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Purpose: We aimed to quantitatively investigate how the neuroscience field developed over

time in terms of its concept on how pain is represented in the brain and compare the research

trends of pain with those of mental disorders through literature mining of accumulated

published articles.

Methods: The abstracts and publication years of 137,525 pain-related articles were retrieved

from the PubMed database. We defined 22 pain-related brain regions that appeared more than

100 times in the retrieved abstracts. Time-evolving networks of pain-related brain regions

were constructed using the co-occurrence frequency. The state-space model was implemen-

ted to capture the trend patterns of the pain-related brain regions and the patterns were

compared with those of mental disorders.

Results: The number of pain-related abstracts including brain areas steadily increased; however,

the relative frequency of each brain region showed different patterns. According to the chron-

ological patterns of relative frequencies, pain-related brain regions were clustered into three

groups: rising, falling, and consistent. The network of pain-related brain regions extended over

time from localized regions (mainly including brain stem and diencephalon) to wider cortical/

subcortical regions. In the state-space model, the relative frequency trajectory of pain-related

brain regions gradually became closer to that of mental disorder-related brain regions.

Conclusion: Temporal changes of pain-related brain regions in the abstracts indicate that

emotional/cognitive aspects of pain have been gradually emphasized. The networks of pain-

related brain regions imply perspective changes on pain from the simple percept to the

multidimensional experience. Based on the notable occurrence patterns of the cerebellum and

motor cortex, we suggest that motor-related areas will be actively explored in pain studies.

Keywords: pain, pain-related brain regions, pain-related brain networks, pain research trend

analysis, literature mining, text mining, mental disorders and pain

Introduction
Over the decades, enormous basic and clinical study efforts have led to many

advances in the understanding of pain mechanism, and researchers have expanded

their knowledge on the complex and multidimensional characteristics of pain.1–3 In

the early investigation of the brain mechanism of pain, efforts have been made to

find a single brain area responsible for pain perception, as in the other sensory

modality of vision or hearing. However, it turned out that pain is multidimensional

experience emerging from the integrated activity of the brain and there is no single

region such as “primary pain cortex”.

Numerous neuroimaging studies have demonstrated that multiple brain regions

are involved in various pain conditions. While several brain regions such as the
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thalamus, insula, and ACC have been consistently reported

to be activated during acute nociception regardless of the

type of noxious stimuli, brain activity patterns for chronic

pain are rather heterogeneous within and across different

chronic pain conditions. However, studies from both acute

and chronic pain have highlighted the emotional and cog-

nitive aspects in pain perception regardless of the pain

types.4–10 Furthermore, accumulated evidence has indi-

cated interactions between mental disorders and acute/

chronic pain.11–15 Recently, a new perspective was sug-

gested which states that pain perception is associated with

the negative moods (eg, anxiety and depression) as a

continuum of aversive behavioral learning.16

There are hundreds of thousands of accumulated articles

about pain so far. Many researchers have reviewed the activity

of diverse brain regions involved in various pain conditions to

understand the brain mechanisms of pain perception.

However, it is practically limited for the researchers to manu-

ally investigate a vast number of papers and draw quantitative

results efficiently. It also might be possible to obtain biased

results according to the researcher’s background knowledge or

research interests. Recently, the literature mining approach has

been actively applied in various biomedical fields to efficiently

extract scientific knowledge from the accumulated data.17–25

Literature mining converts unstructured textual information

into structured data to extract meaningful numeric information

and find patterns.26,27 The advantage of literature mining is

that it can quickly analyze vast quantities of documents and

mine the latent knowledge such as the implicit relationships

between the words by computing quantitative metrics, eg, the

frequency of occurrence and co-occurrence between words.

In this study, we aimed to quantitatively investigate how

the neuroscience field developed over time in terms of its

concept on how pain is represented in the brain and compare

the research trends of pain with those of mental disorders

through literature mining of accumulated published articles.

First, the bibliographic information of 137,525 pain-relevant

abstracts was retrieved from PubMed and then preprocessed.

The brain regions were automatically recognized from the

abstracts. Subsequently, we performed frequency and co-

occurrence analyses to identify the temporal pattern of the

occurrences of pain-related brain regions. Relative frequency

patterns of pain-related brain regions were compared with

those of mental disorders-related brain regions. Evolving

occurrence patterns of the pain-related brain regions were

investigated through the network analyses and the state-

space model (Figure 1). Furthermore, future trends in the

pain study were suggested based on the evolving patterns of

the pain-related brain network.

Materials And Methods
Datasets
Bibliographic Information Retrieval

We downloaded the abstracts and publication year information

of articles from PubMed (https://www.ncbi.nlm.nih.gov/

pubmed/) using custom Python scripts and the Biopython

Entrez module (http://biopython.org/DIST/docs/api/Bio.

Entrez-module.html). “Pain[majr]” was used as the query to

search articles whose MeSH Major Topics were classified as

pain in PubMed. Only the abstracts published until 2015 were

retrieved because the MeSH Major Topics of the papers pub-

lished after 2016 were not fully classified in PubMed at the

time of analysis (on May 14th, 2018). We also retrieved

bibliographic information of the articles related to the repre-

sentative mental disorders: schizophrenia, depression, anxiety

disorders, bipolar disorder, and post-traumatic stress disorders.

Figure 1 Overview of construction and analysis of the evolving patterns of the pain-related brain network using literature mining.
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Compiling A Dictionary Of The Brain Regions

It is a challenge to recognize the nomenclature of brain

regions from the unstructured texts because they are non-

standardized. To compile a dictionary of the brain regions,

we downloaded the ontology of brain regions from the Brede

database (http://neuro.imm.dtu.dk/wiki/Brede_Database/

WOROI), which includes 586 macroscopic brain regions in

humans. To consider synonyms, we used the Neuroscience

Information Framework Standard Ontology (NIFSTD;

https://bioportal.bioontology.org/ontologies/NIFSTD).

Recognition Of The Brain Regions In The

Abstracts
We used Python’s regular expression module to preprocess the

abstracts and automatically recognize brain regions of the

compiled dictionary in the abstracts using a rule-based

approach. The rule was used to recognize the brain region

term with spaces before and after it in the abstract. With this

rule, the occurrences of brain regions were computed in each

abstract, and the occurrencematrixwas constructed (Figure 2).

First, the queries consisted of the preferred label (the primary

term of the brain region in NIFSTD) and its synonyms. The

binary occurrence matrix was constructed by recognizing all

queries from the whole retrieved abstracts. As shown in

Figure 2, each row represents the abstract; each column repre-

sents the brain region; and the element represents whether the

given queries appear in the given abstract (value 1) or not

(value 0).

Determination Of The Pain-Related Brain

Regions
To determine the pain-related brain regions, we computed the

occurrence frequencies of the regions by summing columns

in the occurrence matrix. We selected the brain regions that

appeared more than 100 times as pain-related brain regions.

Then, a curation process was followed to sort out duplicated

terms and remove the terms that are too broad (eg, brain,

cerebral cortex, and white matter) or non-localizable (eg,

cerebrospinal fluid).

Analysis Of The Relative Frequency Of

Pain-Related Brain Regions
To identify significant patterns of pain-related brain

regions in each year, we computed the relative frequencies

of the pain-related brain regions as occurrence frequency

divided by the number of abstracts including pain-related

brain regions in the corresponding year.

In order to cluster the brain regions according to the

changing patterns of the relative frequency over time, the

first derivatives of the relative frequency were calculated

for brain regions and clustered into three groups by apply-

ing K-means clustering.

Co-Occurrence Matrix Construction

And Network Analysis
In literature mining, words are considered correlated when

they are collocated in a corpus. To investigate the change

of region-to-region associations, we conducted co-occur-

rence analysis to quantify co-occurrences of the brain

regions in the abstracts.

First, the temporal patterns of co-occurrences between

brain groups were identified. Pain-related brain regions were

assigned to the following six groups: cortex region (CTX),

limbic area (Limbic), diencephalon (DIEN), basal ganglia

(BG), brain stem (BS), and cerebellum (Cb). The group co-

occurrence frequencies were calculated in every year of

Figure 2 Workflow of recognition of brain regions in the abstracts and construction of the occurrence matrix. Brain regions from the Brede database were listed. The query for

the recognition consisted of synonyms of each brain region. The occurrence matrix was constructed by recognizing all queries in the abstracts. Each row represents the abstract;

each column represents the brain region; and the element represents whether the given queries appear in the given abstract (value 1) or not (value 0).
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publication and were divided by the number of pairs consti-

tuting the group, thereby minimizing the bias due to the

different number of regions between the groups.

Considering that the total number of studies increases over

the years, we normalized the group co-occurrence frequen-

cies again to the total co-occurrence frequencies of each year.

We generated the annual co-occurrence matrices; their

rows and columns indicate the pain-related brain regions,

and each element contains the number of abstracts in

which a pair of brain regions co-occur. To investigate the

overall co-occurrence patterns of pain-related brain

regions, we grouped annual co-occurrence matrices into

the following four stages: stage 1 (before 1986), stage 2

(1986–1995), stage 3 (1996–2005), and stage 4 (2006–

2015). Then, the elements of four co-occurrence matrices

were divided by the total co-occurrence frequencies of the

corresponding stage to identify the relatively important

relationship of pain-related brain regions at each stage.

Subsequently, pain-related brain networks were con-

structed to investigate the topology of the interconnected

brain regions at each stage. Each network consisted of

nodes (pain-related brain regions) and edges between them

(co-occurrences). For the tractability of analysis, the edges

of the networks were binarized (1, connected; 0, not con-

nected) as follows. First, different co-occurrence thresholds

were chosen in different networks to set the same edge

density between networks. Second, we eliminated the

edges with co-occurrences of less than 5 to avoid detecting

spurious relationships. Networks were visualized and ana-

lyzed using Cytoscape 3.5.1(http://www.cytoscape.org/).28

Implementation Of The State-Space Model
To compare the occurrence patterns of the brain regions in pain

and mental disorders, the state-space model was implemented

by applying the principal component analysis (PCA), a linear

dimensionality reduction method. PCA finds a reduced set of

new variables through a linear combination of initial variables

while preserving the information as much as possible (ie,

maximizing the total variance of the original data).29 In other

words, these reduced set of variables called principal compo-

nents (PCs) represent the direction that covers a maximal

amount of variance in the high-dimensional space. The

obtained low-dimensional representation of the data is com-

posed of a much smaller set of variables and thus can be easily

visualized.

For the pain- or mental disorders-related brain regions

that appeared more than 100 times in the abstracts of each

topic, we assigned the regions into ten groups: PFC, frontal

cortex (Frontal), parietal cortex (Parietal), temporal cortex

(Temporal), Limbic, DIEN, BG, BS, Cb, and corpus callo-

sum (Corpus). A relative frequency matrix, consisting of 41

rows (year of publication) and 10 columns (brain region

groups), was obtained from each disorder. The data were

scaled into unit length vectors by dividing them by the

norm of each column to focus on the vector direction rather

than the magnitude. After concatenating the matrices, PCA

was applied to project data resided in ten-dimensional space

to three-dimensional space composed of PC1, PC2, and PC3.

These projected data form the low-dimensional representa-

tion of each disorder which effectively summarizes the ori-

ginal data while minimizing the loss of information. In our

study, these representations indicate the evolving trajectory

of the relative frequency of the pain- and mental disorder-

related brain regions so that we could intuitively capture the

trend of how the occurrence patterns of brain regions have

changed over time. We plotted the data points to the two- and

three-dimensional space after smoothing with the Gaussian

kernel (sigma = 2) to depict the trends effectively.

Furthermore, we investigated the PCA coefficients of each

brain region in given PCs to identify the contribution of each

region in the moving direction of the trajectory.

Results
Different Occurrence Patterns Of Brain

Regions Over Time
We identified the number of abstracts over time, along with

the trends of the occurrence of the brain regions. A total of

137,525 pain-related abstracts published until 2015 were

found in PubMed, and the number of abstracts substantially

increased over time (Figure 3A).We constructed a dictionary

of brain regions consisting of 586 brain regions from the

Brede database and their synonyms obtained from NIFSTD.

As shown in Figure 3B, the number of abstracts including

brain regions also grew over time. However, different pat-

terns were observed for the number of abstracts containing

each brain region. For example, the number of abstracts

containing PFC was few in the early years but increased

from 1995, and the number of abstracts containing midbrain

and striatum did not show steadily increasing patterns.

Identifying Clusters Of Pain-Related Brain

Regions According To The Changing

Patterns Over Time
We defined 22 pain-related brain regions as those

appeared more than 100 times in the retrieved abstracts
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(Table 1). To investigate the chronological changes in

the relative importance of pain-related brain regions, we

calculated the first derivatives of the relative frequency

for brain regions and clustered them into three groups

by applying K-means clustering. As shown in Figure 4,

the three clustered groups represent a pattern in which

the occurrence frequency is generally increased, rela-

tively consistent, or generally decreased with time. So,

we named each group as rising, consistent, and falling.

PFC, anterior insula, dorsolateral PFC (DLPFC), central

amygdaloid nucleus (CeA), hippocampus, motor cortex,

Cb, Insula, ACC, somatosensory cortex, and amygdala

were grouped into the rising cluster; midbrain, hypotha-

lamus, periaqueductal grey (PAG), BS, and thalamus

were grouped into the falling cluster; the rest were

grouped into the consistent cluster.

Change In Co-Occurrence Patterns

Between Pain-Related Brain Regions
We next attempted to figure out the changing pattern of the

inter-regional relationship through the co-occurrence analy-

sis because it has been demonstrated in recent years that pain

is an integrated activity between multiple brain regions.

Indeed, we found that the number of abstracts with more

than two brain regions increased over time, while the number

of abstracts with only one brain region decreased (Figure 5).

We quantified relative co-occurrence changes between

the groups of pain-related brain regions and found that

eight pairs of groups exhibited increasing or decreasing

patterns (Figure 6). Pain-related brain regions were assigned

to six groups as follows: (1) CTX group: PFC, DLPFC,

motor cortex, frontal lobe, and somatosensory area; (2)

Limbic group: ACC, insula, amygdala, hippocampus, CeA,

Figure 3 Changes in the number of pain-related abstracts over time. (A) The growth number of published pain-related abstracts retrieved from PubMed. (B) The total

number of increasing abstracts containing 586 brain regions from the compiled dictionary (black line); examples of different patterns of the number of abstracts containing

single brain region with different colors (green line, thalamus; blue line, midbrain; red line, PFC; gray line, Striatum).

Abbreviation: PFC, prefrontal cortex.

Table 1 Pain-Related Brain Regions And Their Occurrences In Pain-Related Abstracts

Pain-Related Brain Regions Occurrences Pain-Related Brain Regions Occurrences

Thalamus 849 Prefrontal cortex (PFC) 230

Brain stem 704 Midbrain 183

Anterior cingulate cortex (ACC) 673 Cerebellum 171

Periaqueductal grey (PAG) 611 Anterior insula 161

Somatosensory area 526 Locus coeruleus (LC) 152

Insula 493 Nucleus accumbens (Nac) 147

Medulla oblongata 475 Frontal lobe 128

Amygdala 381 Dorsolateral prefrontal cortex (DLPFC) 125

Motor cortex 358 Striatum 116

Hypothalamus 328 Central amygdaloid nucleus (CeA) 105

Hippocampus 298 Posterior insula 103
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anterior insula, and posterior insula; (3) DIEN group: thala-

mus and hypothalamus; 4) BG group: striatum and Nac; 5)

BS group: brain stem, PAG, medulla oblongata, midbrain,

and LC; 6) Cb group: cerebellum. Limbic and CTX tended to

increasingly co-occur with other groups (DIEN-Limbic,

Limbic-Limbic, DIEN-CTX, Limbic-CTX, and CTX-

CTX), while BS tended to co-occur less often with other

groups (BS-BS and DIEN-BS) over time. Notably, although

cerebellum showed low levels of relative frequency in

general, it showed increasing patterns both in relative fre-

quency and co-occurrence analysis (Figures 4 and 6).

Construction Of Time-Evolving Pain-

Related Brain Networks
To investigate the topology of interconnected pain-related

brain regions, we constructed the chronological weighted co-

occurrence matrices and binarized pain-related brain networks

over four stages (stage 1, before 1986; stage 2, 1986–1995;

Figure 4 The relative frequency changes of pain-related brain regions over time. (A) Relative frequency changes of 22 pain-related brain regions over time were

represented as a color matrix. Color bar (upper right) indicates the relative frequency values (the number of abstracts containing each brain region divided by the total

number of abstracts in each year). Note that brain regions were clustered by K-means clustering according to the pattern of changes in relative frequencies (grouped into 3

clusters: rising, falling, and consistent). (B) Relative frequencies of pain-related brain regions were plotted against time in years. Each number label of the line corresponds to

the label in the left matrix. A sliding window was used to smooth the values of matrix and graph (window size = 10).

Figure 5 The relative number of pain-related abstracts containing different numbers of pain-related brain regions. Scatterplots with regression lines show that more pain-related

brain regions co-occur in the abstracts with time. Each point with a different color represents the relative number of abstracts containing the indicated number of pain-related brain

regions in the year. The number of abstracts was normalized by the number of those containing at least one brain region for computing relative number of abstracts.
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stage 3, 1996–2005; and stage 4, 2006–2015) (Figure 7). The

binarized networks were constructed with an edge density of

0.09 for stages 2–4. In stage 1, the regions of BS group

(medulla oblongata, PAG, and brain stem) and DIEN group

(thalamus) co-occurred prevalently while other pain-related

brain regions neither frequently occurred nor formed edges

in the network. In stage 2, limbic areas such as the hippocam-

pus and amygdala showed not only a significantly increased

relative frequency but also an increased association with other

regions including the hypothalamus, striatum, and PAG.

Although the relative frequency was low, the somatosensory

area was connected with the thalamus. In stage 3, the network

became extensive as new connections between ACC, insula,

thalamus, PFC, and somatosensory area emerged. The regions

of the Limbic and CTX groups showed consistently high

relative frequencies and tended to appear frequently with

other brain regions in stages 3 and 4. The brain stem still

appeared at a high relative frequency, but the occurrences of

other areas in the BS group (medulla oblongata, PAG, mid-

brain, and LC) in stage 4 decreased compared with those in

other stages.

To evaluate important regions on the network topology,

we analyzed the degree (the number of edges) of nodes in the

networks. The subnetworks of hub regions (defined as the

nodes with degrees ≥ 3) and non-hub regions connected to

the hubs were represented for every stage (Figure 8). PAG

and thalamus had multiple edges in every stage. Midbrain,

and medulla oblongata frequently co-occurred with other

regions in stages 1 and 2, but not in stages 3 and 4. Co-

occurrences of the brain stem gradually decreased, and it was

eventually excluded from the hub regions in stage 4. On the

other hand, ACC, insula, PFC, amygdala, and the somato-

sensory area that belonged to the rising cluster were found as

the frequently co-occurred regions in stages 3 and 4.

Interestingly, we found that most of the regions of rising

cluster (somatosensory area, ACC, insula, amygdala, motor

cortex, hippocampus, and PFC) except for the motor cortex,

posterior insula, and DLPFC formed edges with other brain

regions in at least one subnetwork.

Hub nodes tended to form edges between themselves

but were occasionally connected by edges with non-hub

nodes. We attempted to seek potentially important regions

in the subnetwork by focusing on non-hub nodes in terms

of network topology. It was found that most non-hubs in a

certain stage appeared as hubs in other stages, implying

that the regions of the subnetworks are generally homo-

geneous. However, we found that the cerebellum that

belonged to subnetworks as non-hubs in stage 3 and 4

had never been a hub in all stages. This suggests a possi-

bility of the cerebellum as a potential hub in the future.

Comparison Of Changing Patterns Of

Brain Regions Between Pain And Mental

Disorders In The State-Space
We found that the importance of the brain areas concern-

ing the emotional and cognitive aspects of pain has

increased over time. The state-space model was then

Figure 6 Relative co-occurrence changes of pain-related brain region groups over time. Relative co-occurrence changes were plotted against published years. The sliding

window method was used to smooth the graph (window size = 10).

Abbreviations: CTX, cortex region; DIEN, diencephalon; Limbic, limbic area; BG, basal ganglia; BS, brain stem; Cb, Cerebellum.
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Figure 7 Chronological weighted co-occurrence matrices (left) and brain networks related to pain (right). Weighted networks were converted into binary networks by applying

thresholds for tractability of analyses (varying thresholds to set the edge density constant across networks: edge density = 0.09). In the visualized network (right), a node represents

the pain-related brain region, and an edge between two nodes represents co-occurrence in abstracts. The node size is proportional to the relative frequency.
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implemented for more accurate analysis to compare the

relative frequency patterns of brain regions in pain and

mental disorders. By visualizing the trajectory of pain-

related and mental disorder-related brain regions in the

low-dimensional space, we could intuitively capture the

occurrence patterns of the brain regions in pain and each

mental disorder.

Of the mental disorders considered (schizophrenia,

depression, anxiety disorders, bipolar disorder, and post-

traumatic stress disorders), only those with at least 10

regions that appeared more than a hundred times by

2015 were included in the analysis: schizophrenia, anxiety

disorder, and depression (Supplementary Table1). The ten-

dimensional matrix composed of 41 years (row) and 10

brain region groups (columns) was reduced to a three-

dimensional matrix (41 by 3) by applying PCA for pain

and mental disorders (See methods for detail). Reduced

data representing the changing patterns of the relative

frequency of brain regions in pain and mental disorders

were plotted in the 2- and 3-dimensional space composed

of PC1 and PC2, and PC1, PC2, and PC3, respectively

(Figure 9). The three components (PC1, PC2, and PC3)

explained 43%, 22%, and 9% variances in the dataset

respectively. The relative frequency trajectory of brain

Figure 8 Subnetwork of hub brain regions (degree ≥ 3) from the pain-related brain networks in each stage. Nodes with blue labels represent hub brain regions; nodes with

green labels represent non-hub brain regions. The node size is proportional to the degree, and the degree of the hub nodes is indicated in parentheses.

Figure 9 State-space model of brain regions related to pain and mental disorders (schizophrenia, anxiety disorders, and depression). A three-dimensional state-space model

was implemented by applying PCA (left). The first two principal components were visualized in the two-dimensional space (right). The PC values of each disease were

depicted as scatter plots of different colors. The gradient color changes represent the different publication years of the abstracts as described in the box. The scatter plots

were smoothed using the Gaussian kernel (sigma = 2).
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regions related to pain shifted closer to that of brain

regions related to mental disorders over time, suggesting

that brain regions emerging in the abstracts related to the

mental disorders and pain gradually became similar. The

trajectory of pain-related brain regions, in particular,

showed dramatic movement to a negative direction along

the PC1 axis over time, thus approaching to the trajectory

of mental disorder-related brain regions.

To interpret the movement of trajectory along the PC1

axis, we investigated the coefficients of PC1. Using PCA

coefficients, we could quantitatively investigate the influ-

ence of each brain region group on constructing the tra-

jectory (Table 2). For instance, BS and DIEN have large

positive coefficients for PC1, which means these areas

largely contribute to moving in a positive direction on

the PC1 axis. Therefore, the trajectory of pain-related

brain regions shifting to a negative direction in the PC1

axis implies that portions of BS and DIEN in the relative

frequency of pain-related brain regions have decreased. In

contrast, PFC, Limbic, and BG showed large negative

coefficients for PC1, implying their increasing portions to

the pain-related brain regions over time.

Discussion
In this study, we text-mined brain regions that were fre-

quently mentioned in 137,525 pain-related abstracts in the

PubMed database to quantitatively investigate how the neu-

roscientific field developed over time in terms of its concept

on how pain is represented in the brain and compare the

research trends of pain with those of mental disorders. We

analyzed frequencies and co-occurrences of pain-related

brain regions and compared the relative frequency patterns

of pain-related brain regions with those of depression, anxi-

ety disorders, and schizophrenia. We found that the brain

regions in the pain-related abstracts have gradually extended,

reflecting the changes of the perspective on pain from a

simple modality of perception into a multidimensional

experience. The relative frequency pattern of pain-related

brain regions shifted closer to that of mental disorders-related

brain regions in the state-space model.

The results of this study indicate that researchers have

gradually come to focus on the emotional/cognitive aspects

of pain rather than simple pain perception and modulation.We

found brain regions that are highly related to mental disorders

(such as PFC, amygdala, insula, ACC, and hippocampus) have

shown increased relative frequencies and co-occurrences over

time.30 Similarly, there were common pain-related brain

regions that appeared more than 100 times in the abstracts

related to depression, anxiety disorders, and schizophrenia:

PFC, DLPFC, frontal lobe, striatum, ACC, insula, hippocam-

pus, and amygdala. These regions are known to be associated

with cognitive and emotional processing, and most of them

except frontal lobe and striatum belonged to the rising cluster

on the relative frequency in our analyses.5,31,32 Recently, it has

been suggested that pain perception is related to negative

moods (eg, anxiety and depression) and is a continuum of

aversive behavioral learning.16 The comorbidity of pain and

mental disorders are common, and the correlation between

pain and mental disorders has been widely investigated

clinically.14,33–35 Especially, depression and anxiety disorders

have been demonstrated to be highly correlated with chronic

pain based on the results of multi-population surveys.36

Meanwhile, there were brain areas that only

appeared frequently in the pain-related abstracts, and

not in the mental disorders. The brain areas such as

PAG and motor cortex exclusively appeared at a high

frequency in the pain-related abstracts. PAG is known to

comprise the descending pathway of pain, which exerts

influence upon a top-down modulation of pain sensation.

It has been demonstrated that the descending pain mod-

ulatory circuit can facilitate as well as inhibit pain and

that dysfunction of this circuit may lead to the chron-

ification of pain. Although PAG was clustered into a

falling group in our study, it showed high levels of

relative frequency in general, reflecting the importance

of PAG in pain studies.37–42

Table 2 Eigenvectors Of The Three Principal Components

PFC Frontal Parietal Temporal Limbic DIEN BG BS Cerebellum Corpus

PC1 −0.34 −0.16 0.05 −0.16 −0.39 0.3 −0.38 0.66 −0.01 −0.03

PC2 −0.25 0.09 −0.09 0.29 −0.75 0 0.48 −0.2 −0.03 0.03

PC3 −0.03 −0.36 −0.04 0.36 −0.19 −0.06 −0.68 −0.49 −0.03 0

Notes: Each row represents eigenvectors of the corresponding principal component (PC). Each column represents the feature of each brain region group. The value of each

cell corresponds to loading indicating how much the feature contributes to the PC.

Abbreviations: Frontal, frontal cortex; Parietal, parietal cortex; Temporal, temporal cortex; Limbic, limbic area; DIEN, diencephalon; BG, basal ganglia; BS, brain stem; Cb,

cerebellum; Corpus, corpus callosum.
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Interestingly, the appearance patterns of the cerebellum and

motor cortex were notable in pain-related abstracts. Motor

cortex, which belongs to the rising cluster, showed a consistent

increase in relative frequency from the late 1990s. While most

of the regions in the rising cluster frequently co-occurred with

other regions to form edges in the subnetwork of hub regions,

the motor cortex formed no edges with other areas in the

networks in the given threshold. The cerebellum did not

show high levels of relative frequency in general; however, it

formed edges with hub nodes (ACC and thalamus in stage 3;

insula and thalamus in stage 4) in the pain-related brain net-

works in the last two decades. This tendency reflects the

advanced understanding of pain in recent studies regarding

the relationship between motor control and pain.43–47 The

emotional/cognitive brain regions that belonged to the rising

cluster or were represented as hubs in the networks have been

recognized as important in pain studies in the last two decades.

This data suggests that the motor cortex and cerebellum are

also likely to play a key role in pain studies in the years to

come.

Our results are supposed to be influenced not only by

the change in the perspective of the pain mechanism or the

researchers’ interests, but also by the rapid developments in

the brain imaging technologies such as positron emission

tomography, computed tomography, and magnetic reso-

nance imaging (MRI). In stage 3 (1996–2005), the config-

uration of the pain-related brain network changed abruptly

from the earlier stages (Figure 7). These changes could

partially be attributed to the fact that the portion of the

human brain imaging studies in pain research has increased

around that time. For instance, increase of cortical regions

and decrease of brain stem regions in occurrence pattern

could be partially explained by the emergence of functional

MRI because it is difficult to obtain data from several

complicated regions such as brain stem.48

It should be noted that although we describe the brain

regions that appeared more than 100 times as pain-related

regions, pain-related brain regions are not pain-specific

brain regions, ie, pain coding regions. For instance, the

insular cortex has been discovered to involve a wide range

of functions in humans that encompasses sensory, emo-

tional, and high-level cognition.11 And there have been

emerging studies showing that ACC is implicated both in

cognitive and emotional processes.49

One limitation of the study should be noted. Because we

only dealt with the abstracts, not the entire manuscripts, the

pain-related studies were included for analysis without con-

sidering pain types, subjects, and article types. There is a

possibility of misinterpretation in the results which may

result from this simple criterion. However, the macroscopic

changes of pain-related brain regions, which were demon-

strated by analyzing a vast number of abstracts, are obviously

in line with our current understanding of the pain study

trends, supporting the validity of our approach.

In summary, we performed literature-mining analyses in

the pain-related abstracts to investigate how the neuroscience

field developed over time in terms of its concept on howpain is

represented in the brain and compare the research trends of

pain with those of mental disorders, and the findings indicate

that the regions related to emotional/cognitive aspects of pain

have become increasingly important. The relative frequency

trajectory of pain-related brain regions has shifted closer to that

ofmental disorders-related brain regions. Furthermore,we also

anticipate that the cerebellum andmotor cortexwill be actively

explored in the pain study because of their notable occurrence

patterns. We expect that the literature mining approach used in

this study can be applied to other study topics in the future to

provide macroscopic insights into the study trends.

Conclusion
Evolving patterns of the pain-related brain network were

examined by analyzing a vast number of abstracts that are

impossible to be manually reviewed, and the results are in

line with our current understanding of the pain study trends.

Temporal changes of pain-related brain regions in the

abstracts indicate that emotional/cognitive aspects of pain

have been gradually emphasized. The relative frequencies

and co-occurrences of brain regions related to the emotional/

cognitive aspects of pain tended to increase consistently. The

state-space model showed that the relative frequency trajec-

tory of the pain-related brain regions shifted closer to that of

mental disorders-related brain regions over time. Based on

the notable occurrence patterns of the cerebellum and motor

cortex, these motor-related areas are expected to be actively

explored by pain researchers in the future. We expect that the

literature mining approach used in this study can be applied

to other study topics in the future to provide macroscopic

insights into the study trends.
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