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Objective: Tuberculosis (TB) is a major public health problem in China, and contriving

a long-term forecast is a useful aid for better launching prevention initiatives. Regrettably,

such a forecasting method with robust and accurate performance is still lacking. Here, we

aim to investigate its potential of the error-trend-seasonal (ETS) framework through a series

of comparative experiments to analyze and forecast its secular epidemic seasonality and

trends of TB incidence in China.

Methods: We collected the TB incidence data from January 1997 to August 2019, and then

partitioning the data into eight different training and testing subsamples. Thereafter, we

constructed the ETS and seasonal autoregressive integrated moving average (SARIMA)

models based on the training subsamples, and multiple performance indices including the

mean absolute deviation, mean absolute percentage error, root-mean-squared error, and mean

error rate were adopted to assess their simulation and projection effects.

Results: In the light of the above performance measures, the ETS models provided

a pronounced improvement for the long-term seasonality and trend forecasting in TB incidence

rate over the SARIMA models, be it in various training or testing subsets apart from the 48-step

ahead forecasting. The descriptive results to the data revealed that TB incidence showed notable

seasonal characteristics with predominant peaks of spring and early summer and began to be

plunging at on average 3.722% per year since 2008. However, this rate reduced to 2.613%

per year since 2015 and furthermore such a trend would be predicted to continue in years ahead.

Conclusion: The ETS framework has the ability to conduct long-term forecasting for TB

incidence, which may be beneficial for the long-term planning of the TB prevention and

control. Additionally, considering the predicted dropping rate of TB morbidity, more parti-

cular strategies should be formulated to dramatically accelerate progress towards the goals of

the End TB Strategy.
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Introduction
Tuberculosis (TB) still remains one of the top ten leading causes of death globally,

despite an average decline of around 1.6% and 5% per year in TB morbidity and

mortality rates, respectively, in the period 2000–2018, and since 2011 it has also been

the foremost cause of death from a single infectious pathogenic factor, ranking above

HIV/AIDS.1–3 In 2018, there were an estimated 10.0 million people fallen sick with

TB, and an estimated 1.2251 million deaths directly or indirectly attributable to TB.2 In

WHO’s list of 30 high TB burden countries with proportion up to 87% of all estimated

incidents globally in 2018, eight of them made up two-thirds of the global totals.2
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Among them ranking the second is China (9%), in spite of

progress in lowering TB morbidity (on average, approxi-

mately 3% annually) over the past decade.2 Moreover, TB

has caused catastrophic health expenditure (CHE) among

TB-affected households, accounting for 49% of the average

annual income of their families, and the latest publication

documented that the CHE incidence was up to 66.8% in

China, which was measured through household income.4,5

To dramatically accelerate fight against this life-threatening

disease, WHO has proposed the End TB Strategy in 2014,

which includes milestones with a reduction of 20% and 50%

in TB morbidity rate for 2020 and 2025, respectively, and

targets with a decline of 80% and 90% in TB morbidity rate

for 2030 and 2035, respectively, compared with the levels of

2015.6 At present, the slow fall in TB morbidity in China is

attended by the increasing drug-resistant TB, TB-HIV dual

infection, population movement, and other TB-related

comorbidities such as influenza, diabetes, and hypertension,

etc., these may result in a risk of recurrence in TB

incidence.1,7,8 Therefore, to be on track to achieve the

WHO’s goals during different periods, accurate projection

for the long-term seasonality and trends of TB epidemics will

be significantly valuable for guiding emergency prepared-

ness and decision-making process of TB control.

There is an abundance of computational models used to

simulate and forecast time series in various research

domains, such as business, environmental engineering,

finance and economy, and medicine, etc.,9–11 yet most of

them focused on a short-term forecasting. Such a predictive

period may provide limited clues for the process of the

decision-making in applications. Thereby exploring a long-

term predictive tool applied to model target time series is of

great value for the optimization in resource allocations,

particularly for infectious diseases. Currently, albeit the

standard exponential smoothing (ES) methods under

a linear assumption have widely been employed to handle

numerous forecasting problems, recent advance in meth-

odologies has embedded these methods into a modern

dynamic nonlinear technique framework, designated as

Error-Trend-Seasonal (ETS) framework.12–14 Specifically,

this ETS framework that gives an expansion to the standard

ES methods such as Holt and Holt–Winters additive and

multiplicative techniques and provides a theoretical basis

for analysis of possible ES methods with state-space based

likelihood calculations, this will in turn strengthen their

status, and thus allowing them to not only reflect the inter-

nal state of a time series but to display the relationship

between the internal state and the external inputs and

outputs.12,15 Also, the ETS techniques are able to describe

the state of a system using the present and past minimum

information in a time series, which allows the ETS

approaches to handle any time series even with both hetero-

geneity and non-linearity, and hence having the potential to

conduct long-term predictions for a time series.15 As

a result, given its excellent properties of the ETS frame-

work, in this study, we aimed to investigate its suitability

for the application in analyzing and assessing the secular

seasonality and trends of TB incidence in China.

Meanwhile, in order to test and validate the ETS

approaches’ favorable flexibility, we also modeled the TB

incidence series using the most popular autoregressive inte-

grated moving average (ARIMA) technique. Further, their

mimic and predictive performances were compared.

Materials and Methods
Data Collection
We extracted the data on the monthly and yearly TB

incidence counts from January 1997 to August 2019 and

their corresponding population numbers from the National

Health Commission of the People’s Republic of China

(http://www.nhc.gov.cn/wjw/index.shtml), disease surveil-

lance website (http://www.jbjc.org/) and China health sta-

tistical yearbook database. A total of 272 months’ data

spanning 23 years were obtained. Then, we partitioned our

data into different training and testing subsets (i.e. succes-

sive ahead forecasting datasets including 12, 24, 36, 48,

72, 96, 108, and 132 steps were reserved) so that a series

of experiments were undertaken to compare their indivi-

dual abilities of the short-run and long-run simulations and

predictions between ARIMA and ETS approaches.

All data applied in this time series analysis were gath-

ered in an anonymous format and failed to access to any

personal identifying information in addition to the publicly

available incidence counts, thus the consent is not entailed.

Establishment of SARIMA Method
As epidemiologically monthly time series often contains

noticeable seasonal and cyclical fluctuations,16 hence in

this study we constructed a seasonal ARIMA (SARIMA)

method to model our data. In this model, the seasonality of

TB incidence data was deemed as predictors and monthly

TB incidence data as the response variable. Its general form

is expressed as SARIMA(p, d, q) (P, D, Q)s, where s denotes

the seasonal period length; p, d, and q are the autoregressive

order (AR), the non-seasonally differenced times and the
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moving average order (MA), respectively; P, D, and

Q represent the seasonal AR (SAR), the seasonally differ-

enced times, and the seasonal MA (SMA), respectively.17

The SARIMA methods were established with four steps

containing data preprocessing, model parameters’ identifica-

tion and estimation, diagnostic checking, and forecasting

forward.18 Initially, the Augmented Dickey–Fuller (ADF)

test was used to investigate its stationarity of TB incidence

series as the prerequisite for SARIMA-erecting model is to

satisfy this requirement.19 For a non-stationary series, the

logarithm or square root transformation and differencing

are commonly used to help stabilize its varying variance

and average over time.20 Secondly, using the autocorrelation

function (ACF) and partial ACF (PACF) graphs to choose the

possible values of p, q, P, and Q. By doing so, more models

than one were identified.16,18 Of them, the one that maxi-

mized the coefficient of determination (R2) and minimized

the normalized Bayesian information criterion (BIC) was

considered the best-conducting. Subsequently, statistical

checking for the selected best-mimicking model, in which

the identified parameters should show a significant difference

(P<0.05) and its fitted residuals should display a white noise

sequence.18 Finally, once this identified best-fitting model

passed all above checking, a projection into the future can

be performed with it.

Development of ETS Framework
The conventional ES methods often have a restricted cap-

ability to handle highly non-stationary or non-linear time

series because of their linear essence, although there is

a wide use in practice.15 In order to overcome this defect,

researchers develop the ETS techniques that embed the stan-

dard ES models in a modern dynamic nonlinear model

framework.12 As such, this novel framework can be

employed to handle more complicated time series as it con-

siders the possible additive or multiplicative combinations of

the trend, seasonality, and residual components of a time

series using 30 alterative choices prior to choosing the best-

fitting method to model this series.13 For an ETS specifica-

tion, its individual components are presented in Table 1. And

given any ETS framework, its parameters and initial states’

values can be specified as θ� ¼ α; β; γ; δð Þ and

x�0 ¼ l0; b0; s0; s�1; . . . ; s�mþ1ð Þ, respectively, where l0 and

b0 stand for the level and growth terms for the trends of

a target time series, respectively; s andm signify the seasonal

terms and the length of seasonal cycle of a target time series,

respectively.21 Among the 30 candidate models, we selected

the one that gave smaller values among four performance

measures involving the Akaike information criterion (AIC),

BIC, average mean square error (AMSE), and Hannan–

Quinn criterion (HQ), coupled with greater values for the

Likelihood (LL) and compact LL functions in both fitting and

forecasting aspects as the preferred.22

Performance Measures
Four measure indices including the mean absolute devia-

tion (MAD), mean absolute percentage error (MAPE), root

mean squared error (RMSE) and mean error rate (MER)

were employed to compare and assess the mimic and

predictive accuracies between the optimal SARIMA and

ETS methods. The model that gives smaller values among

Table 1 The 30Alterative ETSMethods Associatedwith VariousCombinations of Trend, Seasonality and Error

Trend Pattern Seasonal Pattern

N (None) A (Additive) M (Multiplicative)

ETS Framework with Additive Form

N (None) N,A,N N,A,A N,A,M

A (Additive) A,A,N A,A,A A,A,M

AD (Additive damped) AD,A,N AD,A,A AD,A,M

M (Multiplicative) M,A,N M,A,A M,A,M

MD(Multiplicative damped) MD,A,N MD,A,A MD,A,M

ETS Framework with Multiplicative Form

N (None) N,M,N N,M,A N,M,M

A (Additive) A,M,N A,M,A A,M,M

AD (Additive damped) AD,M,N AD,M,A AD,M,M

M (Multiplicative) M,M,N M,M,A M,M,M

MD(Multiplicative damped) MD,M,N MD,M,A MD,M,M

Abbreviation: ETS, error-trend-seasonal.
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the above indices in both fitting and projection parts is

considered the best-performing.

MAD ¼ 1

N
∑N

i¼1 Xi � X̂ i

�� ��

MAPE ¼ 1

N
∑N

i¼1

Xij � X̂ i

��
Xi

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1ðXi � X̂ iÞ2
r

MER ¼
1
N ∑

N
i¼1 Xi � X̂ i

�� ��
Xi

�

where Xi is the actual TB incidence data, X̂i signifies the

mimic and predictive TB incidence data, �Xi refers to the

averages of the actual TB incidence data, N represents the

number of simulations and projections.

Data Analysis
We examined the secular TB epidemic trends and changes

with the measures of annual percent change (APC) and

average annual percentage change (AAPC) using the join-

point regression program (version 4.7.0).23 We employed

the forecasting function of SPSS software (version 17.0,

IBM Corp, Armonk, NY) and the packages of “forecast”

and “tseries” of R software (version 3.4.3, R Development

Core Team, Vienna, Austria) to develop the SARIMA

method, and using the Eviews10.0 software (IHS, Inc.

USA) to establish the ETS techniques. Statistical signifi-

cance level was set at a two-sided P<0.05.

Results
Descriptive Analysis
From January 1997 until August 2019, there were

24,078,923 cases reported of TB in China with an average

88,526 cases per month, leading to an average monthly

and annualized morbidity rates of 6.722 and 63.498 per

100,000 persons, respectively. As shown in Figure 1, the

overall TB epidemic trend appeared to be significantly

ascending with AAPC=4.167 (95% uncertainty interval:

3.104 to 5.240; Z=7.801, P<0.001) over the study period,

yet since 2008, there was a clear decreasing trend in TB

incidence with AAPC=−3.722 (95% uncertainty interval:

−4.193 to −3.250; Z=−15.183, P<0.001). When the

Seasonal-Trend decomposition procedure based on Loess

(STL) was utilized to decompose the series into various

components, we observed that there existed a notable

cyclical fluctuation with 12 months and seasonal distribu-

tion in TB incidence, peaked in March until August of

each year, particularly in March and April annually;

troughed in September until February in the

Figure 1 Joinpoint regression displaying the TB epidemic trends over the period 1997–2035. *Showed that the annual percent change (APC) is significantly different from

zero at the significance level.
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subsequent year, particularly in January and February

annually (Figures 2 and 3).

The Best-Undertaking SARIMA Models
We performed an ADF test for the TB morbidity series prior

to constructing models (ADF=−0.788, P=0.365), indicating
that there was a unit root. Thus, based on the ADF test and

the marked seasonal fluctuation in the TB incidence series

(Figure 3 and S1), the log-transformation and square root

transformation were applied to the series to stabilize its

variance-varying over time. Looking at Figure S2, being

suggestive of a similar trend between these two transformed

series. We discovered that the square root transformation

seemed to be more suitable for our data after trying these

Figure 2 Time-series plot for the monthly TB incidence in China from January 1997 to August 2019 and the seasonal decomposition consisting of different components of

the TB series with the STL method. (A) TB incidence time series; (B) trend component; (C) seasonal component; (D) irregular component.

Dovepress Wang et al

Infection and Drug Resistance 2020:13 submit your manuscript | www.dovepress.com

DovePress
737

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=238225.docx
https://www.dovepress.com/get_supplementary_file.php?f=238225.docx
http://www.dovepress.com
http://www.dovepress.com


two approaches. Further, this transformed series was sea-

sonally and non-seasonally differenced once, respectively,

to meet the stationary need of SARIMA-developing model

(ADF=−19.525, P<0.001), suggesting that it is now station-

ary (Figures S3 and S4). Subsequently, according to the

spikes in the ACF and PACF graphs plotted with the differ-

enced series, some possible SARIMA models were selected

to perform further investigation. After attempting by trial

and error, we noticed that a sparse coefficient SARIMA

(0,1,(1,10))(0,1,1)12 model was supposed to be the best-

undertaking among all candidate models as this model

gave the largest stationary R2 of 0.617 and R2 of 0.931 as

well as the minimum normalized BIC of −0.753 (Table 2).

Moreover, all the identified parameters showed a statistical

significance and the residuals produced by this sparse coef-

ficient model actualized a white noise sequence (Table 2

and Figure 4). Therefore, 12-step ahead forecasts could

finally be completed by employing this best-fitting model

(Figure 5A). Likewise, following the modeling procedures

in the 12-data ahead predictions, we could obtain the best-

performing SARIMA models for 24, 36, 48, 72, 96, 108,

and 132 data ahead projections (Table 2 and Figure 5

and S5-S11).

The Best-Undertaking ETS Models
Altogether 30 candidate models were derived by applying

the ETS framework to the TB incidence data from

January 1997 to August 2018 (Table S1). Among which

the ETS(M,MD,A) approach composing of multiplicative

errors, a damped multiplicative trend and multiplicative

seasonality was expected to be elected as the best-

undertaking because there were four out of six perfor-

mance indices that tended to choose the ETS(M,MD,A)

method (Compact LL=−590.972, LL=−237.007,
AIC=1215.944, BIC=1276.475, HQ=1240.278, and

AMSE=0.495), and its parameters and initial states’

values are presented in Tables 3 and S2. Furthermore,

this method showed a similar performance on training

and forecasting sets, so there is likely no overfitting

(Table 4). Based on these results, we believed that this

derived best-conducting ETS method is appropriate for

the TB morbidity series forecasting (Figure 5A). In the

same way, we could also identify the preferred ETS

approaches used to conduct a prediction into future 24,

36, 48, 72, 96, 108 and 132 months by comparing the

above six performance measures in the training subsam-

ples and judging whether there was overfitting between

training and testing subsets (Tables S3–S15 and

Figure 5).

Performance Comparisons Among Models
The constructed ETS methods were compared with the

SARIMA approaches from two aspects of simulation and

projection based on the measures including MAD, MAPE,

Figure 3 Monthly TB incidence plot averaged by season.
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RMSE, and MER. As shown in Table 4, it was seen that

the ETS models displayed lower values of performance

indices in both training and testing sets except for the

48-step ahead forecasting. And as presented in Figure 5,

together the ETS approaches could better capture the

secular epidemic trends and seasonality of TB incidence

though the predictive accuracies continued to slightly

degrade, in tandem with the increases of the ahead fore-

casting time steps. By contrast, the SARIMA models have

deviated from the epidemic trajectories of TB morbidity

after 48-data ahead forecasting. Due to its superiority of

the ETS framework in modeling TB morbidity series, we

thus established the ETS(M,M,M) method derived from

the entire dataset to project TB incidence rate into 2035

(Figure 6). As illustrated in Figure 1, albeit the TB inci-

dence continued to display a downward trend at 2.613%

(95% uncertainty interval: 2.473% to 2.752%) per year

during the projection periods, it showed major challenges

ahead to achieve the WHO’s milestones and goals in

China.

Table 2 The Best-Performing SARIMA Models Obtained from Various Training Sets and Goodness of Fit Tests for Their Parameters

Parameters Coefficients S.E. t P Stationary R2 R2 Normalized BIC Ljung-Box

Statistics P

SARIMA(0,1,(1,10))(0,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2018

MA1 0.692 0.044 15.705 <0.001 0.617 0.931 −0.753 13.851 0.537

MA10 −0.201 0.045 −4.439 <0.001

SMA1 0.764 0.049 15.519 <0.001

SARIMA(0,1,(1,10))(0,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2017

MA1 0.691 0.045 15.282 <0.001 0.612 0.932 −0.720 12.186 0.665

MA10 −0.209 0.046 −4.503 0.001

SMA1 0.776 0.050 15.494 <0.001

SARIMA(0,1,1)(1,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2016

MA1 −0.622 0.052 −11.961 <0.001 0.613 0.935 −0.644 21.845 0.239

SAR1 0.207 0.123 1.683 0.047

SMA1 −0.798 0.105 −7.600 <0.001

SARIMA(0,1,1)(1,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2015

MA1 −0.623 0.053 −11.755 <0.001 0.612 0.935 −0.634 21.020 0.278

SAR1 0.226 0.128 1.766 0.039

SMA1 −0.814 0.111 −7.333 <0.001

SARIMA(0,1,1)(0,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2013

MA1 0.629 0.060 10.528 <0.001 0.591 0.931 −0.510 21.800 0.150

SMA1 0.730 0.063 11.563 <0.001

SARIMA(0,1,1)(0,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2011

MA1 0.609 0.065 9.311 <0.001 0.586 0.937 −0.495 22.785 0.120

SMA1 0.748 0.069 10.775 <0.001

SARIMA(0,1,1)(0,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2010

MA1 0.606 0.068 8.887 <0.001 0.586 0.936 −0.444 20.979 0.179

SMA1 0.767 0.075 10.261 <0.001

SARIMA(0,1,1)(0,1,1)12 Model Yielded Based on the Observations from January 1997 to August 2008

MA1 0.588 0.075 7.835 <0.001 0.527 0.937 −0.455 17.500 0.354

SMA1 0.691 0.089 7.797 <0.001

Abbreviations: SARIMA, seasonal autoregressive integrated moving average; AR1, autoregressive, lag1; MA1, moving average, lag1; MA10, moving average, lag10; SAR1,

seasonal autoregressive, lag1; SMA1, seasonal moving average, lag1; SE, standard error.
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Discussion
TB invariably remains a major public health issue in China

and worldwide.1 Early warning for its long-term epidemic

trajectories may serve as a base for the decision-making

process and facilitate the allocation of health-care resource

under dynamic demand. In this work, we explored its

potential of the ETS framework and its suitability through

a series of comparative experiments for the application in

analyzing and estimating the long-term epidemic season-

ality and trends of TB incidence in China. As far as we

know, no published research has been found until now to

perform a long-run TB incidence prediction using this

framework. Our findings revealed that by comparison

with the SARIMA models, overall the ETS techniques

provide a higher-precision approximation to the secular

seasonality and trends of TB incidence in both the short-

run and long-run forecasting periods. Moreover, although

there is a reduction performance with the increased time

steps, the long-term predictive results still remain robust

and reliable as the performance measure of MAPE pre-

sents a value of less than 0.2 in all multi-step-ahead

predictions. The MAPE value is commonly utilized to

measure accuracy of a forecast, a model with this index

value lower than 0.2 is deemed good.13 Our prior study

documented that the mixed SARIMA-nonlinear autore-

gressive neural network with exogenous variables techni-

que also has the potential to assess the secular epidemic

trends of TB notified cases, in which the prediction per-

formance into the future 75 time steps was

MAPE=0.221.24 However, we found that the ETS frame-

work (MAPE=0.053 and MAPE=0.093 for 72-data and

96-data ahead forecasting, respectively) still showed

a remarkable improvement over the above mixed method

by comparing their forecasting performances. Therefore,

the ETS models can emerge as a useful tool in studying the

long-term epidemic patterns of TB incidence in China.

Further, this ETS framework can also play an important

part in evaluating the long-term effects of new prophy-

laxis, such as the optimization of the current tools, the

introduction of the new vaccine, the directly observed

antimicrobial treatment, and/or other intervention strate-

gies. If the estimated TB epidemic levels are higher than

Figure 4 Goodness of fit test for the residuals generated by the SARIMA(0,1,(1,10))(0,1,1)12 approach established with the training data from January 1997 to August 2018.

(A) Autocorrelation function (ACF); (B) partial autocorrelation function (PACF); (C) P values for Ljung–Box statistic. Almost all of correlation coefficients fell into the 95%

uncertainty levels and all P values at different lags were greater than the significance level of 0.05, indicating that this approach showed a good adequacy for this series.
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Figure 5 Comparative time series plots measuring the approximations to the hold-out data on different-step-ahead predictions using the SARIMA and ETS methods. (A) 12

data ahead forecasts; (B) 24 data ahead forecasts; (C) 36 data ahead forecasts; (D) 48 data ahead forecasts; (E) 72 data ahead forecasts; (F) 96 data ahead forecasts; (G) 108

data ahead forecasts; (H) 132 data ahead forecasts. In these plots, the shaded areas displayed the predictive results using the SARIMA and ETS models, suggesting that the

ETS methods captured the dependent structures well, particularly for the long-term forecasting time steps.
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Table 3 The Best-Performing ETS Models Obtained from Various Training Sets and Goodness of Fit Tests for Their Parameters

Parameters Compact LL LL AIC BIC HQ AMSE

ETS(M,MD,A) Approach Erected with the Observations from January 1997 to August 2018

α=0.184 −590.972 −237.007 1215.944 1276.475 1240.278 0.495

β=0.046

γ=0.173

δ=0.950

ETS(M,MD,A) Approach Erected with the Observations from January 1997 to August 2017

α=0.193 −559.392 −227.623 1152.783 1212.512 1176.828 0.518

β=0.045

γ=0.149

δ=0.951

ETS(M,A,A) Approach Erected with the Observations from January 1997 to August 2016

α=0.219 −528.885 −219.022 1089.770 1145.191 1112.110 0.540

β=0.044

γ=0.150

δ=0.000

ETS(M,A,A) Approach Erected with the Observations from January 1997 to August 2015

α=0.216 −498.979 −210.717 1029.957 1084.544 1051.991 0.562

β=0.045

γ=0.147

δ=0.000

ETS(M,MD,A) Approach Erected with the Observations from January 1997 to August 2013

α=0.162 −434.865 −188.821 903.730 959.801 926.421 0.594

β=0.052

γ=0.147

δ=0.950

ETS(M,MD,A) Approach Erected with the Observations from January 1997 to August 2011

α=0.151 −365.918 −160.649 765.836 819.734 787.697 0.605

β=0.054

γ=0.161

δ=0.952

ETS(M,MD,A) Approach Erected with the Observations from January 1997 to August 2010

α=0.142 −334.855 −149.372 703.711 756.409 725.104 0.633

β=0.055

γ=0.166

δ=0.951

ETS(A,MD,M) Approach Erected with the Observations from January 1997 to August 2008

α=0.477 −273.287 −126.023 580.574 630.582 600.896 0.492

β=0.036

γ=0.000

δ=0.929

Abbreviations: ETS, error-trend-seasonal; LL, likelihood; AIC, Akaike information criterion, BIC, Bayesian information criterion; HQ, Hannan–Quinn criterion; AMSE,

average mean square error.
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that of the actual after a new intervention has been applied

in the population, showing that such a measure is effective.

Besides, we noted that the predictive results using the

SARIMA model were highly accurate before 48-data

ahead, whereas after that, this model failed to be applic-

able to estimate the TB epidemic behaviors. This finding

further validates the usefulness of ARIMA as a short-or

medium-term forecasting method.

The ARIMA method is comprised of an autoregressive

method and a moving average method.25 Since this

approach is without requirement for a previous assumption

regarding the development model of a time series; hence,

it has widely been adopted to model diseases morbidity or

mortality time series with both non-seasonality and

seasonality.26 Even for a non-stationary time series, after

preprocessing with the transformed method of logarithm

or square root and/or difference, the ARIMA model is also

applicable.25 For instance, Liu et al established

a SARIMA(0,1,2)(0,1,1)12 method to estimate the TB epi-

demic trends in Jiangsu Province of China.26 Earnest et al

constructed an ARIMA (1,1,0) approach to forecast the

prostate cancer incidence and mortality rates in

Australia.27 Though the above models attained

a satisfactory performance for their target time series, the

Table 4 Comparative Results of the Performances Between the Best-Undertaking SARIMA Methods and the Best-Undertaking ETS

Methods on the Different Training and Testing Sets

Models Training Part Testing Part

MAD MAPE RMSE MER MAD MAPE RMSE MER

260 Training Data from January 1997 to August 2018 12 data ahead

ETS(M,MD,A) 0.412 0.065 0.658 0.062 0.267 0.041 0.344 0.041

SARIMA(0,1,(1,10))(0,1,1)12 0.445 0.069 0.659 0.074 0.278 0.043 0.333 0.043

248 Training Data from January 1997 to August 2017 24 data ahead

ETS(M,MD,A) 0.420 0.066 0.670 0.063 0.383 0.059 0.490 0.058

SARIMA(0,1,(1,10))(0,1,1)12 0.453 0.071 0.669 0.075 0.440 0.068 0.531 0.067

236 Training Data from January 1997 to August 2016 36 data ahead

ETS(M,A,A) 0.425 0.067 0.681 0.064 0.317 0.048 0.441 0.048

SARIMA(0,1,1)(1,1,1)12 0.432 0.068 0.683 0.072 0.432 0.065 0.542 0.065

224 Training Data from January 1997 to August 2015 48 data ahead

ETS(M,A,A) 0.433 0.069 0.695 0.065 0.380 0.056 0.487 0.057

SARIMA(0,1,1)(1,1,1)12 0.443 0.070 0.698 0.074 0.314 0.047 0.428 0.047

200 Training Data from January 1997 to August 2013 72 data ahead

ETS(M,MD,A) 0.446 0.072 0.719 0.068 0.360 0.053 0.480 0.052

SARIMA(0,1,1)(0,1,1)12 0.495 0.078 0.750 0.082 0.745 0.109 0.842 0.108

176 Training Data from January 1997 to August 2011 96 data ahead

ETS(M,MD,A) 0.438 0.073 0.723 0.069 0.665 0.093 0.807 0.092

SARIMA(0,1,1)(0,1,1)12 0.493 0.080 0.752 0.082 1.591 0.231 1.900 0.219

164 Training Data from January 1997 to August 2010 108 data ahead

ETS(M,MD,A) 0.448 0.076 0.741 0.072 0.699 0.097 0.857 0.095

SARIMA(0,1,1)(0,1,1)12 0.503 0.083 0.769 0.084 2.772 0.400 3.287 0.375

140 Training Data from January 1997 to August 2008 132 data ahead

ETS(A,MD,M) 0.396 0.092 0.595 0.070 1.207 0.168 1.553 0.176

SARIMA(0,1,1)(0,1,1)12 0.472 0.085 0.761 0.079 6.099 0.867 7.364 0.890

Abbreviations: SARIMA, seasonal autoregressive integrated moving average; ETS, error-trend-seasonal; MAD, mean absolute deviation; MAPE, mean absolute percentage

error; RMSE, root mean squared error; MER, mean error rate.
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linear essence of the ARIMA model gives rise to

a restricted capability to unearth the non-linear relation-

ship in a time series,18 this may account for the reason that

the ARIMA model is adept in conducting short- or med-

ium-term predictions. Nevertheless, differing from the

ARIMA model, for a given either stationary or non-

stationary time series, the ETS framework containing 30

possible combinations of error, trend, and seasonality by

incorporating the conventional ES techniques with the

state space techniques can not only explore the linear

relationship using its seasonality and trend terms but

investigate the non-linear relationship with its error

term,15 which enables it to extract both linear and non-

linear information. Considering its superiority of the ETS

framework in analyzing time series, it appears that this

framework may be transferable to investigate the long-

term epidemic patterns for other infectious diseases or

TB incidence in other areas, while much work is still

needed to validate its suitability. In addition, it should be

noted that the Lee-Carter and GenericPred methods are

recently shown to be helpful in examining the long-term

epidemic behaviors of diseases incidence.11,28 Thus, future

researches are expected to make comparison about their

long-term forecasting performances between the ETS fra-

mework and the above-mentioned methods. Another worth

noting is that there may be underprojection or overprojec-

tion during the process of ETS model development, which

may have an effect on its generalization ability of this

model.26 In our research, to avoid such an effect, we

selected the preferred ETS model based on multiple per-

formance indices, and then we could identify whether

there was an underfitting or overfitting by comparing

their performances between in-sample data and hold-out

data. As such, we can eventually obtain the optimal and

the most appropriate one.

In this study, we detected that TB is a seasonal disease

with high-risk seasons mainly occurring in spring and

early summer. The seasonal characteristics agree with

those observed in earlier researches in China,24,29 also in

line with those in the United States, Korea, Mongolia, and

Kuwait.30 But inconsistent with whose in Spain (which

peaked June),31 Japan (which showed a semi-annual high-

risk season peaking in June and October, respectively),32

and Iraq (which peaked in spring and winter).33 To date,

there is in the absence of exact causes that can be used to

account for the seasonal patterns of TB incidence in China,

yet given that there is an average incubation period of 4 to

8 weeks from TB infection to onset of symptoms and it

still is required for an about 2-month delay from symptom

appearance to clinical diagnosis.34 The following causes

seem to be of special concern. Firstly, growing work has

been documenting that ambient air pollutants including

PM2.5, PM10, CO, NO2, O3, SO2 and air quality index

(AQI) are positively linked with TB seasonality.35,36

Figure 6 Annual TB incidence projections up to 2035 using the ETS(M,M,M) method based on the entire dataset. As illustrated, albeit the TB incidence continued to display

a declined trend at 2.613% per year in China, it showed major challenges ahead to achieve the WHO’s milestones and goals.
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While the air pollutant has been a major public health

problem in recent years in China, especially in winter

per year, the mean concentrations of pollutants are much

higher than their standards.35 Secondly, a previous sys-

tematic review and meta-analysis suggested a positive cor-

relation between low serum vitamin D levels and TB.37

Importantly, several studies have found that the decreased

sunshine hours and its potential effect on vitamin D levels

in winter appear to be in relation to TB incidence.38,39

Nonetheless, further studies with strong causal inference

are required to verify this potential mechanism. Thirdly,

greater indoor crowding in winter may lead to an increased

likelihood of TB transmission.32 Finally, the most impor-

tant reasons may be attributed to the “spring festival

effect”, prior publications have provided an in-depth dis-

cussion regarding this effect.29 Additionally, the hunt for

other plausible interpretations for the seasonal distribution

of TB incidence is supposed to go on.

TB incidence has continued to be plunging at the

rate of 3.722% annually in China since 2008, which

may be closely related to the government’s ongoing

efforts such as the increased scale up of vaccination

coverage, the increasingly improved monitoring system

for infectious diseases, an increased budget and an

effective control and treatment.25 Nevertheless, the

downturn of TB morbidity starts to retard to be falling

at 2.613% per year since 2015, which may be ascribed

to the continuously upsurged drug-resistant TB, the

increased floating population and the coinfections of

HIV-TB as well as other TB-related comorbidities such

as influenza, diabetes and hypertension, and the like in

recent years.1,7,8 Further, we used the ETS framework to

estimate the TB incidence into future until 2035, indi-

cating that TB incidence rate will continue to descend at

about 2.613% per year between 2019 and 2035. But

such a rate of decline in TB incidence being reached

falls far short of what is required to achieve the WHO’s

milestones for 2020 and 2025 and targets for 2030 and

2035.2 Therefore, there is still an urgent need for China

that takes particular measures to dramatically accelerate

the progress toward eliminating TB.

The occurrence of TB is often affected and con-

strained by many complicated factors, which enables

the TB incidence series to exhibit complex linear and

nonlinear interactions, and thus simply using the single

linear or non-linear methods fails to excavate its entire

information reasonably well.29,40 In this study, we

devoted to constructing a forecasting method with robust

and accurate performance that can be used to analyze and

estimate its secular trends and seasonal variation by con-

sidering the linear and non-linear clues hidden behind the

TB morbidity series in China simultaneously. Moreover,

the results emerged from a series of comparative experi-

ments proved that we have succeeded. Nevertheless,

there are still some shortcomings. Firstly, the TB inci-

dence data used in our analysis are derived from the

passive monitoring system of notifiable infectious dis-

eases, the underreporting is thus inevitable. Secondly,

we cannot obtain the detailed information (age and sex)

concerning the TB cases, which precludes further sensi-

tivity analysis in our work. Finally, the current findings

might not be representative of the ETS framework is

applicable for long-term forecasting for other infectious

diseases, further experiments are still required.

Conclusions
The ETS framework can be used to undertake long-term

forecasting for the epidemic trends and seasonality of TB

incidence, and thus helping health professionals and decision-

makers in offering advanced warning for epidemic character-

istics of TB in order to better inform prevention initiatives

depending on the early detection for its long-term trends.

Besides, under the present dropping trend of TB incidence,

it is unlikely to realize the goals of ending TB epidemic by

2035. It is imperative that a particular TB control programme

should be formulated to address this issue.
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