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Purpose: Key research findings suggest that attenuating metaflammation in adipose tissue

might be a strategic step to prevent the metabolic syndrome and its associated disease outcomes.

The anti-inflammatory effects of 1α,25(OH)2D3 have been confirmed in our previous studies, but

adverse effects induced at high concentrations restrict its potential clinical translation. Two

synthetic 1α,25(OH)2D3 analogs ZK159222 and ZK191784 have manifested promising tissue-

specific immunomodulatory actions, but limited data are available on adipose tissue. Hence, in

this study, we investigated whether ZK159222 and ZK191784 act on preadipocytes or macro-

phages to attenuate metaflammatory responses via modulating inflammatory and metabolic

signaling in macrophage-induced preadipocytes.

Methods: Preadipocyte-specific effects of ZK159222 and ZK191784 on macrophage-induced

preadipocytes were tested by pre-incubating and incubating preadipocytes with the analogs and

MacCM. Separately, macrophage-specific effects of both analogs on macrophage-induced preadi-

pocytes were tested by incubating preadipocytes with analog-MacCM or MacCM. The effects of

1α,25(OH)2D3were also examined and set as the positive control.Metaflammatory responses were

determined as the concentrations and gene expression of major pro-inflammatory cytokines

including IL-1β, IL-6, IL-8, MCP-1 and RANTES, measured using ELISA and qPCR.

Inflammatory and metabolic signaling including NF-κB and MAPK were probed using Western

blotting.

Results: ZK159222 and ZK191784 act on preadipocytes and macrophages to decrease the

secretion and gene expression of the major pro-inflammatory cytokines in macrophage-induced

preadipocytes. The anti-inflammatory effects were at least as potent as 1α,25(OH)2D3, and no

preadipocyte apoptosis was induced at high concentrations. In addition, mostly at high concentra-

tions, both analogs moderately decreased the phosphorylation of relA, p44/42 and p38 MAPK in

macrophage-induced preadipocytes.

Conclusion: ZK159222 and ZK191784 act on macrophages and preadipocytes to attenuate

metaflammatory responses in macrophage-induced preadipocytes, by decreasing phosphor-

ylation of relA/NF-κB, p44/42 and p38 MAPK.
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Introduction
The metabolic syndrome (MetS) is a constellation of interrelated risk factors including

central obesity, insulin resistance, dyslipidemia and hypertension, which have been

considered to promote the development of type 2 diabetes, cardiovascular disease, and
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even a plethora of cancers.1,2 A growing body of evidence

suggests that metaflammation in adipose tissue contributes to

the onset and progress of MetS.3,4 Metaflammation is mainly

characterized as adipose tissue expression of various pro-

inflammatory cytokines stimulated by M1 macrophage

infiltration.5 Therefore, attenuating adipose tissue metaflam-

mation might be a strategic step to prevent MetS and its

associated disease outcomes.

The immunomodulatory properties of 1α,25(OH)2D3

have suggested it may have a role in treating inflammatory

diseases.6 1α,25(OH)2D3 has also long been known to

influence metabolic and immune functions of adipose

tissue.7 Moreover, the anti-inflammatory properties of

1α,25(OH)2D3 in adipose tissue metaflammation were

confirmed in our previous studies.8,9 However, adverse

effects, i.e. calcium release-activated apoptosis, potentially

restrict its clinical translation.8,10 Thus, during recent dec-

ades, attempts have been made to synthesize 1α,25
(OH)2D3 analogs with preservation of immunomodulatory

properties but elimination of calcium homeostasis

disruption.11

In this study, we primarily investigated whether two

synthetic 1α,25(OH)2D3 analogs (namely ZK159222 and

ZK191784) act on preadipocytes or macrophages to

attenuate metaflammatory responses in macrophage-

induced preadipocytes. In addition, both inflammatory

and metabolic signaling including NF-κB and mitogen-

activated protein kinase (MAPK) were probed to eluci-

date the underlying anti-inflammatory mechanisms.

Materials and Methods
Reconstitution of ZK159222, ZK191784

and 1α,25(OH)2D3

ZK159222, ZK191784 (kindly provided by Bayer AG,

Germany) and 1α,25(OH)2D3 (ENZO Life Sciences, USA)

were reconstituted in dimethyl sulfoxide to a concentration of

2.4×10−5 M and then diluted in media (indicated as below) to

final concentrations of 10 nM and 1 μM.

Macrophage Culture and Stimulation
The human THP-1 monocytic cell line was kindly pro-

vided by Professor Helen R Griffiths (Aston University,

UK) and cultured in RPMI-1640 medium (Sigma-Aldrich,

UK) with 10% fetal bovine serum at 37°C with 5% CO2.

Upon reaching a cell density of 1×106cells/mL, superna-

tants were replaced with 100 nM phorbol 12-myristate 13-

acetate (Sigma-Aldrich, UK) in RPMI-1640 medium with

10% fetal bovine serum to differentiate the monocytes to

macrophages for 48 h. Subsequently, supernatants were

aspirated and 1 μg/mL lipopolysaccharide in RPMI-1640

medium was added to polarize the macrophages to pro-

inflammatory M1 dominant phenotype.12 The M1 domi-

nant macrophages were cultured in RPMI-1640 medium

for macrophage-conditioned medium (MacCM), or incu-

bated with ZK159222 (10 nM and 1 μM), ZK191784 (10

nM and 1 μM) or 1α,25(OH)2D3(10 nM) in RPMI-1640

medium for VD-MacCM. All the supernatants were col-

lected after 24 h, filtered through 0.22 μm filters and stored

at −80°C (the THP-1 cell line was originally purchased by

Professor Helen Griffiths in Birmingham from the UK

Government laboratory in Porton Down that has ethical

approval for the development of such cell lines. For spe-

cific details, please refer to Metabolic memory effect of the

saturated fatty acid, palmitate, in monocytes (DOI:

10.1016/j.freeradbiomed.2012.05.026), which was pub-

lished in 2009 by Professor Griffiths’ research group,

firstly described the THP-1 cell line as having been pur-

chased from Health Protection Agency Culture Collections

(Porton Down, Salisbury, UK); all RPMI-1640 media used

in culture or stimulation were supplemented with 1%

penicillin/streptomycin).

Preadipocyte Culture and Stimulation
Commercially available human white preadipocytes derived

from subcutaneous adipose tissue of a 44 years old female

Caucasian subject with a body mass index of 21 kg/m2

(PromoCell, Germany), were cultured to confluence as pre-

viously described.9 Following this, supernatantswere aspirated

and the preadipocytes were pre-incubated in preadipocyte

growth medium (PromoCell, Germany) or with ZK159222

(10 nM and 1 μM), ZK191784 (10 nM and 1 μM) or 1α,25
(OH)2D3 (10 nM) in preadipocyte growth medium for 48 h.

Subsequently, supernatants were aspirated and the preadipo-

cytes were incubated with 25% RPMI-1640 medium (the

control) or 25% MacCM or 25% MacCM along with

ZK159222 (10 nM and 1 μM), ZK191784 (10 nM and 1

μM) or 1α,25(OH)2D3 (10 nM) in preadipocyte growth med-

ium for 24 h. Preadipocyte and supernatant collection was

conducted after the incubation. Separately, when confluence

was reached, supernatants were aspirated and the preadipo-

cytes were incubated with 25% RPMI-1640 medium (the

control), 25% MacCM or VD-MacCM (indicated as above)

in preadipocyte growth medium for 24 h before preadipocyte

and supernatant collection (all preadipocyte growth media

used in culture or stimulation were supplemented with 100
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U/mL penicillin, 100 μg/mL streptomycin and 0.25 μg/mL

amphotericin B).

Measurement of Metaflammatory

Responses
Proteins were extracted from the preadipocytes, and con-

tent measured as previously described.13 The concentra-

tions of interleukin (IL)-1β, IL-6, IL-8, monocyte

chemoattractant protein (MCP)-1 and regulated on activa-

tion, normal T cell expressed and secreted (RANTES) in

the supernatant were measured independently in duplicate

using human ELISA kits following the manufacturer’s

instructions (R&D Systems, UK) and SPECTROstar

Nano Microplate Reader (BMG LABTECH, Germany),

normalized to the total cell protein and presented as ng

(cytokine)/mg(cell protein).

RNA was extracted from Trizol-lysed preadipocytes

and converted to cDNA using cDNA synthesis kit (Bio-

Rad, UK). The relative gene expression of IL-1β, IL-6, IL-

8, MCP-1 and RANTES were measured as Ct value inde-

pendently in duplicate using TaqMan gene expression

assays (Applied Biosystems, UK), qPCR core kit follow-

ing the manufacturer’s instructions (Eurogentec, Belgium)

and Stratagene Mx3005P instrument system, normalized

to the internal reference PPIA,14 and presented as fold

change relative to control using the 2−ΔΔct formula.15

Western Blotting
Proteins were extracted from the preadipocytes and mea-

sured as previously described.13 The intracellular densities

of relA, phosphorylated relA, p44/42 MAPK, phosphory-

lated p44/42 MAPK, p38 MAPK and phosphorylated p38

MAPK were measured using the method previously

described,13 and normalized to the internal control vinculin.

All the antibodies used (New England BioLabs; Abcam, UK)

were diluted according to the manufacturer’s instructions.

The phosphorylation level of relA, p44/42 MAPK and p38

were calculated as the ratio of phosphorylated relA to relA,

phosphorylated p44/42 MAPK and phosphorylated p38

MAPK to p38 MAPK, respectively, and presented as fold

change relative to control.

Statistical Analysis
Data were analyzed using one-way ANOVA and followed by

Tukey’s test for individual comparison (GraphPad Prism 5,

USA). A value of P<0.05 was regarded as statistically

significant. The results were confirmed by three independent

experiments and shown as mean ± SEM.

Results
ZK159222 and ZK191784 Act on

Preadipocytes to Reduce the Major Pro-

Inflammatory Cytokines Secreted from

Macrophage-Induced Preadipocytes
Metaflammatory responses were stimulated by inducing pre-

adipocytes with 25%MacCM. IL-1β, IL-6, IL-8, MCP-1 and

RANTES were selected as major pro-inflammatory cyto-

kines expressed in macrophage/MacCM-induced preadipo-

cytes in keeping with published studies.16–21 The ELISA

results show that secretion of the major pro-inflammatory

cytokines was increased by 13 ~ 387-fold from MacCM-

induced preadipocytes (Figure 1A).

To test whether ZK159222, ZK191784 or 1α,25(OH)2D3

act on preadipocytes to attenuate the metaflammatory

responses in macrophage-induced preadipocytes, preadipo-

cytes were pre-incubated with ZK159222, ZK191784 and

1α,25(OH)2D3 to boost their efficacy as formally established,13

and then incubated with ZK159222, ZK191784 and 1α,25
(OH)2D3 along with induction of MacCM.

In accordance with our previous study,9 10 nM of 1α,25
(OH)2D3 generally reduced the major pro-inflammatory

cytokines secreted from MacCM-induced preadipocytes by

43 ~ 81%. 10 nM of ZK159222 and ZK191784 also exhib-

ited significant anti-inflammatory effects as the overall pro-

inflammatory secretions from MacCM-induced preadipo-

cytes were decreased by 28 ~ 69% and 27 ~ 68%, respec-

tively. Tukey’s test indicates that both synthetic analogs

reduced the secretion of the major pro-inflammatory cyto-

kines as effectively as 1α,25(OH)2D3 (Figure 1A).

Preadipocytes started to undergo apoptosis in 2–4 h

when pre-incubated with 1 μM of 1α,25(OH)2D3 (data

not shown). However, 1 μM of ZK159222 and

ZK191784 significantly and similarly reduced the overall

pro-inflammatory secretion from MacCM-induced preadi-

pocytes by 23 ~ 67% and 29 ~ 69% (Figure 1A).

ZK159222 and ZK191784 Act on

Preadipocytes to Inhibit the Major Pro-

Inflammatory Cytokines Expressed in

Macrophage-Induced Preadipocytes
The qPCR results show that gene expression of the major

pro-inflammatory cytokines was increased by 13 ~ 1933-
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fold in MacCM-induced preadipocytes. Consistent with

our previous study,9 10 nM of 1α,25(OH)2D3 universally

inhibited the major pro-inflammatory cytokines expressed

in MacCM-induced preadipocytes by 61 ~ 88%. Likewise,

10 nM of ZK159222 and ZK191784 decreased the overall

pro-inflammatory gene expression in MacCM-induced

preadipocytes by 31 ~ 68% and 67 ~ 89%, though

ZK159222 appeared less potent. Moreover, 1 μM of

ZK159222 and ZK191784 similarly inhibited the overall

pro-inflammatory gene expression by 47 ~ 74% and 57 ~

76% (Figure 1B).

ZK159222 and ZK191784 Act on

Preadipocytes to Decrease

Phosphorylation of Inflammatory and

Metabolic Signaling in Macrophage-

Induced Preadipocytes
During adipose tissue metaflammation, the NF-κB signaling is

activated via phosphorylation of the transcription factor relA in

the nucleus.22,23 TheWestern blotting results show that intracel-

lular levels of relA were not affected, but the phosphorylation

was increased by 1.2-fold inMacCM-induced preadipocytes. In

accordance with our previous study,9 10 nM of 1α,25(OH)2D3

decreased relA phosphorylation by 39% in MacCM-induced

preadipocytes. Although relA phosphorylation was not affected

by 10 nM of ZK159222 or ZK191784, 1 μM of both

synthetic analogs significantly and consistently decreased

the phosphorylation by 17% and 17%, respectively

(Figure 2A and B) (for MacCM-induced preadipocytes co-

incubated with 1α,25(OH)2D3, ZK159222 and ZK191784, the

quantifications were calculated as the percentages

of the relative fold changes of MacCM-induced preadipocytes�the co-incubationð Þ
the relative fold changes of MacCM-induced preadipocytes ).

The MAPK signaling are required for physiological

metabolic adaptation, but inappropriate activation has been

associated with the development of MetS.24 As conventional

MAPKs, p44/42 and p38 are activated via phosphorylation in

the cytoplasm.25 In this study, though intracellular levels of

p44/42 and p38 MAPK were not affected, the phosphoryla-

tion of both MAPKs in MacCM-induced preadipocytes were

Figure 1 Continued.
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increased by 0.2-fold and 1.9-fold, whereas 10 nM of 1α,25
(OH)2D3 decreased p44/42 and p38 MAPK phosphorylation

by 30% and 76%. For the analogs, only 1 μM of ZK159222

de-phosphorylated p44/42 MAPK (by 31%) in MacCM-

induced preadipocytes. By contrast, (10 nM and 1 μM)

both analogs universally decreased p38MAPK phosphoryla-

tion by 27% to 58%, though ZK159222 appeared least effec-

tive (Figure 2A, C and D).

ZK159222 and ZK191784 Act on

Macrophages to Reduce the Major Pro-

Inflammatory Cytokines Secreted and

Expressed in Macrophage-Induced

Preadipocytes
To test whether ZK159222, ZK191784 or 1α,25(OH)2D3

(VD) also act on macrophages to attenuate the

metaflammatory responses in macrophage-induced pre-

adipocytes, preadipocytes were incubated with VD-

MacCM. VD-MacCM were produced by incubating

macrophages with ZK159222, ZK191784 and 1α,25

(OH)2D3.

Compared with MacCM-induced preadipocytes,

(10 nM) 1α,25(OH)2D3-MacCM decreased secretion of

the major pro-inflammatory cytokines by 25 ~ 50%, with

the exception of IL-1β. Likewise, (10 nM) ZK159222-

MacCM and ZK191784-MacCM similarly reduced the

major pro-inflammatory secretion by 33 ~ 54% and 23 ~

51%. Furthermore, (1 μM) ZK159222-MacCM and

ZK191784-MacCM indistinguishably decreased the over-

all pro-inflammatory secretion by 30 ~ 63% and 24 ~ 44%,

respectively (Figure 3A).

In parallel, (10 nM and 1 μM) ZK159222-MacCM, (10

nM and 1 μM) ZK191784-MacCM and (10 nM) 1α,25

Figure 1 Preadipocyte-specific effects of ZK159222, ZK191784 and 1α,25(OH)2D3 on the major pro-inflammatory cytokines secreted and expressed in macrophage-

induced preadipocytes. Preadipocytes were pre-incubated in preadipocyte growth medium or with ZK159222 (10 nM and 1 μM), ZK191784 (10 nM and 1 μM) or 1α,25
(OH)2D3 (10 nM) in preadipocyte growth medium for 48 h, and then incubated with 25% RPMI-1640 medium (the control) or 25% MacCM or 25% MacCM along with

ZK159222 (10 nM and 1 μM), ZK191784 (10 nM and 1 μM) or 1α,25(OH)2D3 (10 nM) in preadipocyte growth medium for a further 24 h. Supernatants and preadipocytes

were collected after the incubation. (Panel A) The concentrations of (a) IL-1β, (b) IL-6, (c) IL-8, (d) MCP-1 and (e) RANTES were measured using ELISA. (Panel B) The
relative gene expression of (a) IL-1β, (b) IL-6, (c) IL-8, (d) MCP-1 and (e) RANTES were measured using qPCR. Data were analyzed using one-way ANOVA. The results are

shown as means ± SEM for groups of 6 and confirmed by 3 independent experiments. A significant difference to control is indicated by ***(p<0.001); to MacCM by #

(p<0.05), ##(p<0.01) and ###(p<0.001); among ZK159222, ZK191784 and 1α,25(OH)2D3 by &(p<0.05), &&(p<0.01) and &&&(p<0.001).
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Figure 2 Preadipocyte-specific effect of ZK159222, ZK191784 and 1α,25(OH)2D3 on inflammatory and metabolic signaling in macrophage-induced preadipocytes.

Preadipocytes were pre-incubated in preadipocyte growth medium or with ZK159222 (10 nM and 1 μM), ZK191784 (10 nM and 1 μM) or 1α,25(OH)2D3 (10 nM) in

preadipocyte growth medium for 48 h, and then incubated with 25% RPMI-1640 medium (the control) or 25% MacCM or 25% MacCM along with ZK159222 (10 nM and 1

μM), ZK191784 (10 nM and 1 μM) or 1α,25(OH)2D3 (10 nM) in preadipocyte growth medium for a further 24 h. Preadipocytes were collected after the incubation. (A) The

intracellular densities of relA, phosphorylated relA, p44/42 MAPK, phosphorylated p44/42 MAPK, p38 MAPK, phosphorylated p38 MAPK and vinculin were measured using

Western blotting. The phosphorylation levels of (B) relA, (C) p44/42 MAPK and (D) p38 MAPK are shown. Data were analyzed using one-way ANOVA. The results are

shown as means ± SEM for groups of 3 and confirmed by 3 independent experiments. A significant difference to control is indicated by *(p<0.05) and ***(p<0.001); to

MacCM by ##(p<0.01) and ###(p<0.001); among ZK159222, ZK191784 and 1α,25(OH)2D3 by &&(p<0.01) and &&&(p<0.001).

Figure 3 Continued.
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(OH)2D3-MacCM inhibited the overall pro-inflammatory

gene expression by 25 ~ 52% and 33 ~ 59%, 34 ~ 78% and

41 ~ 67%, 39 ~ 76%, respectively. The overall anti-inflam-

matory effects achieved were largely similar, though

(10 nM) ZK191784-MacCM appeared most potent in inhi-

biting the gene expression of IL-8 and RANTES, while

least effective on IL-1β expression (Figure 3B).

Discussion
Physiologically, macrophage–preadipocyte interactions

influence especially adipogenesis, lipolysis and apoptosis,

which are fundamental metabolic processes to maintain adi-

pose tissue homeostasis.26,27 During metaflammation, infil-

tration of excess M1 macrophages mobilize preadipocytes in

paracrine/autocrine manners to disrupt adipose tissue

homeostasis, which might make a critical contribution to

MetS.3,4,27,28 Hence, in this study, the metaflammatory

responses were stimulated in macrophage-induced preadipo-

cytes and measured only in supernatant/lysate extracted from

the preadipocytes, since they are the progenitor of adipose

tissue, rather than macrophages.27 The current results

revealed that secretion and gene expression of the major

pro-inflammatory cytokines were significantly enhanced in

macrophage-induced preadipocytes.

1α,25(OH)2D3 has been shown to improve inflammatory

as well as metabolic biomarkers of MetS,29 but there still is a

long way to its clinical translation, which may be dependent

upon the development of advantageous synthetic analogs and

research to unravel their immunometabolic effects and

mechanism of action.30 The 1α,25(OH)2D3 analogs

Figure 3 Macrophage-specific effect of ZK159222, ZK191784 and 1α,25(OH)2D3 on the major pro-inflammatory cytokines secreted and expressed in macrophage-induced

preadipocytes. Preadipocytes were incubated with 25% RPMI-1640 medium (the control), 25% MacCM or VD-MacCM in preadipocyte growth medium for 24 h.

Supernatants and preadipocytes were collected after the incubation. (Panel A) The concentrations of (a) IL-1β, (b) IL-6, (c) IL-8, (d) MCP-1 and (e) RANTES were

measured using ELISA. (Panel B) The relative gene expression of (a) IL-1β, (b) IL-6, (c) IL-8, (d) MCP-1 and (e) RANTES were measured using qPCR. Data were analyzed

using one-way ANOVA. The results are shown as means ± SEM for groups of 6 and confirmed by 3 independent experiments. A significant difference to control is indicated

by ***(p<0.001); to MacCM by #(p<0.05), ##(p<0.01) and ###(p<0.001); among VD-MacCM by &(p<0.05), &&(p<0.01) and &&&(p<0.001).
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ZK159222 and ZK191784 have manifested a number of tis-

sue-specific immunomodulatory actions,31–33 but limited data

are available on adipose tissue. In this study, preadipocyte and

macrophage-specific effects of ZK159222 and ZK191784 on

metaflammatory responses in macrophage-induced preadipo-

cytes were thoroughly explored. 1α,25(OH)2D3 served as the

positive control since we previously demonstrated that it acts

on preadipocytes to attenuate themetaflammatory responses in

macrophage-induced preadipocytes.9 The present results show

that ZK159222 and ZK191784 act on preadipocytes and

macrophages to attenuate the metaflammatory responses in

macrophage-induced preadipocytes (Figure 4). Although

some differences in effects were obvious, both synthetic ana-

logs not only decreased secretion and gene expression of the

major pro-inflammatory cytokines in macrophage-induced

preadipocytes as effectively as 1α,25(OH)2D3, but also dis-

played distinct anti-inflammatory advantages at high concen-

trations, for preadipocyte apoptosis was not induced.

Limitations of this study include the fact that we focused our

assessment of the metaflammatory response on pro-

inflammatory cytokines. The cytokine array results revealed

that 1α,25(OH)2D3 increased serpin-E1 secreted from macro-

phage-induced preadipocytes. Overexpression of serpin-E1

has been suggested to show some beneficial effects on adipose

tissue in metabolic syndrome.34 However, IL-1RA, which acts

as the inhibitor of IL-1β,35 was paradoxically decreased

(Supplementary Figure). Therefore, the effects of the synthetic

analogs on anti-inflammatory cytokines during adipose tissue

metaflammation should be considered in the future.

As a crucial inflammatory signaling activated during

metaflammation, the NF-κB/relA integrates with metabo-

lism to disrupt adipose tissue homeostasis and contribute

to MetS.22,36 Moreover, MAPK has been suggested to be

an important metabolic signaling to provoke MetS when

inappropriately activated.24 Specifically, p44/42 and p38

MAPK function in adipose tissue to regulate adipogen-

esis and lipolysis, which are characteristically disordered

in MetS.37–40 Only preadipocyte-specific modulating

effects on NF-κB and MAPK signaling in macrophage-

induced preadipocytes were measured in this study, since

Figure 4 ZK159222 and ZK191784 show anti-inflammatory properties in macrophage-induced preadipocytes via modulating the NF-κB and MAPK signaling, but their

effects on adipose tissue homeostasis remain to be explored. White adipose tissue is composed of mature adipocytes and a stromal vascular fraction containing

preadipocytes and macrophages. During metaflammation, excessive infiltration of M1 macrophages induces preadipocytes to secrete and express major pro-inflammatory

cytokines including IL-1β, IL-6, IL-8, MCP-1 and RANTES, thereby contributing to disruption of adipose tissue homeostasis. Intriguingly, the synthetic 1α,25(OH)2D3 analogs

ZK159222 and ZK191784 act on preadipocytes and macrophages to attenuate the metaflammatory responses in preadipocytes, and the anti-inflammatory actions are

exerted by de-phosphorylating inflammatory and metabolic signaling including relA/NF-κB, p44/42 and p38 MAPK. Moreover, macrophage–preadipocyte interactions

influence adipogenesis, apoptosis and lipolysis to maintain adipose tissue homeostasis. Hence, in future studies, it would be interesting to investigate the effects of these

analogs on the fundamental metabolic processes in adipose tissue.
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not only preadipocytes are the progenitor of adipose

tissue, but also were directly pre/incubated with the syn-

thetic analogs.27 The results revealed that the phosphor-

ylation of relA, p44/42 and p38 MAPK were increased in

macrophage-induced preadipocytes. 1α,25(OH)2D3 acted

on preadipocytes to decrease the phosphorylation of relA,

p44/42 and p38 MAPK in macrophage-induced preadi-

pocytes. ZK159222 and ZK191784 also de-phosphory-

lated these inflammatory and metabolic signaling, but

most effectively when used at high concentrations. Last

but not least, it would be interesting in future studies to

investigate the effects of these analogs on those funda-

mental metabolic processes in adipose tissue (Figure 4).

Conclusion
The 1α,25(OH)2D3 analogs ZK159222 and ZK191784 act on

macrophages and preadipocytes to attenuate secretion and

gene expression of the major pro-inflammatory cytokines in

macrophage-induced preadipocytes, via decreasing phos-

phorylation of NF-κB/relA, p44/42 and p38 MAPK.

Abbreviations
IL, interleukin; MacCM, macrophage-conditioned med-

ium; MAPK, mitogen-activated protein kinase; MCP,

monocyte chemoattractant protein; MetS, metabolic syn-

drome (MetS); RANTES, regulated on activation, normal

T cell expressed and secreted.
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