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Background: Rabbit is a good model for genetic and medical studies in other livestock 
species. The rabbit shows low adipose tissue deposition, and the phenomena indicates that 
there is some specificity of adipose deposition during the rabbit growth. However, little is 
known about genes that regulate the growth of adipose tissue in rabbits.
Materials and Methods: Deep RNA-seq and comprehensive bioinformatics analyses were 
used to characterize the genes of rabbit visceral adipose tissue (VAT) at 35, 85 and 120 days 
after birth. Differentially expressed genes (DEGs) were identified at the three growth stages 
by DESeq. To explore the function of the candidate genes, Gene Ontology (GO) enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. 
Six DEGs were randomly selected, and their expression profiles were validated by q-PCR.
Results: A total of 20,303 known transcripts and 99,199 new transcripts from 8 RNA 
sequencing libraries were identified, and 34 differentially expressed genes (DEGs) were 
screened. GO enrichment and KEGG pathway analyses revealed that the DEGs were mainly 
involved in lipid metabolism regulation including acylglycerol metabolic process and mobi
lization, and decomposition of lipids to generate ATP in adipocytes and fatty acid metabolism, 
included LOC100342322 and LOC100342572. In addition, 133 protein-coding genes that play 
a role in adipose growth and development were screened, including acyl-CoA synthetase long- 
chain family member 5 (ACSL5) and fatty acid-binding protein 2 (FABP2). The validation 
results of six DEGs by q-PCR showed similar trends with the results of RNA-seq.
Conclusion: In summary, this study provides the first report of the coding genes profiles of 
rabbit adipose tissue during different growth stages. These data allow for the identification of 
candidate genes for subsequent studies on rabbit genetics and regulation of adipose cells, and 
provide an animal model for studying obesity in humans.
Keywords: rabbit, RNA-seq, adipose tissue, growth, protein-coding gene, fat deposition

Background
As an important economic and agricultural animal, rabbits are bred for meat, fur 
production, companionship as pets, and also for use in biomedical research. Total 
world production of rabbit meat is about 1.4 million tonnes across Asia, Europe, 
Africa and Americas.1 Rabbit is a good model for genetic and medical studies in other 
livestock species due to its short generation interval and the low cost of its carcass.2 

For example, injection of injured rabbit vocal folds with human adipose-derived stem 
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cells (ADSCs) improves wound healing and shows fewer 
signs of scarring,3 and the injection of ADSCs into injured 
lumbar discs in rabbit models could be an effective treat
ment for degenerative disc disease.4 In the rabbit model, 
ADSCs alleviate osteoporosis by enhancing osteogenesis, 
inhibiting adipogenesis,5 and adhering to defective cartilage 
that cannot promote cartilage regeneration.6

Visceral adipose tissue is a very important adipose 
tissue in the body,7 mainly composed of white adipose 
cells, as an important energy storage organ and secretory 
organ in the body.8,9 At present, some studies10,11 have 
shown that the increase in the size and number of adipo
cytes in visceral adipose tissue are closely related to meta
bolic syndrome such as obesity. Therefore, studies on 
visceral adipocyte differentiation and its potential regula
tory mechanisms have long been the core of obesity 
research. When the rabbit is born, the visceral fat cells 
are mainly at the precursor adipocyte stage. As the rabbit 
ages, cell morphology changes from fibrous to round, and 
the intracellular lipid droplets gradually appear and form 
a large number of small lipid droplets. After terminal 
differentiation, the cells are filled with a large lipid droplet 
to form mature single-compartment adipocytes.12,13 Since 
the adipose tissue in rabbits has a lower deposition rate 
during growth, rabbits can serve as an ideal model system 
to study adipose regulation.5,14,15

RNA-seq has emerged as a powerful tool for analyzing 
gene expression patterns and changes.16 Owing to the 
advantages of low background signals, high accuracy, 
broader genome coverage, high sensitivity and lower 
amounts of samples required, RNA-seq is increasingly 
used for profiling global gene expression patterns.16 

Wang et al17 analyzed RNA sequences from the longissi
mus dorsi muscle of two indigenous Chinese pig breeds 
and two introduced pig breeds, identifying 85 genes 
related to muscle growth and 27 genes related to lipid 
deposition. Similar studies have been reported in 
cattle,18,19 sheep,20,21 chickens22 and other domestic ani
mals. However, little information exists on genes that 
regulate the growth of adipose tissue in rabbits.

Hence, we performed deep RNA-sequencing during 
three important stages of adipose deposition (35, 85, and 
120-days post-birth) to screen and identify the genes that 
involved in regulating adipose growth in rabbits. The 
results of this study may provide references for future 
rabbit genetic and breeding research, and further establish 
rabbits as a model organism for studying human obesity- 
related diseases.

Materials and Methods
Animal Preparation and Adipose Tissue 
Collection
Given the plasticity and maturation of rabbit visceral adi
pose tissue,23 35, 85, and 120 days old Tianfu Black 
rabbits (native species in Sichuan province of China) 
were used and weighed in our study. They were obtained 
in teaching experiment rabbit farm in Ya’an campus of 
Sichuan Agricultural University in Sichuan, China. All 
rabbits used (all were male) were raised under the condi
tion with the same diet, environmental temperature and 
given free access to water and food. In this study, rabbits 
were euthanized using electrical stunning and exsanguina
tion. Three biological replicates of perirenal adipose were 
collected for 35-day (YR) and 120-day (TR), and two were 
collected for 85-day (MR). The samples were stored at 
−80°C until RNA extraction.

Preparation of Paraffin Section and 
Hematoxylin and Eosin Staining
After the adipose samples were fixed with 4% paraformal
dehyde solution for 12 to 24 hours, excess water was 
removed using a full-automatic dehydrator (Leica, 
ASP6025, Germany). After being soaked in paraffin for 
30 min, the mixture was transferred into a mold filled with 
liquid paraffin, cooled, and shaped. The block was sliced 
by microtome (Leica, KH-Q300, Germany), and stained 
with hematoxylin and eosin (HE). The dyed slices were 
dehydrated with different gradients of alcohol and sealed 
by dropping the sealing gum. Finally, the slice images 
were collected using a biological microscope (Olympus, 
CX31-32C02, Japan).

The RNA Extraction, Quality Testing, 
Library Construction and Sequencing
Total RNA was extracted from 50 to 60 mg of perirenal 
adipose tissue in each sample by using the Trizol Reagent 
(Life Technologies, Carlsbad, CA, USA) according to the 
manufacturer’s instructions and dissolved in RNase-free 
water. The purity and integrity of the RNA were deter
mined using the Nanodrop (Thermo Fisher Scientific, 
Waltham, MA, USA) and Agilent Bioanalyzer 2100 sys
tem (Agilent Technologies, CA, USA), respectively. Then, 
RNA concentration was measured using Qubit® 2.0 
Fluorometer (Life Technologies, Carlsbad, CA, USA) 
and a Qubit® RNA Assay Kit. The library construction 
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and sequencing were completed by Mega Genomics Ltd., 
Co (Beijing, China). In brief, 1 μg RNA was used per 
sample and rRNA was removed by a NR603-VAHTS 
Total RNA-seq (HMR) Library Prep Kit (Vazyme 
Biotech Co., Ltd, Nanjing, China). The first-strand cDNA 
was synthesized using random hexamer primers followed 
by the second-strand using DNA polymerase I and RNase 
H. Then, the double-stranded DNA was purified by 
AMPure XP beads, and a poly a tail was ligated to the 
sequencing joint. The USER enzyme was used to degrade 
the cDNA strands, and the first-strand cDNA was 
sequenced, thereby preserving the direction of the RNA. 
Finally, PCR amplification was conducted and the pro
ducts were purified to construct the cDNA libraries. 
After quantification using the Agilent BioAnalyzer 2100 
system and q-PCR, the libraries were sequenced on an 
Illumina HiSeq X Ten platform that generated 150-bp 
long paired-end reads.

Assembling RNA Transcripts
Reads containing the adapter sequence and low-quality reads 
were removed from the raw reads using Fastp software24 in 
the paired-end mode with default parameters, and only the 
high-quality clean reads were used for subsequent analyses. 
Clean reads were aligned to the rabbit reference genome 
(GCF_000003625.3_OryCun2.0_genomic.fa) along with 
annotated genes (GCF_000003625.3_OryCun2.0_genomic. 
gff) using histat2 (2.0.5) software25 with the parameters “-dta 
-rf-p 1-x-1-1-S File for SAM output (default:stdout)”. The 
StringTie program26,27 was used to assembly known and 
novo transcripts, which guided by reference annotation 
genes. Cuffcompare28 was used to compare the data with 
known gene model to further discovered unknown genes and 
new exons of known genes, and to optimize the start and end 
positions of known genes at the same time. StringTie (1.3.3) 
was used to quantify transcripts and normalize the expression 
values (FPKM).

Screening of DEGs
Pearson’s correlation coefficient (r)29 was used to evaluate 
the biological-repeated correlation of samples. 
Differentially expressed genes (DEGs) between any two 
libraries were identified by DESeq (1.26.0),30 with Padjust 
< 0.01 and an absolute value of the |log2(fold change)| ≥ 
2.0 or ≤ 1/2.0 as the threshold. We performed GO (http:// 
www.geneontology.org/) enrichment and KEGG (https:// 
www.genome.jp/kegg/) pathway analysis of the DE genes 
using TopGO31 and KOBAS (2.0)32 software, relatively. 

Significance was calculated using the Expression Analysis 
method and P value < 0.05 was considered significant.

Validation of DEGs by q-PCR
Primers for the coding genes and internal controls 
(Additional file 1) were designed using Primer-BLAST 
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Total 
RNA was converted to cDNA by using a PrimeScript™ 
RT Reagent Kit containing gDNA Eraser (TAKARA, 
Dalian, China), and oligo (dT) and random hexamer pri
mers. The q-PCR was performed using SYBR Premix Ex 
Taq™ II (TAKARA). The reaction mix composed of 1μL 
template cDNA, 0.4μL of 10μM forward and reverse pri
mers, 5μL SYBR Premix Ex Taq™ II, and 3.2 μL dH2O at 
a final volume of 10 μL. The reactions were performed on 
a Rotor gene 6000 PCR System (QIAGEN, Hiden, 
Germany) as follows: 95°C for 10 s, followed by 40 cycles 
of 95°C for 5 s, and 20 s at the Tm (Additional file 1). 
Melting curve analysis was performed from 65°C to 95°C 
in 1.5°C increments. The expression levels of genes were 
normalized to HPRT1 and GAPDH. Relative gene expres
sion levels were calculated using the 2−ΔΔCt method33 and 
data were expressed as mean ± standard error of the 
mean (SEM).

Statistical Analysis
Statistical analysis was performed using the SPSS 
Statistics 20.0 (SPSS Inc., Chicago, IL, USA). The sig
nificance level was set at P < 0.05.

Results
Morphological Observation of Adipocyte 
Growth
HE stained paraffin sections of the visceral adipose tissue 
of rabbits aged 35 (YR), 85 (MR) and 120 (TR) days were 
observed (Figure 1). Under the microscopic observation of 
100- and 400-fold, adipocytes were aggregated into groups 
based on their sizes and were either vacuolized, round, or 
polygonal. Due to the extrusion of lipid droplets, the flat 
cell nuclei could be seen at the edge of the cell. The 
volume of adipocyte monomers was increased with the 
age of the animal.

Overview of RNA-Seq
We constructed eight cDNA libraries (YR-1, YR-2, YR-3, 
MR-1, MR-2, TR-1, TR-2 and TR-3) from the peri-renal 
adipose tissues. The libraries were sequenced using the 
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Illumina HiSeq X Ten, and a total of 152.41 Gb raw reads 
were obtained, with an average of 19.05 ± 0.72 Gb raw 
reads per library. After filtering adaptor sequences and 
low-quality reads, 120,110,494 to 125,607,312 clean 
reads were obtained in each library, with the effective 
ratio of each library ranging from 97.22% to 98.12% 
(Additional file 2). Majority (88.54–90.44%) of clean 
reads mapped to the rabbit reference genome (NCBI), 
85.92–87.99% of the reads had unique genomic positions 
(Additional file 3).

Identification of DEGs
A total of 119,502 reliable transcripts were identified from 
8 libraries, including 20,303 known transcripts and 99,199 

new transcripts. Among them, 98,738 transcripts were 
expressed in YR, 89,261 in MR and 94,863 in TR 
(Figure 2). The Pearson’s correlation coefficient R of all 
expressed transcripts in eight samples (n=119,502) results 
showed that the eight samples were divided into YR, MR 
and TR. At the same time, the biological replicates in each 
group were well clustered together (Figure 3). The expres
sion levels of the coding genes were calculated by FPKM 
using DESeq (Additional file 4). A total of 34 DEGs were 
identified (P < 0.05) during the growth of adipose tissue 
(Figure 4), and 63.3% were up-regulated and 36.7% were 
down-regulated. Pairwise comparison of the YR, MR and 
TR gene data showed that there were 25, 25 and 10 DEGs 
between the respective growth stages.

Figure 1 Morphological observation of visceral adipose tissue at different growth stages in rabbits.
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Enrichment Analysis of DEGs
To better understand the function of 34 DEGs, we per
formed GO functional enrichment analysis. DEGs were 
enriched into 118 GO terms, and 33 GO terms were sig
nificant (P < 0.05) enrichment. Among the 33 GO terms, 
some terms related to lipid metabolism regulation, includ
ing acylglycerol metabolic process (GO:0006639), cellular 
lipid metabolic process (GO:0044255), glycerol lipid 
metabolic process (GO:0046486) and lipid metabolic pro
cess (GO:0006629); some DEGs such as LOC100342322 
and LOC100342572’s GO terms related to mobilization 
and decomposition of lipids to generate ATP in adipocytes, 
including response to reactive oxygen species 
(GO:0000302), monooxygenase activity (GO:0004497), 
response to oxidative stress (GO:0006979), and response 
to oxygen-containing compound (GO:1901700). In addi
tion, ribonucleotide binding (GO:0032553), endoplasmic 
reticulum (GO:0005783), and nuclear outer membrane- 
endoplasmic reticulum (GO:0042175) were significantly 
enriched, indicating amino acids synthesis and utilization 

is high during the growth of rabbit adipose tissue. It was 
worth noting that cell aging (GO:0007569) and aging 
(GO:0007568) were also significantly enriched (Figure 5).

The DEGs mapped onto 14 KEGG pathways, of which 
11 KEGG pathways were significantly enriched (P <0.05). 
These included Aminoacyl-tRNA biosynthesis (ko00970), 
Ribosome (ko03010), Linoleic acid metabolism (ko00591) 
and Biosynthesis of unsaturated fatty acids (ko01040). 
Furthermore, Fatty acid metabolism (ko01212), PPAR sig
naling pathway (ko03320) and AMPK signaling pathway 
(ko04152) were not significantly enriched, despite these 
genes being implicated in adipose growth in previous studies. 
This further indicates that the DEGs obtained likely play an 
important role during rabbit adipose growth (Figure 6).

Genetic Screening of Adipose 
Growth-Related
We next identified all coding genes in the transcriptome, 
and found 603 new genes with relevant GO terms, and 
2576 new genes with KEGG pathway matches. We 

Figure 2 The analysis of FPKM Expression levels in each library.
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selected the functional pathway information related to 
growth and development of adipocytes as the screening 
criteria, including GO terms such as fatty acid metabolism, 
reactive oxygen metabolism and cAMP-dependent protein 
kinase inhibitor activity and KEGG pathways such as 
PPAR signaling, MAPK signaling, fat digestion and 
absorption. In total, 133 protein-coding genes which play 
a role in adipose growth and development were identified, 
including fatty acid binding protein 2 (FABP2), acyl-CoA 
synthetase long chain family member 5 (ACSL5) and apo
lipoprotein B (APOB) (Additional File 5).

Validation of DEGs
To validate the RNA-Seq results, we randomly selected six 
DEGs and examined their expression patterns at the three 
growth stages by q-PCR. All six genes (NewGene_126260, 
NewGene_41572, MME, NewGene_70974, FAM43A, 
LOC108177184) were differentially expressed at different 
stages. In addition, the six genes exhibited a similar trend 

between the results of RNA-seq and q-PCR (Figure 7). 
Therefore, the FPKM obtained from RNA-seq can be reli
ably used to determine genes expression.

Discussion
In our study, we used RNA-seq to study changes of gene 
expression in the visceral adipose tissue in rabbits that were 
35, 85 and 120 days old. A total of 152.41 Gb of raw reads 
with read-length 150 bp were obtained from eight libraries, 
which could cover the rabbit reference genome 55 times, and 
indicated a significant amount of reads were obtained. A total 
of 119,502 transcripts were obtained in the three stages, and 
99,199 were unknown transcripts, included a large number of 
transcripts with low expression levels (FPKM 0 to 1), this 
showed that the library we constructed was relatively com
plete and that the rabbit reference genome may be incom
plete. A total of 34 DEGs were identified in the three stages, 
and there were more up-regulated genes than down- 
regulated. For example, these up-regulated DEGs included 

Figure 3 Hierarchical cluster analysis of all expressed transcripts (n=119,502) in 8 libraries.
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FAM43A, MME and LOC108176866, while down-regulated 
included NewGene_70974, LOC108176300 and 
LOC108177184 in YR_vs_MR. This suggests that a part of 
the genes expression in adipocytes was gradually active 
during the growth of rabbits. Through functional enrichment 
analysis of DEGs, it was found that DEGs were significantly 
enriched in 33 GO terms and 11 KEGG signaling pathways. 
Most of these were related to lipid metabolism, indicating 
that intracellular lipid droplet deposition during cell growth 
and maturation is regulated by a large number of genes, such 
as LOC100342322 and LOC100342572. Through in-depth 
analysis of DEGs, we found that these genes play important 
roles in lipid synthesis and metabolism, amino acid synthesis, 
endocrine and other functions during the rabbit adipose 
growth.

The synthesis and decomposition of triglycerides (TG) 
in adipocytes are constantly being carried out. When 
synthesis occurs more than decomposition, it promotes 
differentiation, adipose deposition increases, and gradually 
forms adipocyte with a single-chamber fat droplet.13 At 
this time, a large number of adipocyte marker genes are 
expressed, and TG synthesis, insulin sensitivity and cyto
kine secretion increases, thus cooperatively regulating 
metabolism.34 In this study, the LOC100342322 and 
LOC100342572’s GO terms were enriched in TG, 

cholesterol synthesis, lipid transport and lipid stability 
were up-regulated to varying degrees during the matura
tion of rabbit perirenal adipose tissue. Therefore, we 
speculated that the two genes could promote the growth 
of rabbit adipocytes to some extent. In addition, among 
133 obesity-related genes screened, Fatty acid-binding 
protein (FABP), as a carrier protein of fatty acids, trans
ports fatty acids through the cell membrane. In the fasting 
plasma test study of obese people with high acylation 
stimulating protein and high triglyceride acid,35 FABP 
expression increases in adipose tissue. This suggests that 
higher levels of FABP promote the absorption and transfer 
of fatty acids by adipose tissue, resulting in the accumula
tion of triglycerides. In addition, studies on adipocytes 
cultured in vitro found36 that knocking out fatty acid 
binding sites of FABP inhibit the formation of lipid dro
plets, suggesting that its function is to promote the forma
tion of lipid droplets by binding with fatty acids. However, 
the high expression of FABP2 in the study suggests that 
FABP2 may have stabilizing effects on lipids in rabbit 
adipocytes.

Adipocyte hypertrophy is the main cause of visceral fat 
deposition,37 and adipocyte proliferation may also play 
a role. Peroxisome prolifrator activated receptors are impor
tant regulators of lipid metabolism and lipogenesis,38–40 

Figure 4 Numbers of up-regulated and down-regulated DEGs in the rabbit perirenal adipose at three growth stages.
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which involve differentiation of pre-adipocytes and prolif
eration of adipocytes.41 Among 133 obesity-related genes 
that were screened in this study, 19 were enriched in PPARs- 
related signal pathways, including NR1H3, CD36, ACSL5, 
PRKAA2, ACSL4, ACADL, CPT2. Besides, a DE 
NewGene_125568 was also enriched in PPAR signal path
way. Long-chain acyl-CoA synthetase (ACSL) families cata
lyze fatty acids, ATP and CoA to form long-chain coenzyme 
A, which regulate de novo synthesis of lipids and catabolism 

of fatty acids.42,43 At present, five ACSL subtypes can acti
vate and guide different fatty acids to adapt to different 
metabolic pathways.44 ACSL4 has multiple splice subtypes 
with different expression patterns in mice, rats, human and 
pigs.45,46 Elizabeth et al47 constructed an adipocyte-specific 
ablation ACSL4 Ad-KO mouse using loxP Cre recombinase 
technology. After feeding a high-fat diet for a period of time, 
the lack of ACSL4 expression in adipocytes led to an increase 
in cell oxygen consumption and body energy consumption. 

Figure 5 Gene Ontology enrichment analysis of DEGs. The significant BP, MF and CC terms in GO enrichment analysis at p-value < 0.05.
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ACSL5 is highly expressed in the liver, small intestine, white 
preadipocytes and brown adipose tissue.48,49 Thomas et al50 

established the mouse model with impaired ACSL5 expres
sion. Compared with normal mice, ACSL5 null mice had 
significantly reduced body fat content, and its fasting blood 
glucose and serum triglyceride were significantly reduced; 
therefore, impaired ACSL5 expression reduces fat and trigly
ceride absorption rate, and increases energy consumption and 
number of beige adipocytes. Based on our transcriptomic 
analysis, genes (ACSL4, ACSL5, NewGene_125568, 
LOC100342322, LOC100342572, FABP2) involved in lipid 
synthesis and metabolism are likely involved in rabbit adi
pose growth.

Adipose tissue is a frequently underestimated endocrine 
organ and energy homeostasis regulator,51,52 which plays 
a key role in amino acid regulation through circulating regula
tion of branched chain amino acids (BCAAs) levels.53 BCAAs 
include leucine, isoleucine and valine, which are metabolic 
signals of obesity and diabetes that can directly act on adipo
cytes, affect fat metabolism and reduce fat.54,55 The secretion 
of alanine and glycine can be detected in mammalian cell 
cultures, and thus such amino acids can serve as a cell nitrogen 
pool.56 Scott et al57 found that propionyl coenzyme A was 
a primer for fatty acid synthetase to produce odd chain fatty 
acids, and BCAA was involved in the production of all fatty 
acids. Duan et al58 took pigs as the research object and found 
that adding dietary BCAAs in different ratios to the diet 
reduced the total weight of pig fat and increased the concen
tration of adiponectin, which could regulate the function of 

adipose tissue, including fatty acid synthesis, transportation, 
oxidation, lipolysis and secretion of adipokines. In GO terms, 
DEGs were not only significantly enriched in nucleoside 
phosphate binding, the endoplasmic reticulum, and the nuclear 
outer membrane-endoplasmic reticulum membrane network 
but also enriched related to cellular nitrogen compound meta
bolism processes, protein metabolism processes, peptidase 
activity, hydrolase activity. KEGG pathway analysis showed 
that aminoacyl-tRNA biosynthesis, ribosome, renin- 
angiotensin system, protein digestion and absorption were 
closely related to amino acid synthesis and metabolism. The 
above results speculated that the anabolism of amino acids in 
adipocytes by these DEGs such as LOC108177184 and 
LOC100353987 could be responsible for the less fat deposi
tion during the rabbit growth. In addition, the GO terms of 
MME were significantly enriched in cell aging and aging, 
which indicated that DEGs related to cell aging and apoptosis 
might play a role in regulating adipose deposition in rabbits.

Conclusions
In the present study, we provide a global view of the 
adipose tissue transcriptome of three growth stages of 
rabbits, where we identified new putative protein-coding 
genes and the expression levels of known genes in adipose 
tissue. A total of 34 genes were found to be differentially 
expressed between groups and 133 obesity-related genes 
were screened. These genes belonged to molecular func
tions related to lipid, fatty acid metabolism, and PPAR 
signaling. Hence, this study will allow for the 

Figure 6 The KEGG pathway analysis of DEGs. The vertical axis showed the significantly enriched pathways with p-value < 0.05.
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identification of candidate genes for subsequent studies on 
rabbit genetics and adipose regulation, and provide an 
animal model to obesity-related diseases in humans.
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PPARs, peroxisome proliferator activated receptors.
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Figure 7 Validation of six DEGs by q-PCR.
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