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Abstract: Local invasion and distant metastasis are the key hallmarks in the aggressive 
progression of malignant tumors, including the ability of cancer cells to detach from the 
extracellular matrix overcome apoptosis, and disseminate into distant sites. It is generally 
believed that this malignant behavior is stimulated by epithelial-mesenchymal transition 
(EMT). Musashi (MSI) RNA-binding proteins, belonging to the evolutionarily conserved 
RNA-binding proteins (RBP) family, were originally discovered to regulate asymmetric cell 
division during embryonic development. Recently, Musashi-2 (MSI2), as a key member of 
MSI family, has been prevalently reported to be tightly associated with the advanced clinical 
stage of several cancers. Multiple oncogenic signaling pathways mediated by MSI2 play vital 
roles in EMT. Here, we systematically reviewed the detailed role and signal networks of 
MSI2 in regulating cancer development, especially in EMT signal transduction, involving 
EGF, TGF-β, Notch, and Wnt pathways. 
Keywords: Musashi-2, EMT, EGF, TGF-β, notch, Wnt, targeted therapy

Background
Over two decades ago, the MSI gene was first identified to encode a neural RNA- 
binding protein (RBP), which plays an important role in regulating asymmetric cell 
division of sensory organ precursor (SOP) cells in Drosophila.1 The SOP normally 
divides to generate a neuronal precursor cell, a socket cell, and a bristle shaft; 
however, MSI mutated SOP cells produce an alternative phenotype with two shafts 
in a single bristle. The name of the gene suggests a similarity of this phenotype to 
the image of the Japanese national hero, Miyamoto Musashi, who fought with two 
swords.1

Currently, two members of the human MSI family have been identified: MSI1 
and MSI2. They are evolutionarily conserved and share ~75% homology of the 
amino acid sequences.2,3 In early studies, MSI1 was found to be highly expressed in 
the nervous system of mice,4 especially in the undifferentiated neural stem and 
precursor cells.5,6 Moreover, the elevated expression of MSI1 was also observed in 
solid tumors such as malignant glioma, esophageal squamous cell carcinoma and 
gastric cancer.7–9 MSI2, mainly expressed in the hematopoietic system, is an 
important regulator of hematopoietic stem cells (HSCs) as well as hematopoietic 
malignancies.10–13 In 2003, the MSI2 gene was found to be rearranged to form a 
fusion gene with HOXA9 in chronic myeloid leukemia (CML), first indicating its 
potential link to cancer.14 Later, MSI2 was identified as a crucial regulator during 
the sperm and embryo formation.15–17 Recently, numerous studies strongly suggest 
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that MSI2 promotes tumor proliferation,18 migration, 
invasion,12,19,20 autophagy,21 and acts as an important 
regulator of EMT in cancer.22

In this review, we will provide an overview of MSI2 
protein, MSI2-dependent regulatory mechanisms, and clin
ical relevance, especially its role in human cancer and 
EMT. We aim to understand the role and functional 
mechanisms of MSI2 during the tumorigenesis and disease 
progression, which may provide new insights into the 
development of targeted treatment strategies.

Musashi-2 Protein Structure and Its 
Post-Transcriptional Regulation 
Mechanism
The MSI2 gene, physically located on chromosome 
17q22,10 produces four mRNA transcripts, resulting in 4 
corresponding protein isoforms (MSI2a, MSI2b, MSI2c, 
MSI2d).23 All of these four isoforms contain two con
served N-terminal RNA-recognition motifs (RRM1 and 
RRM2) but differ in the N-terminal or C-terminal amino 
acids. Biochemical and structural studies showed that the 
RRM1 contributes to the majority of the binding energy 
and specificity, while RRM2 has a more supportive role.3 

MSI2 usually binds to 3ʹ-end of target RNAs by preferen
tially interacting with an ACCUUUUUAGAA motif or 
poly-U sequences,24 UAG motifs,25 and UAG-containing 
motifs +/‒ additional flanking nucleotides,26 which allows 
it to both induce and repress protein translation.

However, MSI2 protein itself has no enzymatic activity 
or inhibitory activity. It has been suggested that additional 
translation co-factors are required for MSI2 to modulate 
translation following binding to the mRNA,27 but the 
molecular mechanism underlying MSI2-dependent transla
tional control and the identity of these co-factors are still 
not well understood. In the C-terminal half of Musashi1, a 
poly(A)-binding protein (PABP)-interaction domain is 
found adjacent to RRM2, which allows the co-factors to 
induce or repress protein translation. This PABP interac
tion domain disrupts the ability of PABP to interact with 
the eukaryotic translation initiation factor 4 gamma 
(eIF4G), and inhibits the initiation of translation of MSI1 
targets.28 In contrast, PABPC1 and ePABP, members of the 
poly(A)-binding protein family, were found to preferen
tially interact with MSI1 to promote transcription 
initiation.29 However, PABPs interact with MSI2 to a 
lesser extent, mainly due to specific sequence divergence 
within the C-terminal 190–240 interaction domain.29 In 

addition, poly-A polymerase Germline Development 2 
(GLD2) can interact with the C-terminal domain of 
MSI1 but not mammalian MSI2, to increase polyadenyla
tion, mRNA stabilization, and higher protein expression in 
GLD2-rich oocytes.27 Considering that MSI1 has only one 
isoform, it is relatively complicated to study the additional 
domains of MSI2 with four isoforms. According to NCBI 
database (https://www.ncbi.nlm.nih.gov/Structure/cdd/ 
wrpsb.cgi), All MSI2 isoforms, like MSI1, may also har
bor a PABP interaction domain. This indicates that MSI2 
protein rely on RRMs to recognize the 3ʹ-UTR of the 
target mRNA and might depend on PABP domain to 
influence translation initiation. The isoforms of MSI2 and 
its interaction with mRNA/PABP are shown in Figure 1.

In addition, the effect of MSI2 in regulating specific 
mRNA translation differs depending on MSI2 protein iso
forms, phosphorylation status, and cellular context.23,30–33 

For example, Li et al demonstrated that overexpression of 
MSI2a in TNBC cells inhibits EMT, while MSI2b shows 
no significant effect in TNBC progression.23 Similarly, 
ectopic expression of MSI2a, but not MSI2b, enhances 
the self-renewal capacity of embryonic stem cells 
(ESCs).30 MacNicol et al demonstrated that the canonical 
MSI2a is subject to site-specific phosphorylation at 
C-terminus, converting MSI2 from a translational repres
sor to an activator, while the truncated isoform of human 
MSI2b that lacks regulatory phosphorylation sites fails to 
promote translation of target mRNAs.31 These studies 
strongly suggest that MSI2a may have more important 
functions than the truncated MSI2b. Other research in 
myeloid leukemia demonstrated that MSI2 binds Numb 
mRNAs and inhibits Numb translation;32 however, Numb 
protein level remained unchanged after the depletion of 
MSI2 in HSCs.33 In general, all the evidence suggests that 
the regulation of target mRNA by MSI2 depends on dif
ferent MSI2 isoforms, phosphorylation status, and cellular 
context, with mechanisms still to be exactly defined.

Regulation of Musashi-2
The signaling pathways that regulate MSI2 expression are 
currently less known. A list of factors involved in MSI2 
expression and function are shown in Table 1, including 
transcription factors or inhibitors, non-coding RNAs, ubi
quitin proteins, and small molecule compounds targeting 
MSI2.

As some examples, MSI2 expression is upregulated by 
RANKL, which is a receptor activator of NF-kB ligand, during 
osteoclast differentiation.34 Chromatin immunoprecipitation 
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(ChIP) and luciferase reporter assays showed that ETV4 
directly binds to the promoter of MSI2 and promotes its 
transcription in lung adenocarcinoma,35 while KLF4 represses 
MSI2 transcription by directly binding to its promoter in 
pancreatic cancer cells.36 In breast cancer, DBC2 directly 

interacts with MSI2, to promote MSI2 polyubiquitination, 
suppress MSI2-associated oncogenic functions, and induce 
apoptosis.37 HMGA2 directly activates the MSI2 promoter in 
NF1-associated malignant peripheral nerve sheath tumors 
(MPNSTs).21 In colon cancer, USP10 positively regulates the 
expression of MSI2 by de-ubiquitination.38 In hematopoietic 
stem cells, ChIP-seq analyses confirmed a preferential co- 
occupancy of PLAG1 and USF2 at the promoter of MSI2 
that promotes MSI2 transcription.39

Post-transcriptional regulation of MSI2 is mediated 
mainly by non-coding RNAs and other RBPs. For exam
ple, miR-203 directly targets the 3ʹ-UTR of MSI2 mRNA, 
and co-suppression of individual targets, including MSI2, 
p63 and Skp2, is required for its function of promoting the 
cell cycle exit and inhibiting the long-term proliferation.40 

Long non-coding RNA DANCR upregulates the expres
sion of MSI2 through neutralizing miR-149.22 miR-143/ 
miR-107 are two p53-targeted tumor suppressive miRNAs 
that directly bind to MSI2 mRNA and inhibit its expres
sion in cervical cancer cells.41 Similarly, in papillary thyr
oid carcinoma, upregulation of miR-143-3p suppresses 
tumor progression by directly down-regulating MSI2.42 

Highly expressed miR-145 inhibits invasiveness and pro
liferation of endometriosis stem cells partially via targeting 
MSI2.43 Intriguingly, in mouse spermatogonia cells, MSI2 
mRNA appears to be directly targeted by MSI1, leading to 
downregulation of MSI2 expression.44

Small molecule inhibitors are molecule compounds 
that interact with proteins and reduce the biological activ
ity of the target proteins. Recently, some small molecule 
inhibitors for MSI1 and MSI2 have been discovered, 

Figure 1 Schematic diagram of MSI2 isoforms, molecular domains and interactions. The N-terminal and C-terminal of MSI2b are different from those of MSI2a. The RRM1 
motif of MSI2c is close to the N-terminal, and the C-terminal is 18 aa more than that of MSI2a. MSI2d harbors the same N-terminal as MSI2a and the same C-terminal as 
MSI2b. All isoforms harbor RRM1 and RRM2 domains, which recognize 3ʹ-UTR of target mRNAs, as well as a PABP interaction domain that may regulate translation 
initiation through binding to PABP. The arrows represent interactions.  
Abbreviations: aa, amino acids; CDS, coding regions; Poly A, polyadenylate; UTR, untranslated region.

Table 1 Factors Influence MSI2 Expression or MSI2 Function

Gene/Molecule Change 
of MSI2

Cell Type References

RANKL ↑ Osteoclast [34]

ETV4 ↑ Lung adenocarcinoma [35]

KLF4 ↓ Pancreatic cancer [36]

DBC2 ↓ Breast cancer [37]

HMGA2 ↑ MPNSTs [21]

USP10 ↑ Colon cancer [38]

PLAG1, USF2 ↑ HSCs [39]

miR-203 ↓ Epidermal cells [40]

miR-149 ↓ Bladder cancer [22]

miR-143/miR-107 ↓ Cervical cancer [41]

miR-143-3p ↓ Thyroid carcinoma [42]

miR-145 ↓ Endometriosis stem cells [43]

MSI1 ↓ Spermatogonia cells [44]

Ro 08–2750 ↓ AML [46]

Gossypolone ↓ Colon cancer [47]

Largazole ↓ NSCLC, CML [48]

Note: “↓” represents factors that inhibit MSI2 expression/function, and “↑” repre
sents the opposite.
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which may provide a novel therapeutic strategy.45 In acute 
myeloid leukemia, a small molecule Ro 08–2750 directly 
interacts with the MSI2 RRM1 and competes for its RNA 
binding in biochemical assays.46 Gossypolone can disrupt 
the binding of MSI2 to Numb RNA mainly by acting on 
RRM1, thereby inducing apoptosis in colon cancer cells.47 

The small compound largazole was shown to reduce the 
protein and mRNA levels of MSI2 and suppress its down
stream mammalian target of rapamycin signaling 
pathway.48 In short, these studies position MSI2 as an 
available and valuable therapeutic target, providing a 
basis for future drug research. However, currently discov
ered small molecule inhibitors of MSI2 mainly act on 
RRMs, especially RRM1. However, the small molecule 
inhibitors of MSI2 currently found mainly act on RRMs, 
especially RRM1. In order to further detect the specificity 
of the inhibitors, it would have special significance to test 
MSI2 closely related RBPs containing RRMs with similar 
sequence, which may greatly reduce the occurrence of 
adverse reactions.

The Clinical Significance of Musashi- 
2 Expression in Malignancies
A critical role for MSI2 over-expression in regulation of 
malignant tumor progression was first demonstrated in 
2010. In this study, Ito and colleagues used mouse models 
of CML to demonstrate that the upregulation of MSI2 and 
the downregulation of Numb inhibit the differentiation and 
promote the progression of chronic CML to blast crisis.32 

Over the past 10 years, MSI2 has been found to be over- 
expressed in a variety of tumors, including acute lympho
blastic leukemia (ALL),49 acute myeloid leukemia 
(AML),50,51 breast,37 pancreas,19 colon,52 liver53,54 lung,55 

ovary,56 cervical,41,57 bladder,58 gastric cancer,59 brain 
cancer,60 and others. The elevated expression of MSI2 in 
tumor tissues is often positively associated to tumor size, 
lymph node metastasis, distant metastasis, degree of dif
ferentiation, insensitivity to chemoradiotherapy, and poor 
prognosis. However, some studies have obtained different 
results. In gastric cancer, Emadi-Baygi et al suggested that 
MSI2 expression is related with tumor grade, and there is 
no difference between tumoral and non-tumoral tissues.61 

MSI2a is significantly downregulated in TNBC tumors, 
which is associated with a higher histological grade and 
poor prognosis.23 Table 2 lists the clinical significance of 
MSI2 expression that has been reported.

Considering the differential expression of MSI2 in 
cancer tissues and adjacent tissues, it is necessary to con
duct a more systematic analysis of the regulation of MSI2 
expression. This will greatly help to better understand how 
MSI2 is abnormallyactivated in cancer.

Musashi-2 in Cancer EMT
It has been well documented that EMT is a complex and 
dynamic process by which epithelial cells acquire a 
mesenchymal phenotype.62 Specifically, epithelial cells 
undergo remarkable morphologic conversion to the elon
gated fibroblastic phenotype from a cobblestone 
phenotype.62 During the EMT process, epithelial cells 
lose their cell-cell junction and initiate actin cytoskeleton 
reorganization. Moreover, cells lose the expression of 
epithelial markers such as E-cadherin, ZO-1, Claudins, 
while cells gain the expression of mesenchymal markers 
including N-cadherin, Vimentin, fibronectin, α-SMA (α- 
smooth muscle actin), Twist, Snail/Snail1, Slug/Snail2, 
ZEB1, and ZEB2.63,64 At the same time, cells have 
increased activity of matrix metalloproteinases (MMPs) 
such as MMP-2, MMP-3, and MMP-9.64 After the acqui
sition of EMT features, cells have increased motility and 
invasiveness, which promotes tumor progression and 
metastasis.63

Currently, various studies have shown that MSI2 is 
associated with increased expression of EMT makers. 
For example, MSI2 promotes extrahepatic cholangiocarci
noma (eCCA) EMT by down-regulating E-cadherin and 
up-regulating N-cadherin and vimentin expression. 
Similarly, in bladder cancer, decreased MSI2 protein 
caused by knocking down DANCR enhances E-cadherin 
expression and reduces N-cadherin and vimentin expres
sion, promoting cell migration, invasion, and EMT of 
bladder cancer cells.22 The expression level of MSI2 is 
positively related to the expression level of vimentin, 
a-SMA, and N-cadherin, and negatively correlated with 
ZO-1 and E-cadherin in HCC.54 In papillary thyroid car
cinoma, the silencing of MSI2 exhibited significantly 
decreased expression of MMP-2 and MMP-9.42 We 
recently identified MSI2 accelerates the migration and 
invasion of pancreatic cancer cells through ISYNA1/ 
ZEB-1 pathway.65

The TGF-β, EGF, Notch, and Wnt signaling are key 
transduction pathways that are involved in EMT. Later in 
this review, we will discuss the crosstalk between MSI2 
and these EMT-related signal pathways. The regulatory 
network is shown in Figure 2. In particular, we hope to 
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provide a perspective on the underlying mechanism of 
MSI2-mediated EMT and provide insights into the inter
vention of EMT.

Crosstalk Between Musashi-2 and EGF 
Signaling Pathway
The EGFR family includes 4 different receptors: EGFR/ 
ErbB-1, HER2/ErbB-2, HER3/ErbB-3, and HER4/ErbB- 
4.66,67 A number of different ligands, including EGF-like 
molecules, transforming growth factor-alpha (TGF-α), and 
neuregulin, activate the receptors by binding to the extra
cellular domain, which induces the formation of receptor 

homodimers or heterodimers.67 After dimerization, autop
hosphorylation of tyrosine residues in the cytoplasmic 
region occurs, which provides docking sites for signal 
transducers, such as Ras, to bind, and therefore, initiating 
intracellular signaling cascades and gene transcription.66,67 

Downstream signaling transduction cascades of EGFR can 
be roughly divided into the following types: MAPK/ERK, 
PI3K/Akt/mTOR/NF-κB, protein kinase C (PKC), and 
JAK/STAT pathways.68 These well-studied signaling cas
cades are known to control gene expression and cancer- 
promoting phenotypes including EMT. ERK phosphoryla
tion inhibits the degradation of pro-mesenchymal 

Table 2 Association of Elevated MSI2 Expression with Clinical Features in Cancers

MSI2 Status Cancer Type Detection Method Association

Increased expression ALL49 qRT-PCR Poor prognosis

AML50,51 qRT-PCR Poor prognosis

Breast cancer37 Tissue microarray Poor prognosis

Pancreatic cancer19,36
qRT-PCR,19  

IHC,19,36  

WB19,36

Advanced stages,19,36  

Tumor size,19  

Poor prognosis,19  

Differentiation,36  

Lymph node metastasis36

Colorectal cancer52 Tissue microarray,  
IHC

Depth of invasion,  
Lymph node metastasis,  

Distant metastasis,  

Advanced stage

Liver cancer53,54 qRT-PCR,53 WB,53  

IHC54

Chemoresistance,53  

Poor prognosis54

Lung cancer55 IHC Poor prognosis

Ovarian cancer56 Tissue microarray, IHC Advanced stages

Cervical cancer41,57 qRT-PCR,41,57 WB57

Lymph node 

metastasis,57  

Advanced stages,57  

Poor prognosis41,57

Bladder cancer58 qRT-PCR, WB
Lymph node metastasis,  

Poor prognosis

Gastric cancer59 IHC

Invasion depth,  

Lymph node metastasis,  
Degree of differentiation,  

Tumor size

Glioblastoma60 IHC, WB Malignancy

Reduced expression

TNBC
23

IHC,  

qRT-PCR,  

RNA sequencing

Differentiation,  

Distant metastasis,  

Poor prognosis
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transcription factors such as ZEB, Snail, Slug, and Twist.69 

Several E-cadherin repressors such as Snail, Slug, Twist, 
Sip1, ZEB1, and ZEB2 are controlled by the NF-κB 
pathways.70,71 STAT3 is activated and binds to the promo
ter of the gene encoding Twist upon EGF stimulation.72

Through PAR-CLIP and RNA-Seq analysis, several 
pathways have been shown to be significantly affected 
by MSI2 knockdown, including eIF2, eIF4/p70S6K, and 
EGF and HGF growth factor pathways.73 The KRAS gene 
is known as one of the most common mutated genes in 

human tumors and encodes a vital component of the 
MAPK/ERK pathway; In 1994, Shirayama et al identified 
MSI2 as a suppressor of the heat shock sensitivity caused 
by the loss of the IRA1 product, a negative regulator of the 
RAS protein, suggesting that the MSI2 protein may inter
fere with the activity of the RAS protein. A recent study 
has shown that MSI2 positively regulates KRAS expres
sion in bladder cancer cells by directly binding to the 
KRAS mRNA and promoting its translation.74 In our pre
vious study, the silencing of MSI2 inhibited EGF-mediated 

Figure 2 MSI2 and EMT signaling networks. MSI2 affects the expression of EMT transcription factors (Twist1, Snail, Slug and ZEB1) and key proteins (epithelial and 
mesenchymal genes) through EGF, TGF-β, Notch, and Wnt pathways. Green arrow, positive regulation, and red, negative regulation. Solid arrow, direct regulation, and 
dashed arrow, indirect regulation.
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EGFR phosphorylation at tyrosine 1068 and reversed 
EGF-induced expression of the key proteins in EMT 
(ZEB1, E-cadherin, ZO-1, β-catenin, and c-Myc) through 
the MAPK/ERK pathway.75 More importantly, MSI2 not 
only functions an RNA-binding protein, but also binds to 
ZEB1, c-Myc and p-ERK, which provides an additional 
mechanism of EMT in pancreatic cancer.75

In another study, knockout of MSI2 reduces phosphor
ylation of ERK and S6 in LSCs, indicating that MSI2 
interacts with MAPK and mTOR signaling pathways. 
However, in bladder cancer, overexpression of MSI2 pro
motes migration and invasion by positively regulating the 
phosphorylation of JAK2 and STAT3.58 In ovarian cancer, 
miR-149-induced MSI2 silencing led to increased 
E-cadherin expression but decreased expression of 
p-PI3K, p-AKT, vimentin, and N-cadherin.76 Over-expres
sion of MSI2 induces a phenotype of intestinal epithelial 
transformation similar to the activation of WNT pathway; 
however, this phenotype is mediated by inhibiting PTEN 
translation and promoting AKT/mTORC1 signaling, inde
pendent of WNT activation.24 One study also demon
strated that MSI2 promotes proliferation, migration, and 
invasion, and inhibits apoptosis by accelerating AKT and 
STAT3 phosphorylation in bladder cancer.77

However, under the stimulation of IL-6, MSI2 inhibits 
the phosphorylation of STAT3 and ERK proteins by 
directly binding and degrading the mRNA of IL6ST, 
which in turn affects JAK/STAT and MAPK signaling 
pathways.73 Similarly, a study in triple-negative breast 
cancer demonstrated that the MSI2a isoform is able to 
downregulate the expression of p-ERK1/2 and Slug, 
N-cadherin, and vimentin, but up-regulate ZO-1, β-cate
nin, and E-cadherin by combining and stabilizing 
TP53INP1 mRNA.23 Such discrepancies might be attrib
uted to the different cellular environment.

Crosstalk Between Musashi-2 and TGF-β 
Signaling Pathway
In human cells, TGF-β-induced activation of the receptor 
complex (two copies of TGF-βR1, two copies of TGF-βR2) 
leads to phosphorylation and activation of SMAD2 and 
SMAD3. Phosphorylated SMAD2 and SMAD3 then form 
trimers with SMAD4, and translocate into the nucleus, where 
they associate and cooperate with DNA binding transcription 
factors to activate or repress target gene transcription.78 In 
the canonical TGF-β signaling pathway, TGF-β-induced 
SMAD complexes activate the transcription of the Snail, 

Slug, ZEB1, Twist, and HMGA2.79 HMGA2, as a group of 
transcription factors, induces the expression of Snail, Slug, 
and Twist1.80 Other than the canonical SMAD-dependent 
pathway, TGF-β receptors also relay the signaling by some 
additional signal transduction pathways, such as PI3K/AKT, 
ERK1/2, and JNK/P38, which also contribute in various 
ways to the EMT process.81,82 Phosphorylated P38 coop
erates with Smad3/4 in TGF-β associated EMT through the 
transcription factor ATF2.83

In canonical SMAD-dependent TGF-β signaling path
way, downregulation of MSI2 significantly inhibits the 
expression of TGF-βR1, pSMAD3, Snail, Slug, and 
vimentin protein, but increased E-cadherin protein expres
sion; interestingly, TGF-β also increases MSI2 protein 
expression, which suggests a positive feedback loop of 
MSI2-TGF-β/TGF-βR1/SMAD3 signaling.60 In non- 
small cell lung cancer, MSI2 depletion not only down
regulates pro-EMT factors vimentin, Snail, Slug, and 
anti-EMT factors E-cadherin, but also up-regulates partial 
pro-EMT factors ZEB1, ZEB2, and FOXC2 through sup
porting TGF-βR1/SMAD3 expression, reflecting a mixed 
effect on EMT.55 It has also been demonstrated that loss of 
MSI2 can increase claudin-3/claudin-5/claudin-7 expres
sion independently of the TGF-βR1/SMAD3 pathway.55 

Similarly, in the hematopoietic system, MSI2 was identi
fied as a stem cell regulator, by directly regulating the 
expression of SMAD3.33 In addition, analysis of 3ʹUTRs 
binding-sites and RIP-PCR identified BRD4, c-MET, and 
HMGA2 as direct targets of MSI2 in pancreatic cancer,84 

suggesting its role in regulating EMT.
MSI2 silencing enhances the chemical sensitivity of 

acute lymphoblastic leukemia cells to daunorubicin, 
induces cell cycle arrest by downregulating CyclinD1 
and upregulating p21 in the G0/G1 phase, and induces 
apoptosis by upregulating Bax expression and inhibiting 
p-AKT, p-ERK1/2, p-p38, and Bcl-2 expression.85 The 
same result is also seen in breast cancer.37 In addition, 
MSI2 knockdown inhibits proliferation and promotes 
apoptosis by deducting the phosphorylation of ERK and 
p38, and the expression of downstream targets, c-Myc, 
c-Fos, and MAPKAPK2, independent of changes in 
p-AKT expression.86

Crosstalk Between Musashi-2 and Notch 
Signaling Pathway
The activation of the Notch signaling pathway is initiated 
after the interaction of Notch ligands and its receptor, 
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presented on the surface of neighboring cells. So far, four 
receptors (Notch1-4) and two families of ligands (Delta- 
like and Jagged) have been identified.87 Subsequently, 
Notch is cleaved and released to the Notch intracellular 
domain (NICD) through two proteolytic cleavage events 
by tumor necrosis factor-α-converting enzyme (TACE) 
and γ-secretase complex.87 NICD translocates to the 
nucleus and binds to CSL (C protein binding factor 1/ 
Suppressor of Hairless/Lag-1). The formation of a com
plex of NICD and CSL converts CSL from a transcrip
tional repressor to a transcriptional activator, leading to 
expression of target genes (Hey1, Hes1, etc.).88 Currently, 
Notch is considered to activate EMT through transcrip
tional upregulation of several EMT-associated TFs, such 
as Snail and Slug.89,90

Bennett et al demonstrated Dll1, Jagged-1 and Notch2 as 
the high-confidence MSI2 targets through high-throughput 
studies of MSI2-binding targets.26 Troschel et al demon
strated that knockdown of MSI1 and MSI2 suppresses the 
Notch pathway and EGFR protein expression in triple-nega
tive breast cancer.91 LFNG is known to be a Notch1 receptor 
glycosyltransferase that regulates the expression of Notch1 
receptor. Recently, MSI2 was identified as a molecule that 
maintains the stemness properties of CD44v6+ LCSCs 
through directly bounding to Lunatic fringe (LFNG) 
mRNA and protein, which in turn activates the Notch1 
signaling pathway.92 In osteoclast, MSI2 is required for the 
optimal differentiation and survival by activating Notch2 and 
Hes1, which leads to the activation of NF-κB signaling.34 In 
contrast, MSI1/2 inhibits EMT in vitro by repressing the 
translation of Jagged-1 ligand and the notch signaling.93

Numb, which negatively regulates Notch pathway by 
ubiquitylation and degradation of NICD, can antagonize 
Notch-mediated EMT in cancers.94 The inhibitory effect of 
MSI2 on Numb protein expression and activity has been 
widely confirmed (citations?). MSI2 can unlock the differ
entiation potential of blast crisis CML and impair its 
growth by binding Numb mRNAs in 3ʹ-UTR.32 

Similarly, knockdown of MSI2 reduces the growth of 
glioblastoma cells and medulloblastoma cells by upregu
lating Numb.18 Subsequently, inhibition of the MSI2/ 
Numb/c-Myc signaling pathway is also demonstrated to 
induce apoptosis and arrest cell cycle at the G0/G1 phase 
in B-cell lymphoma (BCL) cells.95

In addition, the alternate estrogen receptor has been 
shown to induce EMT through activation of the Notch 
pathway.96 High MSI2 expression accelerates the growth 
of cells by binding estrogen receptor 1 (ESR1) mRNA and 
increasing the stability of ESR1 protein in breast cancer.97 

Thus, MSI2/ESR may be a novel mechanism by which 
MSI2 regulates Notch signaling and promotes the occur
rence of EMT in breast cancer.

Crosstalk Between Musashi-2 and Wnt 
Signaling Pathway
The canonical WNT signaling pathway is initiated by 
soluble Wnt ligands that bind to the Frizzled receptors, 
and subsequently, trigger a series of signaling events that 
culminate in the nuclear translocation of β-catenin.98 In the 
nucleus, β-Catenin directly binds to other transcription 
factors associated with the promoters of Slug, ZEB1, and 
Twist and induces their expression.99,100

Table 3 Summary of EMT-Associated Genes Directly Targeted by MSI2

Target Gene Target Change Cancer Type Effect of MSI2 in EMT-Related Signals Reference

KRAS ↑ Bladder cancer Activation of MAPK/ERK signal [74]

PTEN ↓ Colorectal cancer Activation of PI3K/AKT/mTOR signal [24]

TGF-βR1 ↑ NSCLC Activation of PI3K/AKT, ERK1/2 and JNK/P38 signals [55]

SMAD3 ↑ NSCLC, HSCs Transcriptional activation of Snail, Slug, ZEB1, Twist and HMGA2 [33,55]

HMGA2 ↑ Pancreatic cancer Transcriptional activation of Snail, Slug and Twist1 [84]

Jagged-1 ↓ Epithelial-luminal cell Down-regulation of Notch signal [93]

Numb ↓ CML Up-regulation of Notch signal [32]

IL6ST ↓ Embryonic kidney cells Suppression of JAK/STAT signal [73]

TP53INP1 ↑ TNBC Activates P53 to suppress MAPK/ERK signal [23]

Notes: “↓” means the target gene is down-regulated by MSI2, and “↑” means up-regulation under the action of MSI2.
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In AML, one study strongly demonstrated that MSI2 
knockdown significantly decreases expression of the down
stream genes of Wnt, Ras-MAPK, and Myc pathways.11 

MSI2 knockdown repressed β-catenin and LEF-1/TCF-4 
protein and mRNA levels, inhibited tumor cell migration 
and invasion in HCC.101 MSI2 knockdown suppresses pro- 
EMT factors MMP-2, MMP-9, N-cadherin, and c-Myc, and 
increases anti-EMT E-cadherin expression through up-regu
lating β-catenin, Gli-1 and Patch, which suggested that the 
Wnt/β-catenin and Hedgehog signaling pathways are 
involved in the regulation of EMT and metastasis in esopha
geal squamous cell carcinoma.102 A list of EMT-related 
genes targeted by MSI2 is summarized in Table 3.

Conclusions
Mesenchymal-to-epithelial transition (MET) is the reverse 
process of EMT. The mutual transformation of tumor cells 
between an epithelial phenotype and a mesenchymal phe
notype illustrates the plastic nature of this transition. The 
process of EMT is regulated by multiple signaling in 
cancer, including but not limited to EGF, TGF-β, Notch, 
and the Wnt pathway. Numerous crosstalk sites exist 
between MSI2 and these signal transduction pathways, 
which increase our knowledge of the regulatory mechan
isms underlying EMT. Moreover, all these findings further 
highlight the importance of post-transcriptional control in 
EMT. However, the mechanisms by which MSI2 regulates 
the Wnt/β-catenin, JAK/STAT, and MAPK/p38 pathways 
remain to be fully understood, and further experiments are 
needed to explore. Additionally, different MSI2 isoforms, 
especially classical isoform a may play significant regula
tory roles in cancer, which may become a research hotspot. 
Given the expression characteristics of MSI2 in malignant 
tumors, MSI2-targeted therapy may become a new strat
egy to reverse EMT-related cancer progression. Recently, 
small molecule inhibitors of MSI2 have been shown to be 
effective in vivo and in vitro. However, attempts to 
develop MSI2 inhibitors are still in the early stages. In 
the future, the research and development of MSI2-specific 
inhibitors, and even MSI2 isoform-specific inhibitors, will 
contribute to the precise treatment of tumors. It is believed 
that MSI2-targeted drugs will be available in the clinic in 
the near future.
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