervention. Therefore, comprehensive metabolomics-
based evaluation of LPS-induced acute kidney and liver
injury is necessary.

Metabolomics analysis can be used to monitor distur-
bances in endogenous small-molecule metabolites in cells,
tissues, and biofluids of the body in response to a toxicant
or other environmental change, and it is a viable approach
for continued discovery around the pathophysiology, diag-
nosis and prognosis and provides a greater level of bio-
chemical detail and insight than other systems' biology
methods.® Ultra-high-performance liquid chromatography
coupled to quadrupole time-of-flight mass spectrometry
(UPLC-Q/TOF-MS) and gas chromatography-mass spec-
trometry (GC-MS) have been used to quantitatively ana-
lyze various metabolites in biological samples, rapidly and
effectively separating and identifying the individual com-
pounds, which are more sensitive than nuclear magnetic
resonance (NMR). Furthermore, UPLC-MS is commonly
used for “untargeted” metabolomics due to its broad range
of different types of metabolites.”

In this study, changes in the plasma metabolites of a rat
model of LPS-induced acute kidney and liver injuries were
assessed using UPLC-Q/TOF-MS, along with assessing
the pathological signs in the main organs and serum.
This allowed the identification of altered metabolites and
metabolic pathways, to better understand the pathogenesis
of LPS-induced acute kidney and liver injuries and to
provide new insights into the development of early diag-
nostic strategies and treatments.

Materials and Methods

Chemicals and Reagents

LPS from Escherichia coli 055:B5 was purchased from
Sigma-Aldrich (USA). Commercial enzyme-linked immu-
nosorbent assay (ELISA) kits to assess the levels of the
cytokines tumor necrosis factor (TNF)-a and interleukin
(IL)-6 and a terminal deoxynucleotidyl transferase dUTP

nick end labeling (TUNEL) kit were obtained from R&D
Systems (USA). Radioimmunoprecipitation assay (RIPA)
lysis buffer and superoxide dismutase (SOD), catalase
(CAT), and malondialdehyde (MDA) assay kits were pur-
chased from Beyotime Co. Ltd. (China). Acetonitrile and
methanol  (high-performance liquid chromatography
[HPLC] grade) were obtained from Thermo Fisher
Scientific (USA). Ultra-pure distilled water was prepared
using a Milli-Q purification system (Millipore Corp.,
USA). All other reagents (analytical grade) were obtained
from Sigma-Aldrich (USA).

Animals

A total of 20 Sprague-Dawley rats (male, 200-220 g)
were randomly divided into the LPS model group and
the control group (n=10 per group). The rats were obtained
from the Center of Experimental Animals of Baiqiuen
Medical College of Jilin University (Jilin, China). The
experiment was approved by the Jilin University Animal
Care and Use Ethics Committee (protocol number
2019-239) and performed
National Institutes of Health guide for the care and use

in accordance with the

of laboratory animals. After acclimatization for 1 week,
the rats in the LPS group were intraperitoneally injected
with 10 mg/kg LPS (dissolved in normal saline) which
was based on earlier reports and the rats in the control
group were intraperitoneally injected with an equivalent
amount of normal saline.®® After 8 h, the rats were
anesthetized using chloral hydrate, and then blood was
collected by direct puncture of the abdominal aorta. The
blood was then centrifuged at 3000 X g to prepare a serum
sample. Organ tissues were collected and divided into two
parts; one part was fixed in 4% formaldehyde, and the
other was frozen in liquid N,. All serum and tissue sam-
ples were stored at —80 until biochemical analysis.

Metabolomics Analysis

Each serum sample was thawed at 4°C, and 100 pL of
each sample was transferred to a tube. About 400 pL
methanol was added to the tube and vortexed for 1 min.
After centrifuging at 4°C for 10 min at 12,000 rpm, the
supernatant was collected and transferred to another tube
to concentrate it using a vacuum concentrator. Next, 150
puL 2-chlorobenzalanine in 80% methanol solution was
added and a 0.22-pm membrane was used to filter the
samples for LC-MS. To prepare the quality control (QC)

samples, 20 pL was obtained from each tube.'*"
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Chromatographic separation was performed using an
UltiMate 3000 System (Thermo Fisher Scientific) equipped
with an ACQUITY UPLC HSS T3 column (150%2.1 mm,
1.8 um; Waters, USA) maintained at 40°C. The temperature
of the autosampler was 8°C. Gradient elution of the analytes
was carried out using 0.1% formic acid in water (C) and in
acetonitrile (D) in the positive ion mode, or 5 mM ammo-
nium formate in water (A) and acetonitrile (B) in the nega-
tive ion mode at a flow rate of 0.25 mL/min. After
equilibration, 2 puL of each sample was injected. An increas-
ing linear gradient of solvent B (negative mode) or solvent
D (positive mode) (v/v) was used as follows: 0—1 min, 2% B/
D; 1-9 min, 2-50% B/D; 9—12 min, 50-98% B/D; 12-13.5
min, 98% B/D; 13.5-14 min, 98-2% B/D; and 14—17 min,
2% B (negative mode) or 14-20 min, 2% D (positive mode).

Electrospray ionization (ESI)-multistage mass spectro-
metry (MSn) experiments were performed using a Q
Exactive mass spectrometer (Thermo Fisher Scientific)
with a spray voltage of 3.8 and —2.5 kV in the positive and
negative ion mode, respectively. The sheath gas and auxili-
ary gas were set at 30 and 10 arbitrary units, respectively.
The capillary temperature was 325°C. The analyzer scanned
over a mass range of m/z 81-1000 for a full scan at a mass
resolution of 70,000, with data-dependent acquisition of

higher-energy collision dissociation (HCD) MS/MS spectra.
The normalized collision energy was 30 eV. Dynamic exclu-
sion was implemented to remove some of the unnecessary
information in the MS/MS spectra.'> The metabolomics
study workflow is shown in Figure 1. A random QC sample
was inserted into the sequence of samples after every set of
five real samples. The samples were analyzed in one batch to
eliminate system errors. The compounds or metabolites were
selected and confirmed according to retention time (RT),
exact molecular weight (m/z), mass spectra, and peak inten-
sity (PI). A principal component analysis (PCA) was then
carried out to verify the quality of the data and the stability
and repeatability of the analytical method.

The raw UPLC-MS/MS data were converted into
mzXML format by Proteowizard software (v3.0.8789).
The data were analyzed using XCMS package of
R language (v3.3.2) for peaks identification, peaks filtra-
tion and peaks alignment. The major parameters were
peakwidth=c(5, 30), mzwid=0.015,
mzdiff=0.01, method= “centWave”. Information conclud-

bw=2, ppm=15,

ing Mass to charge ratio (m/z), retention time (rt) and peak
intensity were collected for further study. Batch normal-
ization of peak area was applied.'®> Then the data were
used to search several qualitative metabolomics databases,
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comprising the mzCloud database (www.mzcloud.org), the
Human Metabolome Database (www.hmdb.ca), METLIN
(metlin.scripps.edu), MoNA (mona. fiechnlab.ucdavis.edu),

and MassBank (www.massbank.jp).

To identify candidate biomarkers (ie, the differential
serum metabolites between the LPS and control groups),
the following criteria were used: Variable Importance in
Projection (VIP) value >1 and Student’s #-test P value
<0.05. PCA and partial least squares-discriminant analysis
(PLS-DA) were conducted using R language.'* A metabolite
correlation analysis was also conducted based on Pearson’s
correlation coefficients, and R language was used to visua-
lize the results in a chord diagram.

A pathway enrichment analysis of the differential
metabolites was conducted, using MetaboAnalyst (www.
metaboanalyst.ca) to map the metabolites to pathways in
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (www.kegg.jp) in order to identify the altered
metabolic pathways.'”

ELISAs

The levels of the inflammatory factors tumor necrosis
factor (TNF)-a and interleukin (IL)-6 in the serum were
assessed using the ELISA kits (R&D Systems) according
to the manufacturer’s instructions.

Determination of SOD, CAT, and MDA

Levels in Serum

SOD, CAT, and MDA are biomarkers of oxidative stress,
representing the degree of damage and antioxidant abil-
ities of organs or cells. Using the assay kits (Beyotime,
China), the samples were processed according to the
manufacturer’s instructions. The protein in each sample
was quantified. After incubation, the absorbance value
was assessed using a microplate reader (EL80S; Bio-
TEK Instruments, USA).

Histopathological Analysis

Kidney, lung, liver, colon, hippocampus, and cerebral cor-
tex tissues were fixed in 4% formaldehyde immediately
after obtaining them from the rats. The tissues were then
subjected to an alcohol gradient, embedded in paraffin, and
sectioned at a thickness of 5 um. Histopathological exam-
ination was performed after hematoxylin and eosin (H&E)
staining. Images were visualized using a light microscope
(Nikon Eclipse TS200; Nikon Corp., Japan) at 100X,
200x%, or 400x magnification.

TUNEL Assays
The
a thickness of 5 um in the coronal plane using a freezing
microtome (CM1950; Leica, Wetzlar, Germany). TUNEL
assays (Roche, Germany) were conducted according to the

paraffin-embedded tissues were sectioned at

manufacturer’s instructions. Images were visualized using
a microscope (Nikon Eclipse TS200; Nikon Corp., Japan)
at 200xmagnification.

Complete Blood Cell Count Analysis

Whole blood was collected at the time of euthanasia via
direct puncture of the abdominal aorta and stored in
tubes pre-filled with ethylenediaminetetraacetic acid
(EDTA). The analysis was performed using an ABC
Vet Animal Blood Counter (Scil
Company, Gurnee, IL, USA) according to the manufac-
turer’s instructions. The red blood cell (RBC), white
blood cell (WBC), monocyte, neutrophil, and lympho-

Animal Care

cyte counts were assessed.'®

Statistical Analysis

The experiments were designed following the standard

approach to ensure adequate sample sizes for reliable

statistical analysis.'”'® The data are presented as mean

+ standard error of the mean (SEM). The data were
(GraphPad

analyzed by

analyzed wusing GraphPad Prism 5
Software). Statistical
means of two-tailed Student’s z-test or analysis of var-
iance (ANOVA). A p-value <0.05 was considered sta-
tistically significant.

significance was

Results

Effects of LPS on Blood Counts

The RBC, WBC, monocyte, neutrophil, and lymphocyte
counts were measured in whole blood from rats. The
WBC count was significantly decreased in the LPS
group compared to the control group (Figure 2A).
Differential WBC analysis (Figure 2B-E) revealed that
LPS notably increased the percentages of circulating
monocytes, neutrophils, and lymphocytes, which may
lead to acute systemic inflammation. LPS had no effect
on the RBC count.

Effects of LPS on Cytokine, SOD, CAT,
and MDA Levels in Serum

The inflammatory cytokines TNF-o and IL-6 were
measured in the serum using ELISAs. TNF-o and
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Figure 2 Effects of LPS on serum biochemical indicators: white blood cells (WBCs) (A), monocytes (B), neutrophils (C), lymphocytes (D) and red blood cells (RBCs) (E); serum
levels of TNF-a (F) and IL-6 (G); serum levels of the oxidative stress factors superoxide dismutase (SOD) (H), malondialdehyde (MDA) (I), and catalase (CAT) (J); and kidney and
liver function indicators: total bile acids (TBA) (K), creatine (Cr) (L), blood urea nitrogen (BUN) (M), aspartate transaminase (AST) (N) and alanine transaminase (ALT) (O).
Notes: Data are expressed as mean + SEM (n=10 per group). *p<0.05, **p<0.01, ***p<0.001 vs control group.

IL-6 were significantly increased in the LPS group
compared to the control group (Figure 2F-G). As oxi-
dative stress is highly associated with inflammatory
injury, biochemical methods were used to assess multi-
ple factors, comprising the MDA level and the activ-
ities of the antioxidant enzymes SOD and CAT. The
antioxidant enzymes SOD and CAT were significantly
decreased in the LPS group compared to the control
group, while MDA was significantly increased in the
LPS group (Figure 2H-J). These results suggested that
10 mg/kg LPS could induce inflammation and oxida-
tive stress in rats after 8 h, which may disrupt the

function of tissues and organs.

Effects of LPS on the Kidney and Liver
Function

To evaluate the effects of LPS on liver function, alanine
transaminase (ALT) activity, aspartate transaminase (AST)
activity, and total bile acid (TBA) levels in the serum were
assessed. They were markedly increased in the LPS group
compared to the control group, indicating that 10 mg/kg
LPS caused considerable liver injury in the rats at
8 h (Figure 2K-0). Additionally, to evaluate the effects of
LPS on kidney function, the mean serum blood urea nitrogen
(BUN) and creatinine (Cr) levels were assessed, and they all
increased after intraperitoneal injection of 10 mg/kg LPS
(Figure 2L and M). Together, these data showed that
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intraperitoneal injection of LPS induced severe systemic
inflammation and caused kidney and liver damage.

Histopathological Evaluation in Multiple

Tissues

H&E staining of liver sections revealed vacuolar degenera-
tion, massive necrosis of hepatocytes, and severe inflamma-
tory cell infiltration in the LPS group (Figure 3A-F).
Additionally, there were more TUNEL-positive cells in the
LPS group than in the control group (Figure 3G-L).

Regarding the kidney tissues, the epithelial cells of renal
tubules showed vacuolar degeneration, damaged brush bor-
ders, and the presence of protein casts in the LPS group,
unlike in the control group (Figure 3B). In addition, necrosis
of tubular epithelial cells was observed in the LPS group.
The results of TUNEL staining indicated apoptosis (Figure
3H), which suggests that renal pathological damage had
already occurred at 8 h after LPS administration.

The lung tissues stained with H&E showed that the
LPS-induced lung injury mainly involved a degree of
inflammatory cell infiltration, destruction of alveoli, and
thickened alveolar septa (Figure 3C). The damaged alveoli
and apoptotic cells were clearer based on the TUNEL
assays (Figure 31).

Regarding the colon tissues, LPS administration led to
inflammatory cell infiltration, partial mucosal epithelial

LPS

damage, and missing goblet cells (Figure 3D). In contrast,
the control rats had intact colon mucosal epithelia, along
with normal colonic epithelial and goblet cells. There were
also more TUNEL-positive cells in the LPS group than in
the control group (Figure 3J), demonstrating that LPS
caused severe injury in the colon.

Regarding H&E staining of the hippocampus tissues,
the LPS rats had thinner cell layers and neuronal degen-
eration. In contrast, the control rats had normal morphol-
ogy, with clear cell layers, nuclei, and nucleoli (Figure
3E). Regarding the cerebral cortex, LPS caused eosinophi-
lic necrosis (Figure 3F). There were many TUNEL-
positive apoptotic cells in the hippocampus and cerebral
cortex tissues from LPS rats (Figure 3K and L).

Thus, LPS induced acute systemic inflammation,
disrupting the normal function of multiple organs and
damaging the liver, kidneys, colon, lungs, hippocam-
pus, and cerebral cortex. Accordingly, the disease
model was successfully established by 10 mg/kg LPS
at 8 h after administration, and further analyses were
carried out.

Validation of Metabolomics Data

The total ion chromatograms (TICs) in the positive and
negative ion modes allowed differences to be observed
visually (Figure 4A-D). By testing the QC samples

Colon Hippocampus Cerebral cortex

Figure 3 Histopathological analyses of tissues in the LPS and control groups. (A—F) Hematoxylin and eosin (H&E) staining of liver (400%), kidney (400%), lung (200%), colon
(100x%), hippocampus (200%), and cerebral cortex (200%) tissues in the LPS and control groups. (G-L) Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) assays of liver; kidney, lung, colon, hippocampus, and cerebral cortex tissues (200%) in the LPS and control groups. The arrows point to the damage area.
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Figure 4 Representative total ion chromatograms (TICs) of serum samples subjected to (UPLC/QTOF-MS) in positive and negative ion modes. (A and B) TICs of CTRL
group and LPS group in the positive ion modes; (C and D) TICs of CTRL group and LPS group in the negative ion modes.

along with the real samples, method repeatability and
instrument precision were confirmed (relative standard
deviation [RSD] <15%). In addition, the PCA score
plots of the metabolic profiles of the QC samples indi-
cated that the detection system was stable (in the
Supplementary Material).

Multivariate Analysis of Metabolic Profiles
The PLS-DA score plots for the LPS and control
groups indicated notable separation regarding both the
negative and positive ion modes (Figure 5A-D). The
PLS-DA model had a low risk of overfitting (R*=0.92,
Q?=0.15 in the positive ion mode, and R*=0.92, Q*=0.1
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Figure 5 Metabolomics analysis of serum samples from rats in the LPS and control groups (n=10 per group) in the positive and negative ion modes. Partial least squares-
discriminant analysis (PLS-DA) score plot in the (A) positive and (B) negative ion modes. Permutation test of PLS-DA model in the (C) positive and (D) negative ion modes.

in the negative ion mode), good fitness (R*Y=0.991 in
the positive ion mode, and R*Y=0.991 in the negative
ion mode), and good prediction (Q*=0.904 in the posi-
tive ion mode, and Q?=0.897 in the negative ion
mode). These results indicate that the LPS-induced
acute systemic inflammation model was successfully
established.

Endogenous metabolites were picked if they met cri-
teria related to multiple data processing methods (VIP >1
and P <0.05). Using R language and multiple metabolo-
mics databases, the serum levels of 127 metabolites were
significantly different between the LPS and control groups
(Table 1). The 127 metabolites were divided into two
groups; the levels of 59 metabolites decreased and the
levels of 68 metabolites increased in the LPS group. The
results of the correlation analysis were visualized using
a chord diagram (Figure 6) and compounds belonging to
the classes of amino acid, lipid, and carbohydrate were the

most enriched in the changed endogenous metabolites.

Red indicates increased abundance and blue indicates
decreased abundance.

Analysis of the Differential Metabolites
and Pathways

Pathway enrichment and pathway topology analyses were
performed to identify the pathways that were most relevant
to the differential metabolites that had been identified as
candidate biomarkers, as well as the network of the
matched pathways. Totally, 53 pathways were relevant to
the candidate biomarkers. Several of these may play cri-
tical roles in the occurrence and development of acute
systemic inflammation, including the pathways related to
the metabolism of D-glutamine and D-glutamate, linoleic
acid, taurine and hypotaurine, beta-alanine, glutathione,
and butanoate. A graph of the 10 most relevant pathways
was constructed, with the log(P) values from the pathway
enrichment analysis on the y-axis and the pathway impact
values from the pathway topology analysis on the x-axis
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Figure 6 Chord diagram of differential serum metabolites. Classification of the metabolites detected into major functional classes.

(Figure 7A). As shown in Figure 7B, the interactions
among the pathways mainly relate to amino acid and
carbohydrate metabolism. Regarding the points, the size
represents the pathway impact value and the color repre-
sents the degree of pathway correlation (based on the
number of connected nodes).

The results of the correlation analysis indicated the
possible interactions between the metabolic pathways
affected by LPS (Figure 8). The possible interactions
between the candidate biomarkers and pathways were

determined based on metabolites with altered abundance
between the LPS and control groups and an analysis using
the KEGG database.

Discussion

LPS, an integral component of the Gram-negative bacterial
outer membrane, can cause an uncontrollable inflamma-
tory response, which can lead to damage to liver, kidney,
lung and, eventually, fatal sepsis syndrome.'® Thus, LPS
was the classic inducer to establish multiple inflammatory

https://doi.org/10.2147/JIR.S306789
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disease models. However, more evidences indicated that
the mechanism that causes inflammation response is not
just related to cytokine release. It is necessary to compre-
hensively understand LPS-induced liver and kidney injury
based on metabolomics.

As compared to NMR, GC-MS and LC-MS are more
sensitive and automated, which are better suited for the
measurement of low-abundant metabolites and a variety of
classes of compounds. Furthermore, GC-MS is more sui-
table for the analysis of volatile or thermally stable sub-
stance, including organic acids, amino acids, sugars and
fatty acids, etc.”” However, LC-MS is widely used for
“untargeted” metabolomics because it effectively detects
a broad range of different types, especially for unstable or
non-volatility metabolites.” Related researches have
reported the metabolomics changes in rats with LPS-
induced systemic inflammatory response by GC-MS in
lower doses which has shown that about 24 metabolites
were differentially in the serum and mainly related to
aminoacyl-tRNA biosynthesis, glutathione metabolism
and arginine biosynthesis.'® In this study, more metabolo-
mics and regulatory pathways were detected and analyzed
by LC-MS to comprehensively explain the pathogenesis of
LPS-induced kidney and liver damage. In addition,

different treatment concentration or period of LPS lead
to multiple disease symptoms, and this might be related
to different metabolic response. Thus, this study focused
on the mechanism and changes of acute kidney and liver
injury induced by LPS in high-dose (10 mg/kg).

In this study, the systemic inflammatory tissue
damage, biochemical indexes, and altered metabolic
pathways were examined by histopathological evalua-
tion, molecular biological methods, and LC-MS, respec-
tively. Histopathological damage to the organs including
the kidneys, liver, colon, and lungs occurred within 8
h after LPS was injected intraperitoneally. There were
also significant changes in blood counts (WBC, mono-
cyte, neutrophil, and lymphocyte counts), inflammatory
factors (TNF-a and IL-6), oxidative stress indexes (SOD,
MDA, and CAT activity), renal function indexes (serum
+Cr and BUN), and liver function indexes (ALT, AST,
and TBA). In the metabolomics analysis, 127 metabo-
lites with altered abundance were identified; based on
this, 53 pathways were identified as relevant to the
pathological process, mainly involving the metabolism
of D-glutamine and D-glutamate, linoleic acid, taurine
and hypotaurine, beta-alanine, glutathione, and butano-
ate. The altered pathways are involved in multiple
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group compared to the control group.

physiological processes, including the inflammatory

response, oxidative stress, energy metabolism, and

amino acid metabolism.

Inflammatory Response

Regarding lipids, there were significant alterations in the
levels of oleic acid, linoleic acid, and arachidonic acid-
related metabolites. Linoleic acid is a precursor of arachi-
donic acid, which can be converted into various lipid
mediators involved in the regulation of immunity.*'
Linoleic acid metabolism, arachidonic acid metabolism,
(delta-12-
prostaglandin J2 and 6-keto-prostaglandin Fla) were sig-

and  prostaglandin-related  metabolites
nificantly altered in the LPS group, which is consistent
with previous research.”” Oleic acid has been demon-
strated to promote wound healing, combat autoimmune
conditions, and eliminate pathogens by affecting macro-
phages, lymphocytes, and neutrophils.”® The increase in
oleic acid suggested that it might represent a self-
protection mechanism in the acute inflammatory stage
after LPS treatment for 8 h.

Glycocholic acid, a bile acid related to liver function,
effectively inhibits both acute and chronic inflammation.**

There was a marked reduction in glycocholic acid, which

is consistent with the occurrence of liver injury.
D-Glutamine and D-glutamate metabolism are asso-

ciated with cell growth, lipid peroxidation, antioxidant

.. . 252
anti-inflammation.?>*¢

defense, and Glutamine is
a principal biosynthesis material, contributing to nucleo-
tide and nonessential amino acid synthesis.?’ Glutamine
increases glutathione synthesis and alleviates renal dys-
function, liver fibrosis and inflammatory cytokine
production.”® > Supplementing with glutamine reduces
pulmonary functional and morphological impairment and
inflammation in acute respiratory distress syndrome
(ARDS).*! There was a notable increase in glutamine
after LPS administration, while no increases were found
in glutathione, glutamate, or related amino acids, indicat-
ing that the body tried to modulate the anti-inflammatory

response during the organ damage.

Oxidative Stress

LPS could induce the reactive oxygen species (ROS)
accumulation, then decrease antioxidant defenses and
lipid peroxidation of biological membranes with increased
MDA production, which finally aggravates liver and
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kidney injury and in turn results in many pathological
changes. Oxidative stress not only causes a series of mor-
phological changes such as vacuolar degeneration, apop-
tosis, inflammatory cell infiltration and necrosis of renal
parenchymal cells and hepatocytes, but also reduces glo-
merular filtration function and renal tubule reabsorption
function. In present study, several biochemical parameters
were assessed to determine the level of oxidative stress
damage, including MDA, SOD and CAT activities. MDA
is a representative product of polyunsaturated fatty acid
peroxidation, which can be increased by oxidative stress.*>
Hydroxyl radical and ROS are dismutated by SOD to
generate hydrogen peroxide, which can be decomposed
by CAT.*> The MDA level was significantly increased in
the LPS group, while the activities of SOD and CAT were
markedly decreased, indicating oxidative stress damage.
Taurine and hypotaurine metabolism, glycine metabo-
lism, cysteine and methionine metabolism, pantothenate
and coenzyme A (CoA) biosynthesis and glutathione
metabolism are associated with antioxidant defense and
anti-lipid peroxidation. The liver is the predominant
place to secret bile, and any changes of bile acid home-
ostasis were linked to various types of liver injury. Taurine
is well known as an abundant amino that possesses various
physiological functions, such as bile acid conjugation,
osmoregulation, and detoxification.>* Taurine and betaine
both play important roles in scavenging ROS and improv-
ing antioxidant status and attenuating apoptosis and necro-
sis in LPS-induced liver injury.>>® In this study, LPS
induced pathological damage and increased the ALT/AST
and TBA levels, and it dramatically decreased the serum
levels of taurine and betaine aldehyde (which can be
transformed into betaine), which might be a self-
protection mechanism to attenuate LPS-induced oxidative
damage. Cysteine, as the key critical precursor of glu-
tathione synthesis, can scavenge and combine with free
radicals. L-cysteine and L-cystine are transformed into one
another based on the redox state of the cell.> In this study,
the level of L-cystine was higher while the level of
L-cysteine was lower in the LPS group than the control
group, indicating a disturbance of redox homeostasis after
LPS
research.*® Glutathione metabolism helps maintain the

administration and concurring with previous

normal function of liver and kidney,*' and glutathione
metabolism was down-regulated in the LPS group, with
the significant changes in oxidized glutathione and
L-glutamine.

Pantothenic acid is the precursor of coenzyme
A (CoA), which participates in sugar, lipid, and protein
metabolism, suggesting an anti-lipid peroxidation effect.
The possible regulatory mechanisms include scavenging
ROS to protect cell membrane integrity, promoting phos-
pholipid synthesis for repair, and increasing glutathione
biosynthesis.** Elevated pantothenic acid may be

a protective response after LPS treatment.

Amino Acid Metabolism

The metabolomics results showed that the levels of multi-
ple branched-chain amino acids (BCAAs) were signifi-
cantly decreased in the LPS group compared to the
control group, indicating a lack of energy and biological
materials. As the metabolomics results showed that the
serum levels of several amino acids were disturbed in the
LPS group, LPS-induced acute liver and kidney injury
were clearly associated with the alterations in amino acid
metabolism (Table 1). The levels of glutamic acid, aspartic
acid, proline, serine, alanine, tyrosine, cysteine, and iso-
leucine were decreased after LPS administration, which
was related to the down-regulation of alanine, aspartate,
and glutamate metabolism, arginine and proline metabo-
lism, and cysteine and methionine metabolism. Essential
amino acids play critical roles in regulating energy meta-
bolism and synthesizing proteins of the body.** In the
study, serine and glycine were reduced, which are the
potent antioxidants to scavenge free radicals and play
a key role in anti-oxidative defense of liver cell.** The
decreased tyrosine level in the LPS group indicated LPS-
induced kidney injury, as decreased tyrosine has been
observed in chronic renal damage.** Arginine is suggested
as a potential biomarker in hepatic and renal injuries and
served as a precursor for BUN and Cr.*> The increased
level of BUN and Cr and arginine-related metabolites in
LPS group indicated a disturbance of arginine metabolism.
In addition, LPS-induced renal injury could be evidenced
by the decreased level of tyrosine, which has been reported
in chronic renal damage.** Glutamic acid, as a key amino
acid, serves as a signaling factor between the immune and
nervous systems, a key transamination partner required for
glutathione regulation, and a critical component of the
defense against oxidative stress.***® The reduction in glu-
tamic acid in the LPS group may indicate the damage due
to inflammatory cytokines and ROS. Above alterations
have been shown to induce oxidative stress and enhance
amino acid catabolism, which might further aggravate the
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pathological damage and disturb normal biological

function.*>*

Conclusion

In this study, multiple methods were used to investigate
the pathological characteristics and changes in biochem-
ical indexes during LPS-induced acute systemic inflamma-
tion. An untargeted metabolomics method involving
UPLC-QTOF/MS was used to analyze the metabolite pro-
file. In the acute systemic inflammation model, pathologi-
cal injury occurred in the liver, colon, lungs, and kidneys.
LPS significantly altered the serum levels of 127 metabo-
lites, which were found to be involved in 53 pathways.
The 10 most relevant pathways (Figure 8) were found to
involve amino acid metabolism and lipid metabolism, and
these were identified by the KEGG analysis as being
involved in the regulation of multiple physiological pro-
cesses, including the inflammatory response, oxidative
stress, and amino acid metabolism. The results suggested
that LPS-induced acute systemic inflammation mainly
involves the inflammatory response, oxidative stress, and
protein synthesis, causing organ damage and functional
impairment. The differential metabolites and metabolic
pathways identified in this paper should be further studied
using targeted metabolomics, lipidomics, and proteomics,
in order to elucidate mechanisms and screening therapeu-
tic targets for developing early diagnostic strategies and

treatments.
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