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Abstract: Allergic diseases are increasing at an alarming rate worldwide, particularly in 
developed countries. In contrast, there is a decrease in the prevalence of helminthic 
infections and other neglected diseases. The hygiene hypothesis elaborates parasitic infec-
tion, and allergy-associated diseases have an inverse relationship. Acute helminthic infection 
and allergic reaction stimulate Type 2 helper cells (Th2) immune response with up-regulation 
of cytokines IL-4-, IL-5-, and IL-13-mediated IgE and mast cell production, as well as 
eosinophilia. However, people who chronically suffer from helminthic infections are demar-
cated through polarized Th2 resulting in alternative macrophage activation and T regulatory 
response. This regulatory system reduces allergy incidence in individuals that are chronically 
diseased through helminth. As a result, the excretory-secretory (ES) substance derived from 
parasites and extracellular vesicular components can be used as a novel therapeutic modality 
of allergy. Therefore, the aim of this review meticulously explored the link between helminth 
infection and allergy, and utilization of the helminth secretome for therapeutic 
immunomodulation. 
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Introduction
Helminths are multicellular worms that colonize around 1/3 of the population of the 
globe, approximately two billion people are infected.1 It is more pronounced in 
low-income countries like sub-Saharan Africa, including Ethiopia.1,2 In the devel-
oping world, inadequate water supply, crowded living conditions, lack of health 
care access, and a low level of education makes people more vulnerable to 
helminthic infection. Many scholars have shown that in developing countries 
helminthic infection is still endemic while the allergic disease is rare.3,4 It is widely 
spread in tropical rural children due to poor sanitation.5 Although helminthic 
infections are a global concern, some species may be found only in particular 
regions. The problem may even vary in different regions within a certain country. 
Typical examples are Schistosoma spp. (S. haematobium, S. mansoni, and 
S. japonicum) is more commonly found in sub-Saharan Africa/South America 
and East Asia, whereas filarial (Wuchereria bancrofti, loa loa, onchocerciasis, 
and Brugia malayi) are highly prevalent in Southeast Asia.6 Together, these 
parasite's infections cause anaemia, stunted growth, cognitive impairment, fatigue, 
infertility, liver fibrosis, and bladder cancer.7

In contrast, the developed world now faces different health problems, mainly 
cardiovascular disease, metabolic disease, hyperinflammatory disease, and 
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associated autoimmunity.8 In the last twenty years, hyper-
sensitive illnesses, such as asthma/wheeze, allergic rhinitis 
(AR), or eczema, the so-called “allergic diseases” have 
become highly prevalent in the developed world.9

The increased prevalence of allergy is associated with 
a sanitized living environment of the industrialized world 
rather than genetic variables, the phenomenon is called 
hygiene hypothesis.10 At the same time, allergic disease 
increase as lifestyle become more urbanized in low- 
income countries. Many research hypotheses elaborate 
that allergic hyper-reactivity is due to dysregulated muco-
sal Th2 response reaction to decreased Th1 response.11,12 

In fact, some of the latest clinical and epidemiological 
reports show that there is a reverse correlation of hel-
minthic infection with allergy. The common feature 
between helminthic infection and allergy is the elevation 
of immunoglobin E (IgE) due to the sensitization of the 
Th2 immune response along with interleukins, such as IL- 
4, IL-5 and IL-13 cytokine synthesis.13 In helminthic 
infection, this is usually rare, toughly regulated antibody 
Isotype is significantly elevated. It is commonly recog-
nized that IgE receptors and inimitable cellular response 
did not involve the targeting of offensive particles in 
pollen, dust mites, and animal dander.

Indeed, the IgE alliance has developed to combat hel-
minths, which are to be phagocytized and the allergy in 
a hypersensitive individual is a misdirected anti-parasite 
reaction.14 An allergy happens in individuals with atopy; 
which is a response of hypersensitivity caused by either 
antibody or cell-mediated immunological mechanisms.14 

Inflammatory reactions that resulted due to a multifaceted 
collaboration of genetic and environmental factors lead to 
hypersensitive/allergic responses.1 In high-income or 
industrialized countries, hypersensitivity diseases like 
asthma are becoming a very common public health burden 
in recent decades.15 The leading cause of hypersensitivity 
or allergic diseases is associated with the maturation of 
T cell to Th2 immune responses. In return, it encourages 
the stimulation of IgE, mast cell, eosinophils, goblet cell, 
and secretary mucin.12 Allergic disorders associated with 
inflammation begin with mast cell degranulation, which 
then results in the activation of mediators that further 
activate inflammatory cells like eosinophil, monocyte, 
and neutrophil resulting in the release of cytokines and 
long-lasting mediators that cause tissue and specific organ 
damage.1,6 A cell located within germinal centres of 
lymph nodes, T follicular helper (Tfh) cells are also essen-
tial in the generation of antibody-secreting plasma cells. 

As such, they are of potential importance in allergen- 
specific IgE production in allergic disease.16,17 

Furthermore, Type II innate lymphoid cells (ILC2) are 
a novel population of lineage-negative cells, which play 
an important role in orchestrating the type 2 response to 
helminths and allergens to high levels of Th2 cytokines IL- 
5 and IL-13.18 ILC2 is present both in human respiratory 
and gastrointestinal tissue as well as in skin. Type 2 
responses are initiated by allergens or helminths that dis-
rupt the epithelial barriers and induce secretion of IL-25, 
IL-33 and TSLP. Those epithelium-derived cytokines acti-
vate ILC2 cells, which directly secrete type 2 cytokines, 
and DCs, which induce TH2 responses. The secretion of 
type 2 cytokines by ILC2 cells feeds back on the epithe-
lium to induce mucus secretion by goblet cells (IL-13) and 
tissue repair (amphiregulin (Areg)).19,20 Secretion of IL-9 
and IL-5 by ILC2 cells leads to the recruitment and activa-
tion of mast cells and eosinophils. The activation of T cells 
in lymphoid organs further amplifies the secretion of type 
2 cytokines, and the production of IL-4 by T cells in 
lymphoid organs leads to the production of IgE by 
B cells. Together, the responses triggered by secretion of 
type 2 cytokines from both ILC2 and TH2 cells orchestrate 
allergic inflammation, helminth expulsion and tissue 
repair.20

In most patients, IgE Isotype mediates the hypersensi-
tivity reaction of other immunoglobulins.21 IgE-mediated 
allergy is a pyogenic syndrome associated with poly-
morphism in cytokine genetics, receptors, and transcrip-
tional factor-related with skewness of Th0 to Th2 
immunity and expression of IgE receptors. High Th2 
secreted protein, IgE, and eosinophilia are all usual biolo-
gical responses to helminthic pathogens (Figure 1).14 

Moreover, helminth's vigorously restrained host cell 
response against it enhance alternatively activated macro-
phages (AAM), transforming growth factor ß (TGF-ß), 
and IgG4 antibodies that work against IgE mediated aller-
gic reaction.14,22 However, some diseases (particularly 
Ascaris species) are connected with enhanced allergy, 
and it can be associated with cross-reactivity between 
worm antigen (Tropomyosin’s), which is similar to 
allergy-causing particles in insects, and dust-mites.23 It 
has been commonly observed in elevated densities of 
helminth infections, that asthma, and other allergic ill-
nesses, have not increased as significantly as in more 
developed countries. Moreover, a negative correlation of 
allergy with helminthiasis had been founded in the ende-
mic areas of helminthic infections. The latest studies on 
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students infected with hookworm and Ascaris in Ethiopia 
and Ecuador, respectively, showed that individuals 
infected with helminths are less likely to be allergic.4,24 

Similarly, a study done in Israel on Ethiopian immigrants 
showed that helminthic infection is significantly associated 
with low allergy and low skin prick test (SPT) reactivity, 
however, one year after immigration to Israel, allergy and 
SPT reactivity increased significantly in all immigrants.25 

The inverse correlation of these studies may be due to 
helminthic infection-associated immune suppression or 
genomic aspects that predispose a hypersensitivity reaction 
and/or resistance to infection.26

Helminths and Hygiene Hypothesis
The “hygiene hypothesis” was first formulated in 1989 by 
an epidemiologist, Dr. Strachan, who reported an inverse 
relationship between family size and development of ato-
pic disorders. He proposed that a lower incidence of infec-
tion in early childhood, transmitted by unhygienic contact 
with older siblings or acquired prenatally could be a cause 
for the rise in allergic diseases.27 Then, Greenwood illus-
trates the reverse association with immune dysregulation 
and the pathogenesis of parasitic diseases.28 He 

hypothesized that infection in early childhood protects 
from allergic associated illnesses, including hay fever, in 
larger families.28 In the principle of the hygiene hypoth-
esis, the absence of parasitic infection or living in 
a sterilized environment with reduced exposure to bacteria 
or protozoa or helminth infection in early life results in 
increased incidence of allergic disease through an exag-
gerated Th2 allergic response to a harmless antigen.29 The 
association between reduced exposure to infectious agents 
and a higher prevalence of allergy seems now to be con-
firmed by many research studies. It is very clear that the 
hygiene hypothesis has generally been associated with 
increasing urbanization and living in a sterilized environ-
ment. Interestingly, increasing urbanization is also asso-
ciated with a reduced exposure to a diversified infectious 
agent, and an exponential rising of allergic diseases, now 
confirmed by a different epidemiological study.30 Distinct 
inquiries about these discoveries proposed an expanded 
predominance of rhinitis indications within the higher 
socioeconomic groups. An epidemiological study on 
socio-economic variation and allergic diseases showed 
that children and adults from very rich families are present 
with a high prevalence of hay fever and eczema.31 

Figure 1 The possible mechanism of the hygiene hypothesis and the effect of early helminthic infections on cytokine production. Improved hygiene, frequent use of 
antibiotics, and vaccination has led to reduced bacterial and viral infections in industrialized countries and therefore to insufficient stimulation of Th 1 responses, which in 
turn allows the expansion of Th2 cells. Th2 responses are characterized by increased IgE to allergens, mastocytosis, and eosinophilia. Mast cell degranulation and release of 
inflammatory mediators lead to mucus production and smooth muscle cell contraction, precipitating allergic diseases of the airways. Helminths are prevalent in developing 
countries and lead to strong Th2 responses. However, helminth-infected populations show little signs of allergic disorders. This difference may be explained by the 
differences in exposure to pathogens. A high prevalence of chronic infections in developing countries results in the persistent immunity challenge, with cycles of infection and 
inflammation, which is followed by the triggering of anti-inflammatory molecules such as IL-10, TGF-β, and arginase-1 (Arg-1) to restrict the immunopathology of allergic 
disease.

Journal of Asthma and Allergy 2020:13                                                                                    submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
441

Dovepress                                                                                                                                                          Ayelign et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Moreover, socioeconomic variations in the prevalence of 
allergic diseases are evident not only in industrialized 
countries like Britain and Italy, but also in urban African 
countries like Ghana.31 It has been postulated that people 
living with a limited exposure to bacterial and viral patho-
gens during early childhood result in an insufficient stimu-
lation of Th1 cells, which in turn cannot counterbalance 
the expansion of Th2 cells and results in a predisposition 
to allergy.32

Hygiene hypotheses were introduced through the 
investigation of children in Africa, particularly in 
Gabon.29 In Gabon, an increased prevalence of schisto-
somiasis results in an increased expression of the Th2 
phenotype among exposed individuals. Surprisingly, 
allergic reactivity was decreased among exposed school-
children as compared to uninfected ones.3 In Gabon, 
increased prevalence of schistosomiasis results in an 
increased expression of the Th2 phenotype among 
exposed individuals. Surprisingly, allergic reactivity 
was decreased among exposed schoolchildren as com-
pare to uninfected ones.33 Accordingly, they conclude 
that helminthic infections in many, but not all, are asso-
ciated with the suppression of allergic reactions.28 

Similarly, another study also showed that allergic sensi-
tivity was elevated among anti-helminthic treated chil-
dren in countries having the higher endemic status of the 
parasite, which shows the presence of an association in 
allergic protection and parasitic infection34,35 (Figure 1).

The immediate response to allergens or other toxic 
products might cause the release of damage-associated 
molecular patterns (DAMPs), including high-mobility 
group box 1 (HMGB1), adenosine triphosphate (ATP), 
double-stranded deoxyribonucleic acid (dsDNA), and 
f-actin resulting epithelial cell stress and death. In 
response to DAMP generation, alarmin cytokines and thy-
mic stromal lymphopoietin (TSLP) are secreted.36 Innate 
lymphoid cell-generated IL-13 reaches maturation as well 
as chemotaxis’s of dendritic cells (DCs) to drain the lymph 
node, by which the presentation of antigen for naive 
T cells takes place.37

Besides this, when a patient is previously exposed to 
helminths, T regulatory cell (Treg) generates immunore-
gulatory cytokines (TGF-β and IL-10) to decrease T and 
dendritic cell responses. Modified Th2 activitates the gen-
eration of TGF-ß, IL-10, and antigen-specific IgG4 that 
has a major effect by inhibiting IgE-associated allergic 
reactivity for helminth antigens. Hence, permanent 

antigenic infection with the parasite is related to a Th2 
modified activation, which may decrease allergies.38

Parasite as well as associated allergen secretions are 
a major factor to diminish immunity and reduce allergy 
through the induction of Treg by activating the TGF-β path-
way; enzymes generated from the pathway catalyze the 
breakdown of eotaxin, a chemokine essential for eosinophils 
migration; release of apyrases, enzymes that catalyze the 
oxidation of inflammatory DAMP ATP into non- 
inflammatory adenosine monophosphate (AMP); generated 
substrate that hinders the secretion of IL-33; one of the 
substrates that decrease DC maturation into Toll-like receptor 
(TLR) signals; as well as the saturation of eosinophil by 
polyclonal IgE antibody.28

Host Immune Response to 
Helminthic Infection
Helminthic infections are the leading cause of chronic 
infections in humans, which are characterized by the abil-
ity to survive for many years within the host cell.1 Some of 
those may not be pathological unless exposed byaggravat-
ing factors. The question is how those helminths can 
survive for a prolonged time within the immunocompetent 
host cells harmoniously? What substances of the hel-
minthic products are involved in immunomodulation? 
This is because of the development of sophisticated survi-
val strategies. Modulation and manipulation of our 
immune system are supposed to be the main mechanism/ 
strategy for survival.39 Alteration of immune response by 
helminthic infection may have a negative impact on host 
cells, especially, when they negatively affect the immune 
cell response to infections. But in some conditions, the 
helminthic infection can ensure a positive impact on the 
host cells, due to the immune tolerance activity of them 
with the host cells. Researchers have suggested that hel-
minthic infections could be involved in the control of 
autoimmune disorders, thereby preventing excessive 
inflammatory responses. Therefore, helminthic infection 
may be a novel anti-inflammatory therapeutic tool and 
may have a beneficial role in the control of autoimmune 
allergies.39

Most helminthic infections stimulate maturation of Th2 
cytokines (IL-4, IL-5, IL-9, and IL-13) along with the deter-
ring of Th1 cytokine response (IL-12 and interferon-gamma 
(IFN-γ).40 In response to this, the activity of IgE, mast cell, 
and eosinophil will be initiated. The stimulated IgE 
diminishes the worm's fitness as well as its fecundity via 
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antibody-dependent cellular cytotoxicity (ADCC). Mast cell 
degranulation and release of protease helps the degradation 
of the junction of the epithelial cell layer and participates in 
the weep and sweep process. Most of the intestinal hel-
minthic infections are responsible to induce the maturation 
of Th2 cytokines (producing IL-4 and IL-13), which pro-
motes worm expulsion from the gastrointestinal tract (GIT). 
The signaling cascade of IL-13 and IL-4 is through the 
activation of the IL-4Rα-STAT6 in the intestinal mucosal 
epithelium that enhances goblet cell differentiation and 
mucus production.41,42 Similar to Th2 cells, alarmins and 
parasite-derived ES products can also stimulate innate lym-
phoid cells (ILC2s) and secrete Th2-related cytokines, 
including IL-5, IL-9, and IL-13. Consequently, it plays 
a key role in the expulsion of the parasite from the intestinal 
lumen by promoting goblet cell mucus secretion and smooth 
muscle contraction that increases its permeability for flushing 
of the parasite in the lumen of the intestine. These modes of 
host cell immune response against the helminthic infection in 
the intestinal epithelium are called the “weep and sweep” 
process. Moreover, Th2 related cytokines produced by ILC2 
contribute to airway hyper-reactivity and acute allergic 
immune response.43 In addition, the tuft cell is a brush cell 
of epithelial layers of many hollow organ systems like the 
intestine and respiratory system. The study showed that these 
cells are a potent source of alarmin cytokines (IL-25) and 
eicosanoids associated with allergic immunity, and the neu-
rotransmitter acetylcholine required to coordinate type 2 
immunity during helminthic infection.44,45

Moreover, IL-33 and IL-18 as members of the IL-1 
superfamily act as alerting immune molecules to the 
injured epithelial cell and generate a strong type 2 immune 
response. In addition, after it binds with the IL-1 receptor- 
like 1 (IL1RL1), also known as the ST2 receptor, found on 
the membrane of Th2 cells and ILC2s, IL-33 plays a role 
in inducing proliferation and repairing of the epithelium 
results in healing of the mucosa of the gut.46–48 

Interleukin-25, also known as IL-17E, which is 
a member of the IL-17 cytokine family, likewise, acts as 
a sensor of epithelial insult or damage and 
induces production of type 2 cytokines by activation of 
the IL-4, IL-5, and IL-13 gene expression in ILCs.25 

Interleukin-25 also promotes allergic responses that them-
selves can lead to tissue damage and remodelling.45,48 

Even though its mechanism is not yet clear, epithelial 
cells produce TSLP. As with IL-33 and IL-25, TSLP 
induces Th2-type responses, resistance to helminths49 

and limits the development of a type 1 response. It can 

also act on other immune cells such as monocytes, gran-
ulocytes, and B cells (Figure 2).

An experimental study in mice suggests, to coordinate 
the immune-protective activity of the host cell for diges-
tive system, nematodes need the release of CD4+T cells.34 

Helminthic infection promotes the secretion of the intest-
inal mucosa and stimulates the ooze of fluid into the 
intestinal lumen. It also enhances the contractility of 
intestinal smooth muscle. This process is mainly mediated 
by IL-13 and IL-4 secreted by Th2 cells as well as an 
innate helper cell.46

Both IL-13 and IL-4 use similar receptors for their 
action in type2 immunity. Interleukin-4 receptor (IL-4Rα) 
acts as a common bottleneck component of both IL-13 and 
IL-4. From many biological roles, in helminthic infection, 
and for the activation of both eosinophils and AAM when 
the well-known cytokine that activates eosinophils is IL-5. 
As a Th2 cell, the innate helper cell called nuocyte, also 
known as non-B, non-T cell, is significantly secreting IL- 
13 and IL-4 during helminth infection.46,50–53 Other cyto-
kines like IL-10 and numerous cellular communications 
are also vital to control gastrointestinal worms. However, 
the maturation of the Th1 pathway stimulates gastrointest-
inal larva colonization. As a result, IL-12, along with IL- 
18, induces T cell differentiation to the Th1 phenotype, 
thereby generating IL-12, IL-18, and IFN-γ. This inhibits 
larva eviction seemingly via Th2 cell maturation interfer-
ence and will improve the survival of larvae. In some 
helminthic infections, a durable Th2 comeback does not 
defend the host from all parts of the problem.54 In some 
cases, hepatic schistosomiasis associated hepatic fibrosis, 
portal hypertension and gastrointestinal bleeding may 
rarely appear due to over-reactivity induced inflammation. 
The Th2 cytokines, particularly IL-13, are the greatest 
stimulator of hepatic fibrosis in Murine models of the 
disease.55 The adult schistosomiasis worm found in 
mesenteric veins also greatly affects the immune 
hyperactivity.41,56 Then the adult worms produce ova in 
the intestine and/or liver and cause inflammatory reactions 
due to helminths associated maturation of Th2 cytokines. 
During intestinal infection, the above process allows the 
eggs to pass through the intestinal wall and mix with feces 
for excretion. The balance between Th1 and Th2 reaction 
to the ova limits hepatocellular damage or fibrosis.57

The most central feature of helminth infection is the 
promotion of Treg activity, Treg expansion can also 
account for the inhibition of allergic responses in mouse 
models. Parasites have evolved multiple strategies to 
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exploit the Treg pathway, within their host immune- 
modulatory molecules like IL-10 and transforming growth 
factor-beta (TGF-β) can affect both Th1 and Th2 
function.58,59 Interleukin-10 inhibits macrophage and den-
dritic cell function and suppresses the secretion of impor-
tant pro-inflammatory cytokines like TNF-α, IL-12, IL-1, 
nitric oxide, and numerous chemokine (Figure 2). In par-
allel, IL-10 also inhibits the CD28 co-stimulative pathway 
by activating cytotoxic T-lymphocyte-associated protein 4 
(CTLA4) to promote T cell tolerance.59 The finding 
showed that in murine schistosomiasis, IL-10 down- 
regulated the intensity of the granulomatous response as 
well as the development of IFN-γ and IL-4 during the 
chronic stage of the disease, and it is essential for IFN-γ 
modulation in an individual. Transforming growth factor- 
beta is also a significant regulatory cytokine, like IL-10, 

which acts in schistosome granulomas to restrict the activ-
ity of the Th1 cell.60

Immunological Mechanisms of 
Helminth Mediated Modulation of 
Allergy
Helminth's means of ensuring their survival in the host body 
system are through limiting inflammatory responses and 
creating an immunoregulator microenvironment.13 Here are 
mechanisms by which helminthic infection can control the 
host immune response. These regulatory mechanisms are the 
expansion of regulatory cells (example: Treg cell, Breg cell, 
AAM), manipulation of TLR and signaling, suppression of 
Th1/Th2 cell, and associated cytokines. However, their cel-
lular mechanism is still unknown and under research.61 The 
beneficial effect of helminthic infection on allergic diseases, 

Figure 2 Humans Immune response against helminthic infection. The entry of helminthic parasite into the intestine can initiate damage to the mucosa causing the release of 
alarmin cytokines and danger-associated molecular patterns (DAMPs). DAMPs released by dying cells, or signals resulting from apoptosis, might also influence either 
dendritic cells (DCs) or Th1 polarization towards Th2 or T regulatory cell (Treg) cell subset. Tuft cells are also stimulated and produce IL-33, IL-25, and TSLP. Alarmin 
cytokine, in turn, activates ILC2 which stimulates type 2 immunity. This canonical response is of the Th2 type and involves the cytokines interleukin-3 (IL-3), IL-4, IL-5, IL-9, 
IL-10, and IL-13, the antibody isotypes IgG1, IgG4 and IgE, and expanded populations of eosinophil, basophils, and mast cells. After the epithelium insult with the parasite, DC 
is activated by alarmin cytokines or parasitic ES products; in turn, it acts as an APC (antigen-presenting cell) for T-cells of the nearby lymph node. Cytokine production by 
ILC2s and Th2 cells act locally to promote the expulsion of adult worms from the intestinal lumen by weeping and sweeping process. These processes are primarily mediated 
by IL-4 and IL-13 that increase smooth-muscle-cell motility, stimulates intestinal epithelial permeability, and elevates mucous secretion by goblet cells. 
Abbreviations: TGF-β, transforming growth factor-beta; TSLP, thymic stromal lymphopoietin.
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particularly airway inflammation or asthma, anaphylaxis, 
and other autoimmune diseases via stimulation of Treg 
cells (its anti-inflammatory cytokine secretions) and activa-
tion of TLR.62

Inducing the development of Treg and/or AAM, hel-
minth or its derived products could directly slow down 
allergen-specific Th2 responses. T regulatory cells and 
AAM can directly inhibit Th2 cell proliferation through 
a cell contact-dependent mechanism or by the synthesis of 
common immunomodulatory mediators such as IL-10 and 
TGF-ß. The Treg cell is the most potent inhibitor of 
inflammation via up-regulating the above-mentioned 
immunosuppressive molecules and IL-35 and repressing 
genes involved in pro-inflammatory function.63–66 As 
a result of the production of IL-10, helminthic infection 
diminishes the risk of allergic disease by inhibiting IFN-γ 
secreting cell (Th1), IL-4, IL-13, IL-5 and IL-9 producing 
cell (Th2), and IL-17 secreting cell (Th17) (Figure 3).10,66 

Together with IL-10 and TGF-ß, IL-35 is the other novel 
anti-inflammatory molecule produced by CD4+CD25 
+Treg cell and suppresses both differentiation as well as 
the proliferation of Th17 cells.65 In addition, Treg can also 
release granzymes (Gzm) and perforin that directly sup-
press effector B-cell or reprogramme IgE secreting B-cell 
to IgG4 and IgA.66–68 Supporting this idea, a scientific 
study elaborates that a patient with a chronic helminthic 
infection has immune homeostatic tolerance mediated by 
the production of regulatory cytokines (e.g. IL-10) and 
raised IgG4 than a patient without a history of helminthic 
infection.68 This is characterized by higher IgG4/IgE ratios 
and increased IL-10 and TGF-β as a biomarker of chronic 
infection. The large amounts of non-specific IgE induced 
by the helminth infection might also contribute to reduced 
allergic responses by saturating the IgE receptors on mast 
cells, basophils and eosinophils, thereby inhibiting the 
binding of allergen-specific IgE and the degranulation of 

Figure 3 Summarizes the main roles proposed for Treg as well as AAM. Helminthic modulation of allergy or inflammation. Helminth can modulate APC, type 2 immunity 
system, B-cell, eosinophil and induce Treg. The other regulatory cell is AAMs. The immunosuppressive role of Treg controlled by IL-10, TGF-β and CTLA-4. The 
differentiation of AAM, can inactivate the production of Th1, Th2, or Th17 cells, and in some cases, induce fibrosis in tissues mediated by regulatory cytokines mainly RELMα 
and arg-1. On the other hand, IL-10 controls untoward immune responses to minimize overall harm secondary to the parasite and then it acts as mediator of immune 
tolerance. 
Abbreviations: RELMα, resistin-like molecule; CTLA4, cytotoxic T lymphocyte antigen 4; DC, dendritic cell; iNOS, inducible nitric oxide synthase.

Journal of Asthma and Allergy 2020:13                                                                                    submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
445

Dovepress                                                                                                                                                          Ayelign et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


these cells. Helminth-derived products might also interact 
directly with allergen-specific IgE-induced cross-linking 
of granulocyte FceR or the signaling pathways.69 The 
mechanism behind helminth induced production of large 
amounts of polyclonal IgE is not yet clear. However, the 
negative association between helminth-specific polyclonal 
IgE and allergic response is called the IgE blocking 
hypothesis.69

The way those cells understand and sense the foreign 
microbes are through the presence of pattern recognition 
receptors (PRRs) namely, TLR, nucleotide-binding oligo-
merization domain (NOD)-like receptors (NLRs), retinoic 
acid-inducible gene-like receptors (RIG-like receptors), 
and C-type lectin receptors (CLRs).61 Toll-like receptors, 
a family of sensor proteins, assist the innate immune 
system to discriminate between “self” and “non-self” 
antigen.70 This TLR detects specific and conserved micro-
bial domains called pathogen-associated molecular pattern 
(PAMP) which acts as ligands such as lipids, lipoproteins, 
proteins, RNAs, and DNA of the microbe’s structure.71,72 

Expansion of the Treg cell and its allergic suppression is 
mediated by some helminthic product mediated controls of 
TLRs and its down-signaling cascade. Extracellular vesi-
cles (EV) is one of the mechanisms for the delivery of 
helminthic products into the host cell via receptor or 
clathrin-mediated endocytosis, like the receptor-mediated 
endocytosis of cholesterol.73 For example, SEA and 
SJMHE1 of S. mansoni and S. japonicum, respectively 
induce Treg cell proliferation as well as its anti-allergic 
activities via the TLR2 dependent manner.74–76 In support 
of this theses, the same study showed that SJMHE1 pro-
ducts of S. japonicum can also increase Treg cell and anti- 
inflammatory cytokines such as IL-10 and TGF-β 
mediated with TLR-2 and considered as a protective role 
on delayed type hypersensitivity (DTH).75 Likewise, 
a study done in the UK elaborates that 
Acanthocheilonema viteae derived excretions-secretions 
(ES-62), can prevent pathology associated with chronic 
asthma via blocking of the Th17 response, ILC2, and 
reversal of Th2 cell polarization and decreased secretion 
of their perspective inflammatory cytokines.77 ES-62 has 
a range of immunomodulatory effects, many of which 
involve destabilization of TLR4 and its signaling to induce 
an anti-inflammatory immunological phenotype76,78,79 and 
prophylactic modulation of collagen-induced arthritis 
(CIA) (Figure 3).80 Collectively, even though there are 
controversies over the influence of TLR on Treg cell, it 

is generally accepted that TLR2, 4, or 5 engagements can 
enhance Treg cell function, survival, and its proliferation.

An experimental study found that helminth mediated 
AAM, that directly inhibited T-cell effector functions, 
results in allergic disorders suppression.81 The hypothesis 
that non-specific IgE induced by the helminth infection 
protects against the degranulation of basophil or mast 
cells through increasing IgE receptor on those cells, and 
thereby inhibits the binding of allergen-specific IgE on 
these cells, is now out of favour and there is little evi-
dence to support it.82 As Treg, AAM can also suppress 
the release of IL-5 and Il-13 cytokines from ILC2 through 
cell contact-dependent inhibition mechanism mediated by 
IL-10 and TGF-β. Equivalent with Treg, an alternatively 
activated macrophage secretes immune-modulating bio-
markers such as arginase-1 (arg-1), resistin-like molecule 
alpha (RELMα), and chitinase 3-like protein 3 (CLP3).83 

Arginine is a semi-essential amino acid. The alternatively 
activated macrophage metabolized by two main enzy-
matic systems such as arginase 1 (stimulated by IL-4, 
IL-6, IL-10, IL-13, TGF-β) and iNOS (stimulated by IL- 
1, TNF-α, IFN-α, IFN-β, IFN-γ), is actively involved in 
immune response.13,84,85 Arginase 1 helps to provide pro-
line amino acid as a substrate for collagen synthesis 
during the repair of extracellular matrices, wound heal-
ing, and fibrosis in response to mucosal epithelium 
damage by helminthic infection.83,84 Moreover, compet-
ing with the substrate required by iNOS for NO synthesis, 
arginase-1 consumes arginine to ornithine and urea and 
can actually play a role in regulating arginine 
availability.85 Therefore, by depriving arginine, which is 
needed for T cell activation, arg-1 is a potent suppressor 
of inflammation (Figure 3).13,86 On the other hand, as 
Treg, regulatory B cells (Breg) produce IL-10, which 
may potentially regulate T-cell mediated inflammatory 
response and allergic reaction in host cells,87 of which 
the Treg cells are obviously the greatest group of cells 
studied. Another study reported that IL-10 producing 
Breg cells down-regulate experimental autoimmune ence-
phalomyelitis, collagen-induced arthritis, IBD and pro-
tects against Schistosoma induced anaphylaxis.33,82,88 It 
is also possible that the presentation of allergens by DCs 
required for the activation and production of Th2 cells is 
affected by the infection, leading to a reduction in allergic 
responses. Even though animal laboratory data point out 
the inhibitory function of IL-10 and/or Treg cells in 
allergic reactions, very limited evidence indicates that 
this is also true in humans.69,89
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After the patient diagnosis with X-linked polyendocri-
nopathy syndrome (IPEX) characterized by a high inci-
dence of autoimmune and allergic diseases present with 
mutations in FOXP3 with low levels of circulating Treg 
cell.90 Evidence confirmed that the pathogenesis of allergic 
diseases is inhibited by the effect of Treg cells; in contrast, 
individuals with the FOXP3 mutated gene, result in the 
inactivation of natural Treg subtypes, which in turn leads 
to immune-associated pathogenesis such as allergy. 
Simultaneously, the compartment of the B-cell becomes 
altered, which resulted from diminished IgE, and an 
increased IgA and IgG response.15 For instance, TGF-ß 
and IL-10 have been observed in patients diagnosed with 
Onchocerciasis,91 while patients infected with Brugia 
malayi show overexpression of the transcription factor, 
FOXP3 and elevated effect of TGF-ß and CTLA4.87 In 
addition, studies conducted in Kenya and Gabon showed 
that Schistosome-infected individuals had higher CD4 
+CD25hi and CD4+CD25hiFoxP3 T-cell levels in compar-
ison with healthy control groups.92 Prominently, CD4 
+CD25hiFoxP3 Treg cells have a great immunologic 
effect on host immunity; however, future research must 
analyze the effect of Treg and B-cell sub-types in allergic 
associated immune-modulatory activities.87

Conclusion and Future Perspectives 
of Helminthic Therapy to Allergy
Nowadays, the prevalence of allergic diseases such as 
allergic rhinitis, atopic dermatitis, asthma, and exacerbated 
COPD has increased significantly, with allergies affecting 
up to 25% of the population in industrialized societies and 
found as a major public health burden with a high socio-
economic impact.93 Due to improved living standards, 
decline in family size, sanitation, and hygiene, 
burdens also shared by urban areas of developing 
countries.

Subsequently, strategies for disease intervention must 
aim not only at controlling signs and symptoms but also at 
preventing long-lasting implications.94 Despite this, in 
future microbiota or helminthic products or even live 
helminth infections will be involved in the human body 
as a novel therapeutic avenue for the treatment of a wide 
range of allergic and autoimmune diseases.95–97 The 
immune disorder can be treated through the deliberate 
infestation of helminth ova or larvae.3 It is done by choos-
ing species with low pathogenicity and dose (inadequate 
threshold of pathogenesis), the immune response could be 

efficiently modulated, and allergic reactions can be altered 
in patients. More than ten clinical studies of worm therapy 
are currently at various steps of assessment and a few are 
complete and subject to analysis.98

Moreover, experimental human infection with some 
parasitic worms confers protection against inflammatory 
diseases in Phase 2 clinical trials. Parasitic worms manip-
ulate the immune system by secreting immunoregulatory 
molecules that offer promise as a novel therapeutic mod-
ality for inflammatory diseases. We identify a protein 
secreted by hookworms, anti-inflammatory protein-2 
(AIP-2), that suppressed airway inflammation in a mouse 
model of asthma, reduced expression of costimulatory 
markers on human dendritic cells (DCs), and suppressed 
proliferation, ex vivo, of T cells from human subjects with 
house dust mite allergy.99 Experimental and epidemiologi-
cal evidence shows that parasites, particularly helminths, 
play a central role in balancing the host's immunity. It was 
demonstrated that parasites can modulate immune 
responses via their excretory/secretory (ES) and some 
specific proteins. Extracellular vesicles (EVs) in parasito-
logical studies have been mostly employed for immu-
notherapy of autoimmune diseases, vaccination, and 
diagnosis. Moreover, EVs derived from helminths modu-
late the immune system via provoking anti-inflammatory 
cytokines.32,100 The most commonly used method has 
been with the pig whipworm T. suis, which was closely 
associated with the human-infective T. trichiura, and is 
accomplished through the delivery of T. suis ova (TSO) 
collected from pigs. The study found that TSO worked as 
a protective role for patients with inflammatory bowel 
disease (IBD), ulcerative colitis, and Crohn disease.3,12 

From a study in the Netherlands, Schistosoma egg anti-
gens (SEA) showed Treg expansion, Th2 modification, 
and IL-10 production through the TLR2-dependent 
pathway.101 In addition, S. mansoni eggs secrete 
a glycoprotein known as omega-1 inhibiting TLR- 
induced DC activation. Research done on the effect of 
ES-62 from A. viteae on mast cell degranulation, verified 
that ES-62 inhibits mast cell degranulation and the follow-
ing inflammation by interfering with IgE binding 
(FcεR).102 Another study proves that the administration 
of a HSP60 derived protein fragment from S. japonicum 
(SJMHE1) to mutant TLR2 mice abolished Treg cell 
proliferation.103 As shown in Figure 3 stimulation of 
TLR2 enhances both the Treg population and its suppres-
sive activity by releasing IL-10 and TGF-β.75 Similarly, 
ES products from F. hepatica (FhepES) act as a down 

Journal of Asthma and Allergy 2020:13                                                                                    submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
447

Dovepress                                                                                                                                                          Ayelign et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


regulator of nitric oxide (NO) and IFN-γ production by 
down-modulating TLR-induced DC activation, whereas 
production of Arg-1 was up-regulated.104

Another study, conducted in the United Kingdom, 
showed hookworm parasite Nectar americanus 
(N. americanus) therapies; N. americanus 
infections showed an improvement in the respiratory activ-
ities for patients with bronchial asthma.3 Similarly, the 
same study in Australia, illustrated that N. americanus 
infection can potentially reduce the immunopathology of 
Crohn disease.105 Taken together, the observed data 
showed that helminthic therapy is now emerging and 
some of which indicate promising immunotherapies 
in vivo. However, there was also a counter report which 
implicated tolerance induction following immunotherapy 
for allergic diseases. There has been growing evidence of 
the induction of B regulatory cells, which are capable of 
secreting large amounts of IL-10 following AIT 
treatment.106 Furthermore, a double blind, placebo con-
trolled clinical trial of T. suis ova by Bager et al., illu-
strated that repeated treatment with helminth had no 
therapeutic effect on allergic rhinitis.98

Moreover, it needs a parasite molecular component 
evaluation for their efficacy and effective immunomodu-
lators. In conclusion, chronic helminth disease can pro-
tect against allergic disorders by intensively inhibiting 
the host immune system, resulting in a particular T-cell 
hyporesponsiveness mediated through the activation of 
a regulatory network. Therefore, detailed characterization 
of ES products “secretome” as well as elements of extra-
cellular vesicle, and understanding the mechanism of 
how helminthic parasites regulate host allergic reaction 
helps us to obtain the potential therapeutic components. 
In the future, considering the current research output at 
hand, it suggests that it is possible and promising that 
helminth antigens called helminthic derived products 
and/or live helminth will be a new therapeutic avenue 
and druggable targets for protection against allergic 
diseases.
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