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Background: Low back pain (LBP) is a very common condition and leads to serious pain, 
disability, and price tag all over the world. Intervertebral disk degeneration (IDD) is one of 
the major reasons that contributed to LBP. The levels of interleukin 1 beta (IL-1β) increase 
significantly in degenerative disks. IL-1β also accelerates IDD. Sinapic acid (SA) has the 
effect of anti-inflammatory, antioxidant and antimicrobial. However, the effect of SA on IDD 
has never been studied. Therefore, the aim of this study was to figure out whether SA has 
protective effect on nucleus pulposus (NP) cells and further explore the possible underlying 
mechanism.
Methods: The nucleus pulposus (NP) tissues of rats were collected and cultured into NP 
cells. The NP cells were stimulated by IL-1β and treated with SA. In vitro treatment effects 
were evaluated by ELISA, Western blot assay, immunofluorescence, TUNEL method and 
real-time PCR. We conducted percutaneous needle puncture in the rat tail to build inter
vertebral disk degeneration model and treated rats with SA. In vivo treatment effects were 
evaluated by hematoxylin and eosin (HE) and safranin O (SO) staining and magnetic 
resonance imaging (MRI) method.
Results: Our results showed that SA not only inhibited apoptosis but also suppressed 
inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxy
genase 2 (COX-2), inducible nitric oxide synthase (iNOS) interleukin 6 (IL-6) and tumor 
necrosis factor alpha (TNF-α) in IL-1β-stimulated NP cells. As to extracellular matrix 
(ECM), SA could increase collagen II and aggrecan levels and reduce the expression of 
MMP13 and ADAMTS5 during the stimulation of IL-1β. Furthermore, SA could activate 
nuclear factor-erythroid 2-related factor-2 (Nrf2) to inhibit nuclear factor κB (NF-κB) 
induced by IL-1β. Nrf2 knockdown partly reduced the protective effect of SA on NP cells. 
Correspondingly, SA ameliorated IDD by promoting Nrf2 expression. In vivo results also 
showed that SA could delay the progression of IDD.
Conclusion: In conclusion, we demonstrated that SA could protect the degeneration of NP 
cells and revealed the underlying mechanism of SA on Nrf2 activation in NP cells.
Keywords: intervertebral disk degeneration, sinapic acid, apoptosis, Nrf2, inflammation

Introduction
Low back pain (LBP) is a very common condition and leads to serious pain, 
disability, and price tag all over the world.1–3 LBP was the fifth leading cause of 
disability-adjusted life years (DALYs) among American populations in 2016 and 
the first leading cause of years lived with disability (YLD).4,5 About 50–85% of the 
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population has back pain at some point in their whole 
life.6,7 Previous studies have shown intervertebral disk 
degeneration (IDD) is one of the major reasons that con
tributed to LBP.8–10

Intervertebral disks are combined with three different 
tissues including the annulus fibrosus (AF), the nucleus 
pulposus (NP) and the endplates (EP) located above and 
below the NP.11 Extracellular matrix (ECM) produced by 
NP cells can sustains mechanical balance, so it is impor
tant in IDD.12,13 Previous studies pointed that inflamma
tion and apoptosis are the leading causes of IDD.14,15 As 
IDD progressed, some inflammation cytokines such as 
interleukin 1 beta (IL-1β) and tumor necrosis factor 
alpha (TNF-α) will increase significantly.16 The excessive 
increase of inflammation cytokines can promote the degra
dation of collagen and aggrecan and the generation of 
matrix metalloproteinases (MMPs) which can promote 
the degradation of ECM.14,17 In addition, IL-1β also can 
induce several inflammatory mediators including cycloox
ygenase 2 (COX-2), nitric oxide (NO), prostaglandin E2 
(PGE2), NO synthase (NOS), a disintegrin and metallo
proteinase thrombospondin motifs (ADAMTS).18 These 
inflammatory mediators can further impair the ECM. 
Increased proinflammation cytokines also promote apop
tosis of NP cells, which contributes to the leakage of NP 
cells and the reduction in ECM synthesis.19 These results 
all can accelerate the process of IDD. Therefore, inhibiting 
the apoptosis, rebalancing NP microenvironment and 
reducing the excessive inflammation response can 
effectively treat and prevent IDD. Moreover, nuclear fac
tor-erythroid 2-related factor-2 (Nrf2) has the effect of 
antioxidant and anti-inflammatory in many degenerative 
diseases. Previous studies pointed that activating the Nrf2/ 
HO-1 signaling pathway can inhibit NF-κB to NP 
cells.20,21 So, promoting the expression of Nrf2 may be 
useful in treating IDD.

Sinapic acid (SA), having various biological activities, 
is widespread in the plant kingdom. It had been proved 
that SA has the effect of anti-inflammatory, antioxidant 
and antimicrobial.22–24 Previous studies showed that SA 
could suppress the inflammation response through NF-κB 
inactivation.24,25 In addition, SA could lead to NF-κB 
inactivation by activating the Nrf2/HO-1 pathway.26 

However, the effect of SA on NP cell dysfunction has 
never been studied. Therefore, the aim of this study was 
to figure out whether SA has anti-apoptosis and anti- 
inflammatory effects on IL-1β-stimulated NP cells and 
further explore the possible underlying mechanism.

Materials and Methods
Ethics Statement
The protocol of this study was strictly in accordance with 
the principles of Animal Care and Use Committee of 
Wenzhou Medical University. This study was approved 
by Wenzhou Medical University (wydw2014-0129).

Reagents and Antibodies
Sinapic acid (purity ≥98%), IL-1β, dimethylsulfoxide 
(DMSO), collagenase II and carboxymethylcellulose 
were purchased from Sigma Chemical Co. (St. Louis, 
MO, USA). We dissolved SA into 0.5% carboxymethyl
cellulose sodium to product oral suspension. The primary 
antibodies against aggrecan, ADAMTS 5, collagen II, β- 
actin, MMP13, HO-1, Nrf2 and lamin B1 were acquired 
from Abcam (Cambridge, UK). The antibodies of Bax, 
Bcl-2, iNOS, COX-2, cleaved-caspase 3, p65 and IκBα 
were purchased from CST (MA, USA). Second antibody, 
including Alexa Fluor 488 and 594, was purchased from 
Abcam. The 4ʹ,6-diamidino-2-phenylindole (DAPI) was 
acquired from Beyotime (Shanghai, China).

Isolation and Culture of NP Cells
Fifteen 4-weeks-years old SD rats were randomly selected 
and then euthanized by an overdose of sodium pentobar
bital. NP tissues were collected from tails. Then, the 
tissues were digested by 0.1% collagenase II (2 mg/mL) 
for 4 h at 37°C. The NP tissues were transferred into 
Dulbecco’s modification of Eagle’s medium (DMEM)/ 
F12 (Gibco, Invitrogen, Grand Island, NY) mixed with 
15% fetal bovine serum (FBS; Gibco, Invitrogen, Grand 
Island, NY) and antibiotics (1% penicillin/streptomycin) in 
the incubator at 5% CO2 at 37°C.

After incubation for 24 h, the medium was first chan
ged. When confluent, the NP cells were harvested by 
0.25% Trypsin-EDTA (Gibco, Invitrogen). Next, NP cells 
were passed into 10-cm culture plates with an appropriate 
density, approximately 120,000 cells a plate. The complete 
medium was changed every 2–3 days. We used the first 
two and three passage NP cells in our study.

Cell Viability Analysis
The cytotoxicity of SA on NP cells was determined by 
Cell Counting Kit-8 (CCK-8; Dojindo Co., Kumamoto, 
Japan) according to the protocol. NP cells were treated 
with SA for 24h and then washed by phosphate-buffered 
saline (PBS) for one time. Next, 100 μL DMEM/F12 
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contained with 10 μL CCK-8 solution was added to every 
well of the plate for 2 h at 37°C. Finally, the absorbance 
was measured at 450 nm by using micro-plate reader. All 
experiments were performed three times.

Immunofluorescence
NP cells were seeded on slices in glass plates in a six- 
well plate with the density of 3 × 105 cells/mL and 
incubated for 48 hours. Glass coverslips with NP cells 
were washed three times in PBS before fixation using 4% 
paraformaldehyde for 15 minutes and then followed with 
permeation using 0.5% Triton for 5 minutes at room 
temperature. Next, cells were blocked by 10% bovine 
serum albumin for 1 h at 37°C. Cells were washed by 
PBS and incubated with primary antibodies including 
collagen II (1:200), P65 (1:200) and MMP-13 (1:200) 
in a humid chamber overnight at 4°C. On the next day, 
NP cells were incubated with Alexa Fluor®488 labeled 
conjugated second antibodies (1:400) for 1 h at 37°C. 
Then the nuclear was labeled by DAPI for 5 min. Finally, 
images were captured by using fluorescence microscope, 
and then the quantification of fluorescence intensity was 
calculated by Image J software 2.1 (Bethesda, MDUSA) 
by double-blinded observers who did not know the 
experimental groups.

Western Blot Assay
The protein of NP cells was extracted using RIPA lysis 
buffer containing with 1 mM PMSF (phenylmethanesulfo
nylfluoride). BCA Protein Assay Kit (Beyotime) was used 
to measure the concentration of protein. Next, sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- 
PAGE) was used to separate the protein and then trans
ferred to a polyvinylidene difluoride membrane (Bio-Rad, 
USA). After the PVDF membranes blocked with 5% non
fat for 2 hours at room temperature, the membranes were 
incubated with the primary antibodies including iNOS 
(1:1000), COX-2 (1:1000), cleaved caspase 3 (1:1000), 
Nrf2 (1:500), HO-1 (1:5000), Lamin-B (1:1000), 
GADPH (1:1000), Bax (1:1000), Bcl-2 (1:1000), collagen 
II (1:1000), aggrecan (1:1000), ADAMTS-5 (1:1000), 
MMP13 (1:1000), IκBα (1:1000) and p65 (1:1000) over
night at 4°C. Next day, the membranes were washed and 
incubated by secondary antibodies (1:3000) at room tem
perature. The blots were detected by electro chemilumi
nescence plus reagent (Invitrogen) and the intensity was 
quantified using Image Lab 3.0 software (Bio-Rad).

TUNEL Method
The NP cells adhered to glasses were fixed by 4% paraf
ormaldehyde for 15 min and then washed by PBS three 
times. Next, NP cells were incubated with 0.1% Triton for 
10 min at 4°C. Then, NP cells were stained with in situ 
Cell Death Detection Kit (F. Hoffmann-La Roche Ltd., 
Basel, Switzerland) for one hour. Nuclear was stained 
with DAPI after washing for three times by PBS in the 
dark space. Finally, fluorescence microscope (Olympus) 
was used to observe apoptotic changes and images of 
apoptotic cells.

Real-Time PCR
To extract total RNA from NP cells, TRIzol method 
(Invitrogen, USA) was used. RNA was reversed to com
plementary DNA (cDNA) and cDNA was amplified by 
using Prime Script-RT Reagent Kit and SYBR Premix 
Ex Taq (Sangon, Shanghai, China). As previous study 
described, the ∆∆Ct method was used to measure the 
expression of target genes in different groups.27 The pri
mers of COX-2 (F) 5′-GAGAGATGTATCCTCCCAC 
AGTCA-3′ (R) 5′ -GACCAGGCACCAGACCAAAG-3′; 
IL-6 (F) 5′-GACAGCCACTCACCTCTTCA-3′, (R) 5′- 
TTCACCAGGCAAGTCTCCTC-3′; iNOS (F) 5′-CCT 
TACGAGGCGAAGAAGGACAG-3′, (R) 5′-CAGTTTGA 
GAGAGGAGGCTCCG-3′ and TNF-α (F) 5′-GTCAGA 
TCATCTTCTCGA ACC-3′, (R) 5′-CAGATAGATGGGC 
TCATACC-3′ refer to a previous study.28

The Measurement of NO, PGE2, TNF-α, 
and IL-6
We obtained cells culture supernatants, and then we used 
Griess reagent to measure the NO level. Enzyme-linked 
immunosorbent assay (ELISA) Kits (R&D Systems, 
Minneapolis, MN) was used to measure the level of 
TNF-α, PGE2 and IL-6 according to the protocol. All 
experiments were conducted five times.

Surgical Procedure
Forty-five SD rats (about 200–250 g) were randomly classi
fied into three groups which including control group (n = 12), 
IDD group (received a gavage of saline after surgery, n = 12), 
and SA group (received a gavage of SA after surgery, n = 12). 
IDD group and SA group rats were anesthetized by 2% (w/v) 
pentobarbital (40 mg/kg).The specific level of rat-tail disc 
(Co7/8) was located by palpation on the coccygeal vertebrae 
and the disc location was confirmed with an X-ray radiograph. 
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Needles (27 G) were applied to puncture the AF through the 
tail skin perpendicularly, and the depth of the puncture was 
4 mm according to the previous study.29 Needles were held 
for 1 min. After surgery, rats in SA group received a gavage of 
SA (20 mg/kg/day) and rats in IDD and control group 
received a gavage of 0.5% carboxymethylcellulose sodium 
every day until the rats were sacrificed.

Hematoxylin and Eosin (HE) Staining and 
Safranin O–Fast Green Staining
We harvested the intervertebral disks on 8 weeks post- 
surgery. The SD rats were sacrificed by injecting 10% pen
tobarbital for overdosage. The specimens were fixed in 4% 
paraformaldehyde for 48 h and then decalcified for more 
than one month. After that, we dehydrated and embedded in 
paraffin. The sample was cut into small sections with 5 μm 
thick. HE and Safranin O–fast green staining was used to 
assess the level of disk degeneration. The cellularity and 
morphology of NP cells and the construction of interverteb
ral disk were assessed by three double-blinded histology 
professors by using a microscope (Leica). Then the histol
ogy score was assessed according to a grading scale as 
previous study described.30,31

Magnetic Resonance Imaging (MRI)
The rats were given the MRI examination at 8 weeks after 
surgery to evaluate the IDD. First, rats were anesthetized 
by intraperitoneal injection of 10% pentobarbital (40 mg/ 
kg). Then, rats were maintained at prone position for 
examination. The MRI mode was the finger-specific coil. 
3.0 T MRI (Philips Intera Achieva 3.0MR) was examined 
for all rats to evaluate the structural and signal and 
changes in sagittal T2-weighted images. The degree of 
IDD was evaluated by Pfirrmann grading system.32

Statistical Analysis
All experiments were performed at least three times. The 
results were shown as mean ± standard deviation (S.D). 
Data were analyzed by one-way analysis of variance 
(ANOVA) followed by the Tukey’s test or t-tests for com
parison between control and treatment groups. Categorical 
variables (Pfirrmann grading) were analyzed by the 
Kruskal–Wallis H-test. All statistical analysis was con
ducted in SPSS software (version 18; IBM Corp., USA). 
We considered P value <0.05 as statistically significant.

Results
Potential Cytotoxicity of SA and Its Role 
as a Cytoprotectant in NP Cells
Figure 1A provides the chemical structure of SA (4-hydroxy- 
3,5-dimethoxy cinnamic acid). The viability of NP cells was 
assessed by the CCK-8 assay at different concentrations and 
the results are shown in Figure 1B. The viability of NP cells 
was unaffected when the concentration of SA was under 150 
μM. When we added both IL-1β and SA into NP cell med
ium, we found SA can partially reversed the effect of IL-1β 
(Figure 1C). Comprehensively analysis of these two results, 
we found that 50–100 μM was the most effective concentra
tion of SA to protect NP cells. Thus, we chose SA at con
centrations of 50 and 100 μmol/L for further study.

SA Protects NP Cells Against IL-1β- 
Induced Apoptosis
In degenerative NP tissues, the level of IL-1β which promotes 
the apoptosis increases significantly.33 In this study, we pre
treated NP cells with SA and then treated with IL-1β for 24 
h to simulate the inflammatory factors involved in IDD. The 
results of TUNEL showed that apoptosis increased during IL- 
1β treatment in NP cells, but SA could partially decrease IL- 

Figure 1 Effects of SA on the cell viability of nucleus pulposus (NP) cells. (A) Chemical structure of SA. (B) The cytotoxic effect of SA on NP cells was determined at 
various concentrations for 24 h using a CCK-8 assay. (C) The cytotoxic effect of SA on NP cells was determined at various concentrations with interleukin 1 beta (IL-1β) 
stimulation using a CCK-8 assay. All experiments were performed at least three times, and the data in the figures represent the mean ± S.D. **P < 0.01 compared with 
control group.
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1β-induced apoptosis (Figure 2A and B; p < 0.01). The 
Western blot results also provided a similar result. When 
compared with IL-1β-treated group, treating with SA could 
significantly increase the level of Bcl-2 (an anti-apoptotic 
protein) and reduce the levels of cleaved caspase 3 and Bax 
(both pro-apoptotic proteins) on NP cells (Figure 2C–F; p < 
0.01). Therefore, we can draw a conclusion that SA has an 
anti-apoptotic effect on NP cells.

SA Inhibited the Expression Levels of 
iNOS, COX-2, PGE2, NO, TNF-α, and IL- 
6 in IL-1β-Stimulated NP Cells
We further investigated the effect of SA on the production of 
COX-2 and inducible nitric oxide synthase (iNOS). We mea
sured both the protein and mRNA levels of and COX-2 and 
iNOS by using reverse Western blot analysis and 

transcription–polymerase chain reaction (RT-PCR) analysis, 
respectively. We found that SA suppressed the expression of 
COX-2 and iNOS mRNA and protein on NP cells after 
stimulation of IL-1β (Figure 3A, B, E, F and G). The ELISA 
and RT-PCR analysis also pointed that SA inhibited the gen
eration of interleukin-6 (IL-6) and TNF-α (Figure 3C, D, J and 
K). Furthermore, SA also could suppress the production of NO 
and PGE2 (Figure 3H and I). In summary, the above results 
showed that SA inhibited the production of inflammatory 
cytokines and mediators. (All results’ p value <0.01).

SA Protects NP Cells Against ECM 
Degradation Induced by IL-1β
Then we researched the effect of SA in inhibiting ECM 
degradation. The Western blot results suggested that SA 
markedly inhibited IL-1β-induced degeneration of main 

Figure 2 SA inhibit IL-1β induced apoptosis in nucleus pulposus cells. NP cells treated with various concentration of SA for 24 h within IL-1β stimulation. (A) Apoptosis 
cells were measured in nucleus pulposus cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Kit (original magnification × 200). (B) Three images 
were randomly selected, and the number of cells with green fluorescence was quantified. (C) The protein expression of cleaved-caspase 3, Bax, and Bcl-2 evaluated by 
Western blot in nucleus pulposus cells. (D–F) Quantification of immunoblots of cleaved-caspase 3, Bax, and Bcl-2, and each band was normalized to each individual sample’s 
housekeeping gene. The experiment was repeated three times, with a representative example shown. All experiments were performed at least three times, and the data in 
the figures represent the mean ± S.D. ##P < 0.01 compared with control group. **P < 0.01 and ***P < 0.001 compared with IL-1β group.
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components of the ECM including collagen II and aggrecan 
(Figure 4A–C). The generation of MMP13 and ADAMTS5, 
which are involved in the degradation of the ECM (Figure 
4A, D and E; p < 0.01). Furthermore, the immunofluores
cence of collagen II and MMP13 showed that the above 
proteins were mainly localized at cytoplasm. After IL-1β 
treating, the fluorescence intensity of collagen II decreased, 
while that of MMP13 increased following. After treatment 
with SA, we could find the trend was partially reversed 
(Figure 4F–I; p < 0.01). In general speaking, we found that 
SA promoted the synthesis and inhibited the degradation of 
the ECM against IL-1β-induced IDD.

SA Regulates IL-1β-Induced NF-κB 
Activation in NP Cells
Previous studies pointed that IDD was associated with inflam
mation and NF-κB was an important factor in the inflamma
tion response.34,35 According to Western blot analysis, after 
IL-1β stimulating, we found the production of several inflam
mation-related proteins (eg, IκBα and NF-κB (p65)) increased. 
The degradation IκBα, an upstream target of NF-κB, 

contributes to the activation of the NF-κB pathway. As 
shown in Figure 5A–C, stimulation of IL-1β increased the 
degradation of IκBα in the cytoplasm of the NP cells and the 
expression of p65 in the nucleus. Furthermore, we found that 
SA could inhibit expression of p65 and IκBα degradation of 
NP cells to inhibit the activation of NF-κB. Besides, the results 
of immunofluorescence showed IL-1β stimulation increased 
nuclear translocation of p65 (Figure 5D). However, treatment 
with SA could significantly reverse this phenomenon (Figure 
5D and E). These findings suggest that SA significantly inhib
ited the activation of NF-κB in NP cells.

SA Regulates IL-1β-Induced NF-κB 
Activation and Apoptosis via Nrf2 
Signaling in NP Cells
The results of Western blot analysis revealed that SA 
increased the expression of HO-1 in the cytoplasm and 
the expression of Nrf2 in the nuclei. After stimulating by 
IL-1β, there was no significant increase in the levels of 
Nrf2 and HO-1 (Figure 6A–C; p > 0.05). After pre- 

Figure 3 SA inhibits inflammatory response in nucleus pulposus cells. Nucleus pulposus cells treated with various concentration of luteoloside for 24 h within IL-1β 
stimulation. (A–D) The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL- 
6) were measured by real-time Q PCR. (E) The protein expressions of iNOS and COX-2 in NP cells treated as above were evaluated by Western blot. (F–G) Quantification 
of immunoblots of iNOS and COX-2. The experiment was repeated at least three times, with a representative example shown. (H–K) IL-1β-induced PGE2, nitrite, TNF-α, 
and IL-6 production were measured by ELISA with SA in a dose-dependent manner in NP cells. All experiments were performed at least three times, and the data in the 
figures represent the mean ± S.D. ##P < 0.01 compared with control group. **P < 0.01 compared with IL-1β group.
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transfected with small interfering RNA for Nrf2 (Nrf2- 
siRNA), the expression level of Nrf2 was significantly 
decreased, and the expression level of P65 was subse
quently increased in the nuclei of the NP cells during 
stimulation with IL-1β (Figure 6D, F and G). Besides, in 
the NP cells which had been pre-transfected with Nrf2- 
siRNA, the production of cleaved caspase 3 (a marker of 
apoptosis) markedly increased while the expression of 
HO-1 was significantly decreased (Figure 6H and I; 
p < 0.01). In conclusion, the Nrf2/HO-1 pathway is 
involved in SA induced apoptosis inhibition and NF-κB 
signaling suppression.

SA Ameliorates IDD in a Puncture-Induced 
Rat Model
We established an IDD rat model to assess the effects of 
SA on IDD in vivo. We used MRI to evaluate the degen
eration degree of IDD in the rats. The MRI images showed 
that the disks of IDD group were inhomogeneous and with 
an intermittent gray signal intensity. However, the results 
of SA treated group showed a hyperintense white signals 
in the disks (Figure 7A). Furthermore, whether at 8 weeks, 
the Pfirrmann scores were significantly lower in the SA 
treated group when compared with IDD group (Figure 

Figure 4 Effect of SA inhibit IL-1β induced extracellular matrix degradation in nucleus pulposus cells. (A) Protein expressions of collagen II, aggrecan, MMP13, and 
ADAMTS5 in NP cells treated as above were evaluated by Western blot. (B–E) Quantification of immunoblots of collagen II, aggrecan, MMP13, and ADAMTS5. (F) The 
representative collagen II was detected by the immunofluorescence combined with DAPI staining for nuclei (original magnification ×400, scale bar: 25 μm). (G) The 
representative MMP13 were detected by the immunofluorescence combined with DAPI staining for nuclei (original magnification ×400, scale bar: 25 μm). (H) The 
fluorescence intensity of collagen II was analyzed by Image J. (I) The fluorescence intensity of MMP13 was analyzed by Image J. All experiments were performed at least three 
times, and the data in the figures represent the mean ± S.D. ##P < 0.01 compared with control group. **P < 0.01 compared with IL-1β group.
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7C). As shown in Figure 7B, HE staining showed that the 
normal structure of the NP had almost gone in the IDD 
group. However, the normal structure and the shape of the 
NP tissues were still clearly visible in the SA group. As 
shown in the results of Safranin O (SO) stain, it was 
obvious that both the and the ECM and normal structure 
of the NP were better preserved in the SA group. The 
histologic score is shown in Figure 7D.

Discussion
IDD is significantly associated with an increased risk for 
LBP which was one of the most common causes of loss of 

labor capacity and quality of life.36–38 Therefore, it is 
urgent to figure out an effective therapy that delays or 
even reverses IDD. Due to inflammatory cytokines (eg, 
IL- 1β) play a critical role in the progression of IDD.39,40 

In addition, many plant-derived compounds including SA 
have antioxidant and anti-inflammatory properties and 
with minor side effects. Therefore, in our study, we tried 
to demonstrate the superior effect of SA in treatment for 
IDD. The results showed that SA protected NP cells via 
the Nrf2/HO-1 signaling axis and ameliorates the progres
sion of IDD in vivo (Figure 8).

According to recent studies, many critical factors are 
strongly associated with the progression of IDD, especially 

Figure 5 Effect of SA on IL-1β-induced NF-κB activation. NP cells were pretreated with SA for 24 h and then were treated with IL-1β for another 24 h. (A) The protein 
expressions of IκBα in cytoplasm and p65 in nuclear in NP cells treated as above were visualized by Western blot. (B–C) Quantification of immunoblots of IκBα and p65. (D) 
The nuclei translocation of p65 was detected by the immunofluorescence combined with DAPI staining for nuclei (original magnification ×400, scale bar: 25 μm). (E) 
Intensity of p65 in nuclear of NP cells was quantified. All experiments were performed at least three times, and the data in the figures represent the mean ± S.D. ##P < 0.01 
compared with control group. **P < 0.01 compared with IL-1β group.
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inflammation response, ECM degradation and apoptosis of 
NP cells.41,42 IL-1β, one of the most important inflamma
tion cytokines, is considered to cause and accelerate the 
progression of IDD.14 After we used IL-1β to stimulate the 
NP cells, we found that it could trigger the inflammation 
response, increase apoptosis of NP cells and promote the 
degeneration of the ECM. Besides, it also activated the 
NF-κB signaling pathway. Chen et al pointed that with the 
increase of apoptosis of NP cells, the synthesis of collagen 
II and aggrecan reduced, thereby accelerating the progres
sion of IDD.29 Therefore, inhibiting excessive NP cell 

apoptosis could slow the progression of IDD.43,44 In this 
study, the results of TUNEL and Western blots showed 
that SA could reduce excessive apoptosis of NP cells.

Risbud et al pointed that the upregulated pro- 
inflammatory cytokines such as IL-1β, TNF-α and IL-6 
can lead to the progression of IDD.14 Besides, iNOS and 
COX-2 both could stimulate the generation of MMPs and 
accelerate the ECM degradation.27 So, the increase of 
TNF-α, IL-6, iNOS and COX-2 in NP cells all can accel
erate the development of IDD. In our study, we showed 
that SA can reduce the generation of TNF-α, IL-6, iNOS 

Figure 6 Effect of SA on nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/HO-1 pathway. (A) The protein expressions of Nrf2 in nuclear and HO-1 in cytoplasm in NP cells 
treated as above were visualized by Western blot. (B and C) Quantification of immunoblots of Nrf2 and HO-1. (D and E) After Nrf2 knockdown, the protein expressions of 
Nrf2 and p65 in nuclear and HO-1 and cleaved caspase 3 in cytoplasm in NP cells treated as above were visualized by Western blot. (F–I) Quantification of immunoblots of 
Nrf2, p65, HO-1, and caspase 3. (J) The production of PGE2, nitrite MMP13 and collagen ll was assessed by ELISA. All experiments were performed at least three times, and 
the data in the figures represent the mean ± S.D. **P < 0.01 compared with IL-1β group.
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and COX-2 in NP cells to decrease the degradation of 
ECM during the stimulation of IL-1β.

It is well known that activation of NF-κB signaling path
way is involving in the pathophysiological progression of 
IDD.45,46 The NF-κB signaling pathway is involving in 
synthesis of pro-anabolic proteins (eg, aggrecan and collagen 
II) and proteinases in NP cells.47 The stimulation of IL-1β 
firstly triggers the release of phosphorylation of IκBα and 
p65 which translocated from the cytoplasm to the nucleus. 
NF-κB is highly activated in the nucleus in diverse diseases. 
NF-κB can promote the transcription of chemokines, adhe
sion molecules, proinflammatory cytokines, Cox-2, iNOS 
and MMPs, which can contribute to the decrease of the 
ECM. This study also revealed that SA inhibited NF-κB to 
reduces the generation of matrix-degrading proteases and 
inflammatory cytokines, mediators. More specifically, it 
was via the NF-κB signaling pathway.

Previous studies pointed that the Nrf2/HO-1 pathway 
plays a critical role in many inflammatory diseases.48,49 

The absence of Nrf2 always increased the risk of 

inflammatory disorders.50 The level of p65-NF-κB protein 
increased significantly in Nrf2-deficient cells.51 Furthermore, 
Nrf2 can inhibit the activation of NF-κB pathway. A recent 
study pointed that Nrf2 activation could prevent IDD pro
gress via inhibiting excessive apoptosis and inflammatory 
response.21 In the present study, we found SA inhibited the 
IL-1β-induced excessive apoptosis and inflammatory 
response via the activation of Nrf2 in NP cells. In addition, 
the results of in vivo results also confirmed our above results 
that SA do prevent IDD progress.

In conclusion, the present study demonstrated that SA 
could protect NP cells by inhibiting inflammation response, 
apoptosis and ECM degradation in NP cells. SA also can 
maintain the normal structure of intervertebral disk in vivo. 
Besides, these protective effects of SA in NP cells were by 
activating the Nrf2/HO-1 signaling axis. Therefore, SA may 
be a natural and effective therapeutic medicine which can 
delay the progression of IDD. However, there was no effec
tive therapeutic strategy for treating IDD nowadays. Our 
study showed that SA may be an effective therapeutic 

Figure 7 SA treatment ameliorates rat intervertebral disk degeneration (IDD) in vivo. Rat IDD model was established by stabbing the whole layer of annulus fibrosus (AF) 
through the tail skin using needles (27G) for 1 min. Rats in SA group received a gavage of SA (20 mg/kg/day) and rats in IDD and control group received a gavage of 0.5% 
carboxymethylcellulose sodium every day until the rats were sacrificed. At 8-week degenerated disks were evaluated under MRI and stained with hematoxylin and eosin 
(HE) and safranin O (SO). (A) T2-weighted MRI of a rat tail with a needle-punctured disk at 8 weeks post-surgery (white arrow: location of the needle-puncture disk). (B) 
Representative HE staining and SO staining of disk samples from different experimental groups at 8 weeks post-surgery (original magnification ×40). Three sections were 
randomly selected for quantification, with a representative example shown. (C) The Pfirrmann MRI grade scores in three groups at week 8. (D) The histological grades 
evaluated at 8 weeks post-surgery in three groups. All experiments were performed at least three times, and the data in the figures represent the mean ± S.D. Significant 
differences between groups are indicated as **P < 0.01.
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medicine for IDD treatment. Besides, our results also demon
strated that Nrf2 may be a promising candidate for treat
ing IDD.
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