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Purpose: Cardiovascular disease can be detected in individuals with prediabetes. The

purpose of this study was to determine whether soluble suppression of tumorigenicity 2

(sST2), which is elevated in cardiovascular disease and/or type 2 diabetes, is correlated with

glycated haemoglobin in individuals with glycemia in the normal/prediabetes range.

Patients and Methods: The anthropometric, biochemical and metabolic parameters were

measured in 30 adults, and the plasma levels of sST2 were quantified.

Results: sST2was directly correlated with glycated hemoglobin in individuals with glycemia in

the normal/prediabetes range. Participants who were at the higher end of glycated hemoglobin

(5.8–6.4%) had significantly higher sST2 compared to those at the lower end (≤5.5%).Moreover,

sST2 was directly correlated with homeostatic model assessment of insulin resistance (HOMA-

IR), alkaline phosphatase, and waist circumference. However, the correlation between sST2 and

HOMA-IR or waist circumference was lost after adjusting for age, gender or body mass index.

Conclusion: Circulating sST2 may be used to establish a cut-off value for cardiometabolic

risk/disease in individuals with glycemia in the normal/prediabetes range.
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Introduction
Suppression of tumorigenicity 2 (ST2), a member of the toll-like/interleukin (IL)-1-

receptor-like superfamily, exists in two isoforms with opposing biological activities.

The transmembrane isoform (ST2L) confers the biological activities of interleukin

(IL)-33, while the soluble isoform (sST2) serves as an antagonistic decoy receptor.1,2

The IL-33/ST2 axis is a key regulator of inflammation and tissue repair, and thus, is

considered a prognostic marker in several diseases.3 The IL-33/ST2L axis is protec-

tive against obesity, insulin resistance and type 2 diabetes (T2D).4–6 In humans,

higher levels of circulating IL-33 has been associated with a favorable metabolic

profile.7,8 Similarly, the IL-33/ST2L axis has been shown to be protective against

cardiovascular disease (CVD), including atherosclerosis6 and cardiac fibrosis.9 IL-33

blocks the differentiation of macrophage-derived foam cells,10 which are responsible

for the formation of atherosclerotic plaques,11 and induces the production of anti-

oxidized low-density lipoprotein antibodies,6 which enhance the clearance of pro-

atherogenic lipoproteins from the circulation.12
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Therefore, while IL-33 through its interaction with

ST2L is protective against T2D and CVD, the decoy

receptor sST2, through inhibiting this interaction, may be

detrimental. Indeed, a recent study in mice has shown that

sST2, which is associated with obesity, exacerbates the

depletion of protective regulatory T cells and group 2

innate lymphoid cells in the adipose tissue, and in so

doing promotes insulin resistance.13 Importantly, studies

have shown that sST2 is elevated in individuals with

T2D,14–16 post-transplant diabetes mellitus,17,18 and

CVD.19,20 Moreover, sST2 is associated with markers of

metabolic dysfunction in atherosclerotic disease,21 and

with increased CVD mortality.21,22 It has also been

shown to be elevated in other inflammatory conditions

such as inflammatory bowel disease,23 gut mucosal

damage,3 and sepsis.24 However, the source of sST2 is

unclear but it is thought to be secreted as a result of tissue

damage and/or be secondary to an unregulated ongoing

inflammatory process.25

T2D and prolonged hyperglycaemia are associated with

increased risk of CVD such as coronary heart disease.26,27

However, recent studies have reported that CVD, such as

subclinical atherosclerosis and left ventricular systolic and

diastolic dysfunction, can be detected in individuals with

prediabetes.28 This suggests that CVD may develop prior to

or concomitantly with the onset of metabolic disease.

Therefore, identification of early biomarkers that may be

associated with the onset of cardiometabolic disease is of

considerable importance. Since elevated levels of sST2 are

associated with both CVD19–22 and T2D,14–16 we hypothe-

sized that sST2 may serve as a novel biomarker to detect

subclinical CVD risk in the earliest stages of metabolic

disease development. Therefore, we conducted a preliminary

study to determine whether sST2 is correlated with glycated

haemoglobin (HbA1c) in individuals with glycemia in the

normal/prediabetes range.

Patients and Methods
Study Participants
The study was conducted in accordance with the ethical

principles of the Declaration of Helsinki and approved by

the Ethical Review Committee of Dasman Diabetes Institute

(DDI), Kuwait. This work was conducted using samples of

participants that were enrolled as part of the Obesity Program

(RA2010003). To address the question of the current study,

the inclusion criteria included adult volunteers (age range

between 21 and 65 years) with either normal glycemia or

glycemia in the prediabetes range, and no other health condi-

tion or medication ingestion, and no previous or current exer-

cise program. Individuals with body mass index (BMI) in the

normal (BMI ≤ 25 kg/m2), overweight (BMI 26–29 kg/m2)

and obese (BMI 30–40 kg/m2) range were included. The

American Diabetes Association Criteria were used to classify

participants as either having no diabetes or prediabetes.

Participants with conditions other than prediabetes or taking

any kind of medications were excluded. Based on these cri-

teria, a total of 30 participants (15 females and 15 males, age

range between 26 and 59 years) with an HbA1c in the normal

(<5.7%) and prediabetes (5.7–6.4%) range (based on HbA1c

criteria defined by the American Diabetes Association;29 oral

glucose tolerance test was not conducted) were included in

this study. Participants were further classified into three groups

(HbA1c ≤5.5, n = 9; HbA1c 5.6–5.7, n = 11; HbA1c 5.8–6.4,

n = 10) for analytic purposes. The participants had no comor-

bid health conditions and were not on any type of medication.

All participants had provided written informed consents.

Anthropometric and Laboratory

Measurements
After measuring participant’s body weight (kg) and height

(to the nearest 0.5 cm), the BMI was calculated as weight/

height2 (kg/m2) and used as an overall index of adiposity.

The waist circumference and hip circumference were mea-

sured with a flexible tape according to the guidelines of the

International Diabetes Federation (IDF). After exhalation,

the waist circumference was measured on a horizontal plane

at a point that was equally distant from the lowest rib and

the upper border of the iliac crest. Hip circumference was

measured on a horizontal plane at the maximum protuber-

ance of the buttocks which parallels the ischiopubic sym-

physis in the front. The waist-to-hip ratio (WHR) was

calculated by dividing the waist perimeter by the hip peri-

meter. The body composition, including percentage of body

fat (PBF) and soft lean mass (SLM), was measured using

IOI 353 Body Composition Analyzer (Jawon Medical).

Fasting blood samples were obtained, and plasma glu-

cose, serum total cholesterol, triglycerides (TG), high-den-

sity lipoprotein (HDL) cholesterol, alanine aminotransferase

(ALT), alkaline phosphatase (ALP), aspartate aminotransfer-

ase (AST) and total Bilirubin (TBIL) were measured using

the Siemens Dimension RXL chemistry analyser (Diamond

Diagnostics, Holliston, MA, USA). Low-density lipoprotein

(LDL) cholesterol was estimated. HbA1c was determined

using VariantTM (Bio-Rad, Hercules, CA, USA). The white
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blood cell count was measured using XN-1000 Haematology

Analyser (Sysmex, USA). C-reactive protein (CRP) was

measured using commercially available Enzyme-Linked

Immunosorbent Assay (ELISA) kits (BioVendor, USA).

sST2 was measured using commercially available ELISA

kits (Abcam, USA). Insulin was measured using commer-

cially available Iso-insulin ELISA kits (Mercodia, Uppsala,

Sweden). Homeostatic Model Assessment of Insulin

Resistance (HOMA-IR) was calculated using the following

formula: glucose in mmol/L x insulin in mIU/mL/22.5.

Anthropometric, biochemical and metabolic parameters are

shown in Table 1.

Statistical Analysis
Statistical analysis was conducted using the GraphPad

Prism software (version 8.0.2; San Diego, CA, USA). To

compare between groups of data, the non-parametric

Kruskal–Wallis test, as well as the Mann–Whitney test,

were conducted. For correlation analysis, the non-para-

metric Spearman r test was applied. Linear regression

analysis was conducted using IBM SPSS software (version

25; New York, USA). A P-value <0.05 was considered

statistically significant.

Results
Our data showed that sST2 is directly correlated with HbA1c

(r = 0.53; P = 0.0028; n = 30) in individuals with overall

glycemia in the normal/prediabetes range (Figure 1A). This

correlation remained significant after adjusting for age

(r = 0.563, P = 0.001), gender (r = 0.559, P = 0.002), BMI

(r = 0.502, P = 0.005), and age/gender/BMI combined

(r = 0.573, P = 0.002). Moreover, there was a significant

(Kruskal–Wallis test, P = 0.018) increase in the level of sST2

with increasing HbA1c. In this regard, participants who were

at the higher end of the HbA1c range (HbA1c 5.8–6.4) had

significantly (P = 0.004) higher sST2 compared to those at

the lower end (HbA1c ≤5.5) (median 210.7, n = 10 vs.

median 110.1, n = 9). Similarly, individuals who were at

the middle range (HbA1c 5.6–5.7) had higher levels of

sST2 compared to those at the lower end (HbA1c ≤5.5),
which was almost statistically significant (P = 0.056; median

175, n = 11 vs. median 110.1, n = 9) (Figure 1B). The data

also showed that sST2 was directly correlated with HOMA-

IR (r = 0.66; P = 0.04; n = 10). This correlation was main-

tained when adjusted for gender (r = 0.699, P = 0.036), but

lost when adjusted for age (r = 0.565, P = 0.113), BMI

(r = 0.593, P = 0.092) and age/gender/BMI combined

(r = 0.37, P = 0.414) (Figure 1C).

In addition, sST2 was directly correlated with ALP (r =

0.58, P = 0.009, n = 19) (Figure 2A), which remained sig-

nificant when adjusted for age (r = 0.583, P = 0.011), gender

(r = 0.535, P = 0.022), BMI (r = 0.556, P = 0.017), and age/

gender/BMI combined (r = 0.508, P = 0.045). However, no

correlation was observed between sST2 and ALTor AST. Of

note, 15%, 5% and 10% of participants tested (a total of ~65%

were tested) had high levels of one or two of the liver

enzymes ALT, AST or ALP, respectively. These participants

were at the middle (HbA1c 5.6–5.7, n = 2) or higher range

(HbA1c 5.8–6.4, n = 3) of HbA1c. Moreover, a direct corre-

lation was found between sST2 and waist circumference (r =

0.5; P = 0.0099; n = 24) in individuals with glycemia in the

normal/prediabetes range (Figure 2B). This correlation was

lostwhen adjusted for theBMI (r= 0.312,P= 0.147) and age/

gender/BMI combined (r = 0.173,P = 0.454), but maintained

when adjusted for age (r = 0.514, P = 0.012) or gender (r =

0.476, P = 0.022). There was no significant difference in

waist circumference among the three HbA1c groups.

Discussion
CVD, such as subclinical atherosclerosis and left ventri-

cular systolic and diastolic dysfunction, has been reported

in individuals with prediabetes.28 This suggests that sub-

clinical CVD may occur early during metabolic disease

development, and that HbA1c may not be an adequate

marker to detect early/subclinical cardiometabolic disease

in high-risk populations. Since sST2 is elevated in both

CVD19,20 and T2D,14–16 we investigated whether sST2 is

correlated with HbA1c in individuals with glycemia in the

normal/prediabetes range. Our data showed a direct corre-

lation between sST2 and HbA1c, which was confirmed by

comparative analysis. This suggests that subclinical cardi-

ometabolic risk may already be occurring in individuals

with glycemia in the normal/prediabetes range. In addi-

tion, when sST2 was assessed for possible correlation with

other markers of cardiometabolic disease risk,30–32 a direct

correlation was found between sST2 and HOMA-IR, ALP,

and waist circumference. However, the correlation

between sST2 and HOMA-IR was lost after adjusting for

age or BMI, and similarly, the correlation between sST2

and waist circumference was lost after adjusting for BMI.

Chronic low-grade inflammation (or meta-inflamma-

tion) is associated with the development of insulin resis-

tance and T2D.33 A major contributing factor in the

development of meta-inflammation is gut dysbiosis, gut-

barrier dysfunction, and increased translocation of bacter-

ial endotoxin (lipopolysaccharide, LPS) from the gut
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lumen into the circulation (metabolic endotoxemia). In this

respect, elevated plasma endotoxin has been reported in

individuals with obesity, atherosclerosis, non-alcoholic

fatty liver disease, and T2D.34 Crucially, sST2 has also

been shown to be elevated in individuals with T2D14,15

and CVD.20 The source of sST2 is unclear with some

studies suggesting that it may be secreted as a result of

tissue damage and/or be secondary to an unregulated

ongoing inflammatory process.25 Indeed, sST2 has been

associated with an aggravated immune status in humans,35

and is thought to be secreted to induce endotoxin tolerance

and to attenuate acute tissue damage.36,37 In addition,

sST2 may originate from the heart to attenuate aggravated

immune responses in organs exposed to environmental

and/or autologous antigens. In this regard, in vitro studies

have shown that inflammatory cytokines including IL-1α,

IL-1β, and TNFα, and supernatants derived from LPS-

stimulated PBMC, caused a significant increase in sST2

secretion by cardiac myocytes.35 Likewise, stress/injury

also induced the release of sST2 by cardiac myocytes

and cardiac fibroblasts. Moreover, vascular endothelial

cells are important sources of sST2,38 which secrete the

protein in response to inflammatory cytokines such as IL-

1β and TNFα.39

In our study, we found a direct correlation between sST2

and HbA1c in individuals with glycemia in the normal/pre-

diabetes range. A similar correlation was observed between

sST2 and HOMA-IR (lost when adjusted for age or BMI),

ALP, and waist circumference (lost when adjusted for BMI).

The lack of correlation between sST2 and other liver enzymes

may have been due to the low number of participants tested.

Overall, our data may suggest the presence of an ongoing

subclinical inflammatory process and/or tissue damage (and/

or dysfunction in the regulation of the IL-33/ST2L/sST2 sys-

tem), which may be accompanied with a gradual decline in

glucose regulation. The “increased” sST2may have originated

from the gut (as a result of gut dysbiosis/mucosal inflamma-

tion), pancreatic tissue (as a result of overload/stress or sub-

clinical inflammation) and/or cardiac myocytes (in response to

inflammation or stress). Importantly, and owing to the ability

Table 1 Anthropometric, Biochemical and Metabolic Characteristics of the Study Groups

Participants HbA1c ≤5.5 HbA1c 5.6–5.7 HbA1c 5.8–6.4 *P-value n

Total number (n) 9 11 10 – 30

Gender (n) 4 females, 5 males 6 females, 5 males 5 females, 5 males – 30

Age (years) 37 (30, 50) 38 (26, 57) 43 (30, 59) 0.45 30

Medication None None None – 30

Other health conditions None None None – 30

Body mass index (kg/m2) 27.81 (25.04, 35.85) 31.41 (23.36, 39.16) 33.12 (18.02, 40.33) 0.79 30

Percentage body fat (%) 35 (28.3, 39.8) 34.50 (24.7, 42.9) 41 (22.3, 45.3) 0.60 24

Soft lean mass (%) 59.63 (54.5, 73.91) 60 (51.57, 69.48) 53.43 (49.2, 71.95) 0.60 24

PBF-to-SLM ratio 0.59 (0.43, 0.73) 0.58 (0.36, 0.83) 0.77 (0.31, 0.92) 0.65 24

Waist circumference 92.00 (77.5, 110) 94 (83, 110.5) 101 (60, 127) 0.32 24

Waist-to-hip ratio 0.802 (0.73, 1.01) 0.919 (0.78, 2.5) 0.91 (0.68, 1.01) 0.53 24

Fasting glucose (mmol/L) 5.2 (4.19, 5.9) 5 (4.3, 5.31) 5.52 (4.4, 7.6) 0.06 30
†HbA1c (%) 5.4 (4.6, 5.5) 5.6 (5.58, 5.7) 5.9 (5.8, 6.3) <0.0001 30

Total cholesterol (mmol/L) 5.2 (4.76, 6.3) 5.1 (4.7, 6.8) 5.2 (2.6, 6.8) 0.999 30

Insulin (mU/L) 5.23 (4.9, 6.1); n=4 No median (n=1) 5.4 (4.5, 13.7); n=5 0.73 10
††HOMA-IR 1.31 (1.145, 1.5); n = 4 No median (n=1) 1.43 (1.01, 3.4); n = 5 0.73 10
‡HDL cholesterol (mmol/L) 1.23 (0.92, 1.84) 1.13 (0.91, 1.93) 1.155 (0.77, 1.63) 0.91 30
§LDL cholesterol (mmol/L) 3.2 (2.5, 4.4) 3.5 (2.9, 5.2) 3.5 (1.2, 4.8) 0.57 30

Triglyceride (mmol/L) 1.3 (0.89, 2.93) 0.93 (0.27, 1.98) 1.0 (0.32, 4.36) 0.22 30

Alanine aminotransferase (U/L) 41 (21, 54); n = 5 33.5 (26, 70); n = 8 37 (28, 401); n = 7 0.61 20

Aspartate aminotransferase (U/L) 18 (16, 28); n = 5 19.5 (9, 38); n = 8 26 (14, 113); n = 7 0.40 20

Alkaline phosphatase (U/L) 79 (62, 105); n = 5 63 (49, 138); n = 8 90.5 (56, 136); n = 6 0.52 19

Total Bilirubin (µmol/L) 10 (4, 10); n = 5 8 (4, 11); n = 8 6.5 (4, 22); n = 6 0.91 19
¶CRP (µg/mL) 1.72 (0.91, 6.181) 2.41 (0.91, 10.71) 3.605 (0.934, 10.1) 0.63 22

White blood cell count (109/L) 6.8 (3.4, 8.7) 6.4 (4, 8.1) 7.3 (4.9, 9.6) 0.28 29

Notes: Data shown represent the median (min, max). *Non-parametric Kruskal–Wallis test of the medians. †Glycated hemoglobin. ††Homeostatic model assessment of

insulin resistance. ‡High-density lipoprotein. §Low-density lipoprotein. ¶c-reactive protein.
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A B

C

Figure 1 Correlation between sST2 and HbA1c and HOMA-IR in individuals with glycemia in the normal/prediabetes range. (A) sST2 was directly correlated with HbA1c in

individuals with glycemia in the normal/prediabetes range. (B) There was an increase in sST2 with increasing HbA1c in individuals with glycemia in normal/prediabetes range.

(C) sST2 was directly correlated with HOMA-IR in individuals with glycemia in the normal/prediabetes range.

Abbreviations: sST2, soluble suppression of tumorigenicity 2; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment of insulin resistance;

BMI, body mass index; Adj., Adjusted.
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of sST2 to down-regulate IL-33, any pathological process that

leads to chronically elevated sST2 (even if mildly elevated),

and/or its dysregulation, may be detrimental to cardiac health.

In this regard, chronically elevated sST2 may lead to chronic

downregulation of cardioprotective IL-33 leading to subclini-

cal CVD.

In general, our data suggest that HbA1c may not be an

adequate marker to detect early/subclinical cardiometabolic

disease in individuals with glycemia in the normal/prediabetes

range. Therefore, sST2 may serve as a valuable early biomar-

ker of subclinical inflammation, and thus, be used as an

adjunctive test along with HbA1c (and other tests) to detect

subclinical cardiometabolic disease in high-risk populations.

Conclusion
sST2 is directly correlated with HbA1c, HOMA-IR, ALP,

and waist circumference in individuals with glycemia in the

normal/prediabetes range. Thus, sST2 may prove to be a

valuable biomarker to identify individuals at increased risk

of developing cardiometabolic disease, despite having an

HbA1c in the normal/prediabetes range. A large-scale study

is underway to confirm these findings, and to establish a

cut-off value for sST2 (as well as assess other CVD bio-

markers). It is hoped that sST2, in conjunction with HbA1c

and other tests of glucometabolic homeostasis, can be used

to detect subclinical cardiometabolic disease in high-risk

populations.
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