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Purpose: The aim of the present study was to investigate the hypoglycemic activity and 
potential mechanism of tetrahydrocarbazole derivatives ZG02 in high-fat diet/streptozotocin- 
induced type 2 diabetes model.
Methods: C57BL/6 mice (n=30) were randomly assigned to three groups: control group 
(n=10) was fed with normal diet, the diabetes group (n=10) was fed with high-fat diet for 
eight weeks followed by intraperitoneal injection of streptozotocin (25 mg/kg) and the ZG02 
group (n=10) injected intraperitoneally with ZG02 (30 mg/kg/day) for two weeks after 
successful modeling. The changes of weight, fasting blood glucose, oral glucose tolerance 
and fasting blood insulin levels in each group were evaluated. In addition, we also assessed 
the expression level of total AMPK, phosphorylation AMPK, SIRT1, PGC-1 and the activity 
of G6PC in liver.
Results: The results demonstrated that ZG02 could significantly antagonize the high-fat diet/ 
streptozotocin-induced fasting hyperglycemia, restore fasting blood insulin levels and also 
improve activity of G6PC in liver. The results from Western blot indicated that ZG02 
significantly restored the expression level of phosphorylation AMPK, Sirt1 and PGC-1.
Conclusion: ZG02 improve hepatic glucose metabolism and insulin sensitivity via activa-
tion AMPK/Sirt1 signaling pathways in type 2 diabetes mice model.
Keywords: type 2 diabetes, glucose metabolism, ZG02, AMPK, high fat

Introduction
Type 2 diabetes mellitus (T2DM)1 is a chronic metabolic disease,2,3 mainly character-
ized by relative insulin deficiency caused by pancreatic β-cell dysfunction and insulin 
resistance in target organs.4 T2DM is the leading cause of morbidity and mortality 
worldwide and a major economic burden.5 The prevalence of T2DM is increasing year 
by year due to the global rising tide of obesity, physical inactivity, and caloric excess.6 

Recently, a survey estimated that there will be more than 700 million people (aged -
18–99 years) suffering from diabetes in nearly all countries by the year 2045.7 

Currently, the majority of oral hypoglycemic drugs, such as sulfonylureas8 (SUs), 
meglitinides9 (glinides), thiazolidinediones10 (TZDs), α-glucosidase inhibitors,11 glu-
cagon-like peptide (GLP)-1 receptor (GLP-1R) agonists,12 dipeptidyl peptidase 
(DPP)-4 inhibitors,13 and sodium glucose transporter14 (SGL). Although treatment 
of diabetes has a hypoglycemic effect, it has demonstrated side effects and adverse 
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reactions. Hence, treatment of diabetes used for the major 
research areas is discovering and developing alternate drugs 
with fewer side effects.

The liver is a particularly important metabolic organ for 
controlling blood glucose and ~90% of endogenous glucose 
is produced by the hepatic system.15 It can maintain blood 
glucose balance by regulating various pathways such as 
gluconeogenesis,16,17 glycogenolysis,18,19 glycogen synth-
esis and glycolysis.20 Numerous studies show that gluco-
neogenesis contributes approximately half of the total 
hepatic glucose production (HGP) in humans following an 
overnight fast and inhibition of hepatic gluconeogenesis can 
significantly improve blood glucose in individuals with 
T2DM.21–23 Our previous work has revealed that 
a tetrahydrocarbazole derivatives compound ZG0224,25 

(Figure 1) improves glucose metabolism via inhibition of 
gluconeogenesis in HepG2 cells.26,27 Nevertheless, the anti-
diabetic effect of ZG02 in vivo and its potential underlying 
mechanisms is still unclear. Consequently, this study 
attempted to demonstrate the potential of the antidiabetic 
effects of ZG02 and their underlying mechanisms in high- 
fat diet/streptozotocin (STZ)-induced T2DM mice.

Materials and Methods
Materials
Streptozotocin (S0130, 500 mg) was purchased from Sigma- 
Aldrich Co. (St Louis, MO, USA). Primary antibodies to 
AMPK (ab131512), p-AMPK (ab45174), Sirt1 (ab110304), 

and PGC-1α (ab191838) were purchased from Abcam 
(Cambridge Science Park, Cambridge, UK). Anti-rabbit IgG 
(no. 5151) and anti-mouse IgG (no. 5257) were purchased 
from CST (Cell Signaling Technology, Inc., Danvers, MA, 
USA). Mouse insulin (INS) ELISA kit (CSB-E05071m) was 
purchased from CUSABIO (Wuhan, China). Compound 
ZG02 (Figure 1) was synthesized in our lab.

Animals
Five-week-old male C57BL/6 mice (20±2 g) were sup-
plied by the Experimental Animal Centre of Guizhou 
Medical University (permissions SYXK, 2019–0001). All 
the mice were fed with standard food and water under 
constant environment with 25±2°C and 12/12 h light/ 
dark cycle (light on at 08:00 am) and adaptively raised 
for a week before experiments. All experiments and pro-
cedures were carried out according to the Regulations of 
Experimental Animal Administration issued by the State 
Committee of Science and Technology of China.

Diet/Streptozotocin-Induced Type 2 
Diabetes Model
After acclimation for a week, C57BL/6 mice were randomly 
separated into two groups. Control group (n=10) was fed with 
normal diet containing 10% kcal fat and the model group 
(n=20) was fed with high-fat diet consisting of 60% kcal fat 
(D12492, Research diets, BioPike, China). For the establish-
ment of a C57BL/6 mice model of T2DM, streptozotocin 

Figure 1 ZG02 chemical formula.
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(STZ) (25 mg/kg−1 dissolved in 100 mM citrate buffer (pH 
4.4), once every other day, four times) was injected intraper-
itoneally (ip) after eight weeks of high-fat diet. The control 
group were given an identical volume of vehicle citrate 
buffer. At four weeks after STZ injection, the successfully 
established animal models (fasting blood glucose ≥200 mg/ 
dL or ≥11.1 mmol/mL) were randomly divided into the 
diabetic group (n=10) and ZG02 group (n=10). The ZG02 
group was administered ZG02 (30 mg/kg/day) by ip injection 
once a day for 14 days. The other group was concurrently 
administered an equivalent dose of sterile water. Diabetic 
group and ZG02 group continued to be fed the high-fat diet. 
The experimental procedure is shown in Figure 2.

Blood Glucose and Oral Glucose 
Tolerance Tests
For measurement of fasting blood glucose (FBG) levels, 
mice were fasted overnight for 16 h and FBG levels were 
obtained from a small drop of blood from tail snip using 
a Glucometer (Yuwell, Jiangsu, China). The oral glucose 
tolerance test (OGTT) was performed by glucose gavage 
with 50% 2 g·kg–1 at 30 min after mice fasted overnight 
for 16 h. The blood glucose levels were determined at 0.5, 
1, or 2 h after glucose loading, and OGTT was expressed 
by the area under curve (AUC).

ELISA Determination of Insulin
For measurement of fasting blood insulin levels, mice were 
fasted overnight for 16 h and blood was collected from the 
caudal vein. Plasma insulin levels were detected by insulin 
ELISA kit (CUSABIO, Wuhan, China) according to kit 
instructions. The Homeostasis Model Assessment of IR 
(HOMA-IR) has proved to be a robust tool for the surrogate 
assessment of insulin resistance.28 HOMA-IR can be calcu-
lated with the following formula: HOMA-IR index=fasting 
glucose (mmol/L)×fasting insulin (mU/L)/22.5.29,30

Western Blotting
The liver tissues were homogenized in RIPA lysis buffer and 
the sample maintained on ice for 60 min. The homogenate 
was collected and centrifuged at 12,000×g for 30 min at 4°C. 
The final supernatant was stored at −80°C until further use. 

The protein concentrations of the supernatants were ana-
lyzed by the BCA protein assay kit (Beyotime).

The supernatants were diluted to 40 μg/lane with sample 
buffer and heated at 95°C for five minutes. The protein 
mixtures were loaded on a SDS-PAGE gel. The separated 
proteins were transferred to the PVDF membrane (Millipore, 
Billerica, MA, USA). The membranes were blocked by 5% 
nonfat milk in TBST for two hours, followed by probing with 
primary antibodies at 4°C overnight in 2% nonfat milk- 
TBST: anti-AMPK (1:2000), anti-p-AMPK (1:3000), anti- 
Sirt1 (1:1000), anti-PGC-1α (1:1000). Subsequently, the 
blots were incubated with anti-rabbit IgG or anti-mouse 
IgG for one hour at room temperature. The immunoreactivity 
was detected with infrared fluorescence and images captured 
by Odyssey Imagers (LI-COR Biosciences, USA). The rela-
tive quantity of protein expression was analyzed by the soft-
ware Image J and rectified by the reference protein β-actin.

Statistical Analysis
All the results are expressed as the mean ±SD. Inter-group 
statistical significance was determined by one-way 
ANOVA using STATA 14.0 (StataCorp, College Station, 
TX, USA) with a statistical significance set at p<0.05.

Results
Effects of ZG02 on Body Weight
The results showed that the weight was remarkably 
increased in diabetes group (p<0.01) compared to the 
control group. ZG02 treatment significantly restored the 
weight level compared to the diabetes group (p<0.05). The 
weight of each group is shown in Figure 3A.

Effects of ZG02 on FBG
The FBG levels of each group are shown in Figure 3B. 
Compared with control group, the levels of FBG were signifi-
cantly higher in the diabetes group (p<0.05). ZG02 treatment 
could decrease the FBG levels compared to the diabetes group.

Effects of ZG02 on OGTT
The OGTT was performed after an overnight fast (16 h) at 
week 15 of the experimentation. Following oral adminis-
tration of glucose, blood glucose levels reached a maximum 

Figure 2 The experimental procedure.
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at 15–30 min postglucose gavage in the control group, and 
then gradually decreased. Blood glucose levels in diabetic 
mice were significantly higher than in the control group at 0, 
15, 30, 60, and 120 min. After ZG02 treatment, the blood 
glucose levels in the ZG02 group were significantly lower 
than in the diabetes group at each time point (Figure 3C). 
The corresponding AUC profile in (Figure 3D) is shown in 
(Figure 3F). The AUC values of the diabetes group were 
obviously increase 220% compared with the control group. 
The AUC values of the ZG02 group were obviously 
reduced 67% compared with the diabetes group 
(Figure 3D).

Effects of ZG02 on Serum Insulin Levels 
and HOMA-IR
Compared with the control group, serum insulin levels were 
significantly increased in the diabetes groups (p<0.001). 
Serum insulin levels of the ZG02 group were reduce com-
pared with the diabetes group (Figure 3E). Similarly, the 
HOMA-IR in diabetes group were significantly 
increased compared with the control group (p<0.001). 
After ZG02 treatment, the HOMA-IR in the ZG02 group 
was significantly lower (p<0.001) compared with the dia-
betes group (Figure 3F). These results indicated that ZG02 
can ameliorate insulin resistance in diabetic mice.

Effects of ZG02 on the Activity of G6PC
Compared with the control group (Figure 3G), the activity 
of G6PC in the liver was significantly increased in the 

diabetes groups (p<0.001). After ZG02 treatment, the 
activity of G6PC in the ZG02 group was significantly 
lower than in the diabetes group (p<0.001).

Effects of ZG02 on the Levels of Protein 
of AMPK-SIRT1-PGC-1 Pathway
Compared with the control group (Figure 4A and B), the 
expression levels of phosphorylation AMPK, SIRT1 and 
PGC-1 were significantly decreased in the diabetes groups 
(p<0.01, p<0.01, p<0.01). After ZG02 treatment, the 
expression levels of phosphorylation AMPK, SIRT1, 
FoxO1 and PGC-1 were significantly increased (p<0.01, 
p<0.01, p<0.01). The expression levels of total AMPK 
were not changed in each group.

Discussion
The aim of the present study was to assess the importance 
of tetrahydrocarbazole derivatives ZG02 in improving 
hepatic glucose metabolism and insulin sensitivity via 
activation AMPK/Sirt1/FoxO1/PGC-1α signaling path-
ways in mice on a high-fat diet with streptozotocin- 
induced type 2 diabetes.

AMPK (adenosine monophosphate-activated protein 
kinase) belongs to the RD (Arg-Asp) kinases.31 It is 
known as a serine/threonine kinase that functions as an 
intracellular energy sensor and has been implicated in 
the modulation of glucose and fatty acid metabolism. 
AMPK plays an important role in maintaining energy 
homeostasis and adaptive response to energy stress. It 

Figure 3 (A) The levels of weight in each group. (B) The levels of FBG in each group. (C) The levels of OGTT in each group. (D) The AUC values of each group. (E) The 
levels of blood insulin in each group. (F) The levels of HOMA-IR in each group. *p<0.01 vs control group; **p<0.05 vs diabetes group. (G) The activity of G6PC in the liver in 
each group. *p<0.01 vs control group; ***p<0.01 vs diabetes group.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                           

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020:13 4336

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


is activated in response to energy stress by sensing 
increases in AMP/ATP and ADP/ATP ratios and restores 
energy balance by inhibiting anabolic processes that 
consume ATP, while promoting catabolic processes that 
generate ATP.32–35 Under conditions of low energy, 
AMPK phosphorylates specific enzymes and growth 
control nodes to increase ATP generation and decrease 
ATP consumption.The hydrolysis of ATP to ADP pro-
vides the energy for driving virtually all of the processes 
associated with living cells. Maintaining an adequate 
supply of energy is an essential requirement for survi-
val.AMPK plays an important role in maintaining energy 
homeostasis in eukaryotic cells.33,36 By activation of the 
AMPK, the pathway can improve the symptoms of type 
2 diabetes, and currently metformin is accepted treat-
ment for the syndrome caused by diabetes,37–41 and 
enhances insulin sensitivity by a decrease in the activity 
of AMPK-mediated signaling.42 The antidiabetic effect 
of the first-line antidiabetic medicine metformin is based 
on the activation of the AMPK system,43 SIRT1 is 
a NAD+-dependent protein deacetylases/deacylases that 
is frequently overexpressed in a wide variety of mechan-
isms of biological metabolism processes,44,45 phospho- 
AMPK can also lead to an increase in nicotinamide 
phosphoribosyltransferase (NAMPT) enzyme activity 
and thereby increasing NAD+/NADH ratio which in 
turn induces SIRT1.46,47 SIRT1 is a master repressor of 
inflammation in multiple organs including the liver. It 
was investigated whether liver SIRT1 deficiency in 
C57BL/6 mice had any impact on the high-fat diet/strep-
tozotocin-induced type 2 diabetes model responses.48 

SIRT1 will act on the AMPK pathway, and then regulate 
the glycogen synthesis and gluconeogenesis,49 PGC-1α 
(proliferator-activated receptor-γ coactivator 1α) is 
a direct substrate of SIRT1, maintained blood glucose 
concentration and insulin sensitivity by regulating the 
transcription of genes involved in glucose metabolism. 
Recent insight from different in vivo transgenic models 
clearly suggests that AMPK, SIRT1 and PGC-1a might 
act as an orchestrated network to improve metabolic 
fitness, dysregulation of these pathways will lead to 
metabolic diseases such as type 2 diabetes and obesity.

The current study found suggest that ZG02 could 
reduce the level of FBG, increase insulin sensitivity, and 
inhibit the enzyme activity of G6PC in high-fat diet/strep-
tozotocin-induced type 2 diabetes C57BL/6 mice in vivo. 
These significant effects of ZG02 were mediated by acti-
vation of the AMPK/SIRT1/PGC-1α signal pathway and 
the result was consistent with our previous study in HepG2 
cells. In addition, a large number of studies also have 
confirmed the therapeutic role of AMPK/SIRT1/PGC-1 
pathway in diabetes or its complications.

Taken together, our data demonstrate that ZG02 has 
a therapeutic potential for the treatment of type 2 diabetes 
can be attributed to its regulation of the activation of the 
AMPK/SIRT1/PGC-1α signaling pathway. These results 
will lay the foundation for future ZG02 into medicinal 
development.
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expression in each group. *p<0.01 vs Control group; **p<0.01 vs diabetes group.
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