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Study Objective: The well-known tumor suppressor transcriptional factor p53 has been 
proposed to be one of the central hubs of a functionally related and hierarchically arranged 
gene network coordinating pubertal timing. Our previous studies revealed that p53 is 
involved in the metabolic control of puberty. The current study aimed to investigate the 
underlying signaling pathway, through which p53 mediated the metabolic control of puberty.
Design, Setting, Participants, Interventions, and Main Outcome Measures: We 
engineered the expression of p53 and/or Lin28a in GT1-7 cells to investigate the interaction 
between p53 and Lin28/let-7 system, and their impact on GnRH secretion.
Results: Overexpression of p53 stimulated, while inhibition of p53 by pifithrin-α signifi
cantly suppressed the GnRH secretion and GPR54 expression levels in response to kisspeptin 
stimulation in GT1-7 cells. Furthermore, overexpressed p53 suppressed Lin28a and c-Myc 
expression levels and increased let-7 expression levels in GT1-7 cell lines. On the other 
hand, inhibition of p53 by pifithrin-α upregulated Lin28a and c-Myc levels and down
regulated let-7 expression levels. Moreover, Lin28a overexpression counteracted the effect 
of p53 overexpression in p53 and Lin28a co-overexpression cells, whose GnRH secretion 
and GPR54 expression levels were not different from controls. Meanwhile, Lin28a suppres
sion counteracted the effect of pifithrin-α, and the GnRH secretion and GPR54 expression 
levels are not different from controls in p53 and Lin28a co-suppression cells.
Conclusion: These data suggest that p53 is a central mediator of GnRH secretion in 
hypothalamus, and this effect is at least partly through the Lin28/let-7 pathway.
Keywords: pubertal timing, p53, Lin28/let-7 system, gonadotropin-releasing hormone

Introduction
The timing of pubertal onset is affected by complex interactions among genetic, 
nutritional, environmental, as well as socioeconomic factors.1,2 Compelling evi
dence has proved very prominent regulatory roles of nutritional and metabolic 
signals on the timing of pubertal onset.3 The secular trends in early pubertal 
maturation coincide with surging prevalence of overweight and obesity have raised 
discussion for a possible causal link between greater body fat mass and advanced 
pubertal age, especially in girls.4 This association of obesity and advanced puberty 
has been further supported by observations from animal studies.5–7 In the previous 
study, we also observed advanced vaginal opening (VO) in high-fat diet (HFD) 
rodents.8

The pivotal event indicating the onset of puberty is the re-emergence of pulsatile 
gonadotropin-releasing hormone (GnRH) secretion from the GnRH neuron. The 
pubertal activation of GnRH neuron is regulated by both trans-synaptic inputs and 
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glial inputs.9 Components of the trans-synaptic network 
mainly include the KNDy neurons releasing both 
Kisspeptin and neurokinin B (NKB),10 GABAergic neu
rons, opiatergic neurons, and glutamatergic neurons.11 All 
these different, yet partially overlapping, sub-systems con
tribute to the neuroendocrine mechanism controlling the 
pubertal onset. More importantly, a host of functionally 
related and hierarchically arranged gene network has been 
proposed to coordinate all the neuronal and glial inputs in 
the initiation of pubertal process.9 This genetic network 
has been supposed to consist of five central hubs: CDP/ 
CUTL1, MAF, p53, YY1, and USF2, all of which control 
the network at the transcriptional level.9,12 Among these 
major hubs, MAF, p53, and YY1 have been reported to be 
involved in obesity and/or metabolic conditions.13–16

Although the mechanisms underlying the metabolic 
control of puberty remain to be fully elucidated, there 
have been multiple studies addressing this issue. 
Kisspeptins, a family of structurally related peptides, 
have been recognized as a pivotal neuroendocrine regula
tor of GnRH neurons.17,18 Accumulating evidence has 
revealed that kisspeptin neurons convey metabolic infor
mation to the control center of puberty onset.19 The well- 
known adipose hormone leptin, levels of which are pro
portional to fat mass, has been implicated to regulate 
GnRH neuron via indirect mechanisms.20 A leptin- 
kisspeptin-GnRH pathway has been proposed based on 
the fact that exogenous leptin can induce Kiss1 mRNA 
expression in the ARC of leptin-deficient mice.21 

Moreover, leptin is also supposed to control puberty 
onset indirectly through mTOR (mammalian target of 
rapamycin) and its downstream effectors.17,22 Besides, 
Sirtuin 1 (SIRT1), a fuel-sensing deacetylase, has recently 
been reported to mediate obesity and nutrient-dependent 
perturbation to timing of puberty onset via epigenetic 
control of Kiss1 expression.23

p53, a well-known tumor suppressor protein and one of 
the central hubs in the gene network controlling pubertal 
onset, has long been regarded as a regulator of metabo
lism. Human studies have shown the P27R polymorphism 
of p53 predisposes to obesity and metabolic dysfunction.15 

Animals and in vitro studies also revealed the roles of p53 
in diet-induced obesity.16 In the previous study, we 
revealed that HFD mice have higher expression of p53 in 
hypothalamus than mice fed with normal chow. More 
importantly, in HFD mice, hypothalamus-specific overex
pression of p53 can make VO much earlier, while inhibi
tion of p53 expression relatively delayed VO.8

Lin28/let-7 axis has been proposed as a subordinate 
node of the gene network controlling puberty onset.9 In 
this study, we hypothesized that the impact of p53 was via 
Lin28/let-7 axis. To test this hypothesis, we manipulated 
the expression of p53 and Lin28a in GT1-7 cells, which 
are murine hypothalamic GnRH neuronal cells, and 
explored the interaction between p53 and Lin28/let-7 
axis, as well as their impact on kisspeptin-stimulated 
GnRH secretion function in these cells.

Materials and Methods
Ethical Approval
All procedures performed in the present study were in 
accordance with the ethical standards of the ethical com
mittee of Children’s Hospital of Soochow University. The 
ethical committee of Children’s Hospital of Soochow 
University approved this study and the use of GT1-7 cell 
lines kindly provided by Shanghai Ruijin Hospital.

Lentiviral Vectors, Transfection, and 
Expression
For mouse p53 overexpression, the lentiviral vector 
(CL1128_PDS159-MUS-p53) was designed and constructed 
as previously described.8 The p53 was prepared via mouse 
cDNA library using RT-PCR. Then, we subcloned the p53 
cDNA sequence into Nhe I/ASC I restriction enzyme site 
between the CMV promoter and the IRES-GGFPa1 
sequence of the lentiviral expression vector, 
PDS159_pL6.3-CMV-GFPa1-IRES-MCS (Novobio, 
Shanghai, China). For high titer lentiviruses collection, 
recombinant lentiviruses were produced by transient trans
fection in 293T cells. Infectious particles were harvested at 
48 h after transfection, filtered through 0.45-μm-pore cellu
lose acetate filters, concentrated by ultracentrifugation 
(50,000g for 2h), redissolved in 1 mL sterile DMEM, ali
quoted, and stored at −80°C. For mouse Lin28a overexpres
sion and knockdown, the lentiviral vectors CL1126_ 
PDS159-MUS-lin28a and CL1127_ PDS19-MUS- SH- 
lin28a, respectively, were designed and constructed.

Cell Transfection
GT1-7 cells (2×105, passage number 7) were inoculated in 
each well of 96-well plates, and transfection was then 
conducted by Lipofectamine 2000 (Invitrogen, Carlsbad, 
CA, USA). GT1-7 cells were infected with different lenti
viruses described above. The effect of Lin28a knockdown, 
as well as Lin28a and p53 overexpression were validated 
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by measuring their mRNA levels by qRT-PCR. Cell 
lysates were harvested for further qRT-PCR and Western 
blot (WB) analysis.

GnRH Secretion Studies
Cells were treated with Metastin (45–54) amide (kisspep
tin-10, M2816, Sigma-aldrich, France) at final concentra
tions of 100nM for 1h. RIA for GnRH was performed by 
the RIA kit (Phoenix pharmaceuticals, RK-040-02) 
according to the manufacturer’s instructions. Protein con
tent was consistently equivalent between wells (≤10% 
variation) (P0012, Beyotime Biotechnology, China). 
GnRH content in 200μL of media from each treated plate 
was harvested for quantification of GnRH secretion. The 
GnRH concentration in each media was also assayed by 
Western blot as described below.

qRT-PCR
We used qRT-PCR to detect the mRNA levels in the 
in vitro experiments, with mus β-actin mRNA expression 
level as the internal control. Total RNA from GT1-7 cells 
was isolated using TRIzol reagent (Invitrogen). The qRT- 
PCR was performed by a CFX96TM Real-Time System 
(Bio-Rad) using fluorescent SYBR Green technology 
(CS7561, Invitrogen). Each qPCR contained 10μL 
chamQ SYBR QPCR master Mix (Q311-02, vazyme), 
and a final primer concentration of 200 nM. The melting 
curve analysis was used to verify the specificity of the 
amplification products. The primer sequences were all 
summarized in Supplementary Table 1.

Western Blot
The cellular protein lysates were obtained from the GT1- 
7 cells. The expression levels of β-actin, GAPDH and 
tubulin were used as the internal controls. In brief, pro
tein (40μg each) from cell lysates were subjected to gel 
electrophoresis on SDS-polyacrylamide gel, and sepa
rated proteins were transferred onto nitrocellulose mem
branes and probed with rabbit antiserum against c-Myc 
(ab32072, abcam), Lin28a (ab46020, abcam), Kiss1 
(ab19028, abcam), p53 (#32,532, cell signaling technol
ogy), p21 (ab188224, abcam), GRP54 (ab100896, 
abcam), β-actin (bs-0061R, Bioss, Beijing, China), and 
GAPDH (bsm-0978M, Bioss, Beijing, China). Then, the 
goat anti-rabbit secondary antibody (BV-S8008, Biovol 
Biotech, Shanghai, China) was used to incubate the 
membranes and an enhanced chemiluminescence 

Western blotting substrate kit (Pierce Rockford, IL, 
USA) was used to detect the signals.

Statistical Analysis
Statistical analyses were assessed by SPSS 22.0. Differences 
among groups were analyzed by one-way ANOVA, fol
lowed by post hoc Tukey’s test. Each experiment was 
repeated at least three times and data are expressed as 
mean ± SD. The P<0.05 was considered significant.

Results
Overexpression of p53 Suppressed 
Lin28a Expression in GT1-7 Cell Lines
The effect of overexpression of p53 on gene expression of 
Lin28/let-7 pathway was measured by qRT-PCR and 
Western blot (Figure 1). We found that GT1-7 cells with 
p53 overexpression had significantly lower levels of 
Lin28a and c-Myc (Figure 1A–D). Besides, p53 overex
pression significantly elevated the let-7a levels, while 
Lin28a overexpression decreased the let-7a levels in 
GT1-7 cells (Figure 1E). Moreover, the levels of Lin28a 
and c-Myc were not different from controls in p53 and 
Lin28a co-overexpressed cells (Figure 1A–D).

Inhibition of p53 Elevated Lin28a 
Expression in GT1-7 Cell Lines
The gene expression of Lin28/let-7 pathway was measured 
in GT1-7 cells with p53 inhibition via qRT-PCR and 
Western blot (Figure 2). Pifithrin-α was used to suppress 
the expression of p53. We found that the expression levels 
of Lin28a and c-Myc significantly increased after p53 
suppression (Figure 2A–D). Additionally, sh-Lin28a sig
nificantly downregulated Lin28a and c-Myc expressions in 
GT1-7 cells (Figure 2A–D). Besides, pifithrin-α sup
pressed but sh-Lin28a elevated the levels of let-7a 
(Figure 2E). The use of pifithrin-α in GT1-7 cells together 
with sh-Lin28a make the expressions of Lin28a and c-Myc 
not different from normal controls (Figure 2A–D).

GnRH Secretion and GPR54 Expression 
Levels in Response to Kisspeptin 
Stimulation in GT1-7 Cells
The mRNA and protein expression levels of the GPR54 
gene, as well as GnRH concentrations in the culture media 
were assessed in different GT1-7 cell groups (Figures 3 and 
4). After kisspeptin stimulation, significantly higher GnRH 
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concentration was observed in culture media of p53 over
expression cells (Figure 3C), while inhibition of p53 by 
pifithrin-α significantly suppressed the GnRH secretion of 
GT1-7 cells (Figure 4C). Upregulation of Lin28a 

significantly suppressed (Figure 3C), while downregulation 
of Lin28a significantly elevated the GnRH secretion of GT1- 
7 cells (Figure 4C). Co-overexpression or co-down- 
expression of Lin28a with p53 resulted in similar GnRH 

Figure 1 The protein and mRNA expression levels of components of Lin28/let-7 axis in GT1-7 cells with p53 and/or Lin28a overexpression. (A, B) are the relative protein 
levels of Lin28a and c-Myc, respectively. (C–E) are the relative mRNA levels of Lin28a, c-Myc, and let-7a, respectively. Results are expressed as mean±SD; *p<0.05 vs control; 
#p<0.05 vs cells with both p53 and Lin28a overexpression; †p<0.05 vs cells with Lin28a overexpression.

Figure 2 The protein and mRNA expression levels of components of Lin28/let-7 axis in GT1-7 cells with p53 and/or Lin28a inhibition. (A, B) are the relative protein levels 
of Lin28a and c-Myc, respectively. (C–E) are the relative mRNA levels of Lin28a, c-Myc, and let-7a, respectively. Results are expressed as mean±SD; *p<0.05 vs control; 
#p<0.05 vs cells with both p53 and Lin28a inhibition; †p<0.05 vs cells with Lin28a suppression.
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secretion levels as controls (Figures 3C and 4C). The trend of 
GPR54 expression levels of GT1-7 cells was similar as the 
GnRH concentrations in culture media (Figures 3A and 
B and 4A and B).

Discussion
Although epidemiological studies have demonstrated the 
pivotal roles of metabolic and nutritional factors in the 
pubertal onset, the underlying mechanisms of such rela
tionships have not been fully elucidated.1,2 p53, a well- 
known tumor suppressor protein with metabolic regulating 
function, has been predicted to be one of the central hubs 
of a genetic network controlling pubertal onset.15,16 Our 
previous study revealed that hypothalamus-specific 

overexpression of p53 could induce earlier vaginal open
ing (VO) in high-fat diet mice, while inhibition of p53 
expression delayed VO.8 In the present study, we further 
showed that overexpression of p53 stimulated, while inhi
bition of p53 significantly suppressed GnRH secretion and 
GPR54 expression levels in response to kisspeptin stimu
lation of GT1-7 cells. Moreover, the puberty-controlling 
function of p53 is at least partly through the Lin28/let-7 
axis.

The GnRH neurons are regulated by a network of 
excitatory and inhibitory afferents, and the highest level 
of this intra-network is transcriptionally controlled.9 

Among the five central transcriptional hubs, MAF, p53, 
and YY1 have been shown participating in obesity and/or 

Figure 3 The protein and mRNA expression levels of GPR54 in GT1-7 cells with p53 and/or Lin28a overexpression after kisspeptin stimulation. (A, B) are the relative 
protein and mRNA levels of GPR54, respectively. (C) Is the GnRH concentrations in the cell culture media. Results are expressed as mean±SD; *p<0.05 vs control; #p<0.05 
vs cells with both p53 and Lin28a overexpression; †p<0.05 vs cells with Lin28a suppression.
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metabolic conditions.13–16 The extensively expressed tran
scription factor c-MAF is crucial for developmental and 
cellular differentiation processes, especially in adipose 
tissue,24 pancreas,25 and immune system.26 It has been 
proposed as a risk loci of early-onset and morbid adult 
obesity in the European population by a genome-wide 
association study (GWAS).13 The key transcription factor 
Yin Yang 1 (YY1), which is mainly involved in cell pro
liferation and differentiation, has been revealed mediating 
hepatic lipogenesis and glucogenesis in animal 
models.14,27 More importantly, among all the three central 
transcriptional hubs, the roles of p53 in metabolism and 
obesity are best established.15,28 Compelling evidence sug
gests that p53 in not only related to obesity but also 

engaged in the glucose homeostasis, insulin resistance, 
and the development of diabetes.29 High-calorie diet can 
upregulate endothelial p53 expression, while inhibition of 
endothelial p53 expression improves dietary metabolic 
abnormalities.28 In the previous study, we showed that 
hypothalamic p53 expression was involved in the meta
bolic control of puberty in HFD mice.8 In the present 
study, we engineered the expressions of p53 in GT1-7 
cells and found that overexpression of p53 stimulated 
GnRH secretion and GPR54 expression levels in response 
to kisspeptin stimulation in GT1-7 cells, which further 
supported the role of p53 in pubertal regulation.

Previous studies on metabolic control of puberty onset 
have implicated the regulation effect of leptin, SIRT1, and 

Figure 4 The protein and mRNA expression levels of GPR54 in GT1-7 cells with p53 and/or Lin28a inhibition after kisspeptin stimulation. (A, B) are the relative protein and 
mRNA levels of GPR54, respectively. (C) Is the GnRH concentrations in the cell culture media. Results are expressed as mean±SD; *p<0.05 vs control; #p<0.05 vs cells with 
both p53 and Lin28a inhibition; †p<0.05 vs cells with Lin28a suppression.
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mTOR through kisspeptin, a gatekeeper of puberty.17,20–22 

Leptin is a known regulator of p53 expression in multiple 
tissues.30,31 SIRT1 modulates p53 transcriptional- 
dependent function via regulating p53 acetylation.32,33 

Prior studies have revealed the function of p53 in the 
regulation of IGF-1/AKT/mTOR pathway.34 Therefore, 
we suggest that p53 might be a central mediator of leptin, 
SIRT1, and mTOR pathways in the metabolic control of 
puberty onset.

The heterochronic genes, Lin28a and Lin28b, were first 
identified in the nematode C. elegans, regulating the tim
ing of larval development.35 Lin28a and Lin28b are RNA- 
binding proteins that have been shown to selectively 
repress the expression of microRNAs (miRNAs), includ
ing those belonging to the let-7 family.36,37 They can bind 
to the terminal loops of precursors of miRNAs in the let-7 
family, inhibiting their maturation.38 Besides, Lin28a and 
Lin28b can derepress c-Myc expression by suppressing 
mature let-7 synthesis, while c-Myc reversely activates 
both Lin28a and Lin28b expressions.39,40 The Lin28/let-7 
axis has been established as a regulator of puberty 
control.9 Lin28b was suggested to have potential impact 
on pubertal regulation based on GWASs.41,42 Lin28a was 
established as a negative regulator of puberty since mice 
with Lin28a overexpression had delayed puberty.43 

Moreover, apparent decrease of Lin28a, Lin28b, and 
c-Myc mRNA levels has been observed in the hypothala
mus of both male and female rats before/around puberty.40 

Additionally, Lin28/let-7 axis is a well-known central reg
ulator of metabolism.44 Hypothalamic ventromedial 
Lin28a expression positively correlated with energy 
balance.45 Therefore, Lin28/let-7 axis might as well play 
a role in the metabolic control of puberty onset.

As central nodes of the gene networks of puberty 
control, we hypothesized that Lin28/let-7 axis might be 
regulated by the central hub p53 to mediate the metabolic 
control of puberty onset. In HFD mice, we showed that the 
effect of p53 on pubertal regulation might be via Lin28/let- 
7 axis. In this study, we further explored this observation 
in GT1-7 cells, and confirmed that Lin28/let-7 axis can 
modulate GnRH secretion of GnRH neurons, and this 
effect was regulated by p53.

In conclusion, the transcriptional factor p53 is 
a central hub, while Lin28/let-7 axis is a subordinate 
node of the gene network controlling puberty. In GnRH 
neuron, p53 interacts actively with Lin28/let-7 axis to 
regulate the GnRH secretion.
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