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Abstract: The use of vaccines have resulted in a remarkable improvement in global health. It
has saved several lives, reduced treatment costs and raised the quality of animal and human lives.
Current traditional vaccines came empirically with either vague or completely no knowledge of
how they modulate our immune system. Even at the face of potential vaccine design advance,
immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-
emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for
personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine
likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine
allergy) are being raised. And these concerns have driven immunologists toward research for
a better approach to vaccine design that will consider these challenges. Currently, immunoinfor-
matics has paved the way for a better understanding of some infectious disease pathogenesis,
diagnosis, immune system response and computational vaccinology. The importance of this
immunoinformatics in the study of infectious diseases is diverse in terms of computational
approaches used, but is united by common qualities related to host—pathogen relationship.
Bioinformatics methods are also used to assign functions to uncharacterized genes which can
be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of
women that are pregnant into vaccine trials and programs. The essence of this review is to give
insight into the need to focus on novel computational, experimental and computation-driven
experimental approaches for studying of host—pathogen interactions and thus making a case for
its use in vaccine development.

Keywords: immunoinformatics, computational vaccinology, vaccine design, emerging

infections, immune system; vaccinology

Introduction

Vaccination has been undeniably very helpful in promoting a healthy global population.
It has severally saved lives, reduced healthcare costs and raised man’s quality of life." It
greatly reduces disease burden, disability and death. However, newly emerging and re-
emerging infectious diseases (ERID), infectious agents with complex lifecycle and
antigenic variability and the need for personalized vaccination present additional
challenges in vaccine development.*?

For many pathogens (especially the emerging and those with antigenic varia-
bility), their genomes are known but their immune correlates of protection remain
unclear."* Some of these reasons are why vaccine development for ERID and
multi-lifecycle pathogenic diseases is a tall order.

Serendipitous discoveries in immunology coupled with knowledge of bioinfor-
matics tools for epitope predictions have resulted in the emergence of new pattern of
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vaccine design.” The art and science of efficient and com-
prehensive information extraction and analysis of data
deposited in relevant databases is now increasingly essential
in researches related to immunology.” Even with this capa-
city (efficient information extraction), some challenges in
the application of bioinformatics in immunology include
structure and/or function analysis and immune process ana-
lyses as concern the immune interaction specificity.
Fortunately, although researches in immunology are experi-
mentally costly and very intensive, colossal amounts of data
are usually generated. Such data can only be analyzed with
high precision and speed using bioinformatics tools. For
instance, genome sequencing as well as in vitro T-cell con-
firmation is done in few months as opposed to years using
the conventional vaccine design.® Also, computational
immunological methods drastically reduce both time and
labor needs in epitopes screening.>’ With computational
immunology techniques, it is possible to discover vaccine
candidate epitopes simply by scanning the protein sequences
in a pathogen of interest.” Many of these proteins are yet to
be isolated or at least cloned. Being pathogens specific and
unique, they present ready candidates in vaccine construct.
This review describes the need to use immunoinfor-
matics-based techniques to unveil vital determinants of
immunity made available in the genome sequence database
and design vaccines. Also, this review gives insight into the
need to focus on novel computational, experimental and

computation-driven experimental approaches for studying of
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host—pathogen interactions and thus making a case for its use
in vaccine development. This review will further show the
need for new approaches for effective drugs or vaccine design
so as to combat the antigenic variability of some pathogens.

Vaccine Immunology and Design

The process of generating vaccine-induced immunity is some-
what challenging in immunology. Current conventional vac-
cines came empirically when there were vague or no
knowledge of vaccine immune system activation. A lot of
research'®'* has been geared toward the understanding of
this challenge, but the complexity of it requires a different
dimension of approach.'® An approach that must accommo-
date many factors affecting vaccine development like pathogen
antigenic variability, the emergence of infectious disease,
human genetic variation is the goal of immunoinformatics
[Figure 1].

Activation of the immune system involves, among
many processes, induction of the immune memory. The
strength of this induction determines the efficacy of
a vaccine. Hence, vaccine efficacy in the long run is
influenced by the determinants of immunological memory
stimulation, persisting antibodies and kind and type of
immune memory cells induced.'*

The primary vaccine-mediated immunological effectors
(Table 1) are mainly the antibodies (from B lymphocytes/
cell)'>'® and sometimes CD8+ and CD4+ T cells. These
antibodies bind specifically to a particular kind of toxin or

PERSONALISED MATERNAL
VACCINATION VACCINATION
INFLUENZA
PATHOGENS TRYPANOSOMA
WITH
ANTIGENIC PLASMODIUM
VARIATION
PNEUMOCOCCUS
NEISSERIA
BACTERIAL
e.g. Streptococcus A
EMERGING &
RE-EMERGING VIRAL
INFECTIOUS e.g. Ebola, Zika
DISEASES
ZOONOTIC
e.g. Lassa

Figure | Schematic illustration of the cases stemming the need for immunoinformatics vaccine development approach.

I 4 submit your manuscript

Dove

ImmunoTargets and Therapy 2020:9


http://www.dovepress.com
http://www.dovepress.com

Dove

Oli et al

Table | Functions of the Immunological Memories

Immune Cells

Immunological Memories (Effectors of the Immune
Response)

Mechanistic Functions

B cells produced
(humoral immunity)

Antibodies play vital roles in the control (including
prevention) and complete removal or destruction of both

extracellular and intracellular pathogens as well as in

- activate the complement cascade
- neutralize the replicating power of viruses (viral infectivity)

- prevent the diffusion of toxins and/or bind to their enzymatic

response to vaccination.

active sites (comprising of the binding site and the catalytic site)
- induction of the macrophages and neutrophils for the purpose
of clearing extracellular bacteria

T-cell produced

(cellular immunity) [ within and outside the cells

T cells of the CD4+ class. Clears the pathogens residing

- produces several interleukins and supports B-cell
stimulation and differentiation (Th2 cells response)

- produces Thl cell responses (produces interferon-y, tumor
necrotic factor-o/-f and Interleukins-2 and 3 and supports
the proliferation and differentiation of CD8+T cells, B cells,
and macrophages

- activate the B cells, cytotoxic T cells and other cells not

involved in the immune system

the cells

T cells of the CD8+ T class. Clear the pathogens residing in

- induces the release of antimicrobial cytokine for the
purpose of killing microbial infected cells
- kills infected cells directly by releasing proteolytic enzymes

pathogen. Vaccines and most antigens evoke humoral as
well as cell-mediated immune responses.'” Vaccines that
mediate immune responses through these systems (B and
T cell responses) are said to be more effective. Although
B cells are regarded as the primary vaccine immune effec-
tors, T cells induce immune memory cells and high-affinity
antibodies. Studies in reverse vaccinology and immunomics
had also proved T cells as prime immune effectors follow-
with
EpiMatrix.'®2° This change of immune target has led to

ing the discovery of novel vaccine targets
successful advances in vaccine design.

Even at the face of potential vaccine design advances,
immune-related questions are now focused on specific
vulnerable populations such as the young, elderly and
immunocompromised.”'** These concerns have propelled
a better understanding of the efficacy of current vaccines
on this vulnerable population and have also paved way for
the application of new approaches that can put into con-
sideration the differences of population and better targets
223 with the

exception of type II T-cell-independent (TI-2) antigens

that can generate optimum immune induction

(i.e., polysaccharide antigens).

Antigens that could provoke the B lymphocytes as well
as the T lymphocyte responses stimulate the germinal
centers causing antigen-specific highly efficient B-cell
multiplication and eventual differentiation into antibody-
forming plasma cells and memory B cells. All existing

protein and DNA antigens induce immunological memory
B cells unlike type II T-cell-independent (TI-2) antigens
(i.e., polysaccharide antigens). These polysaccharide anti-
gens do not generate memory B cells but can induce long-
lasting humoral immunity even when recall responses are
lacking.*® Vaccine efficacy may be short term®’ if only the
B cells are activated.

The traditional approach for developing vaccines for
infectious disease threats has shifted to include other vac-
cine design techniques like cloning and expressing major
surface antigens®® although this frequently resulted in the
formulation of vaccines with poor immunogenicity, requir-
ing strong adjuvantation.”” This approach is particularly
likely to be less specific for pathogens with complex life-
cycles (e.g., parasites) or very high mutability (e.g., RNA
viruses). These pathogens do not depend on one route for
their virulence of pathogenesis in human and thus to alter
this process, increasing the specificity of the vaccine
should be the aim and not just the effectiveness as seen
in the current conventional vaccines.”*?’

Vaccines for several neglected tropical diseases are in
various stages of development,* thanks to mega drug com-
panies that have continued to demonstrate a willingness to
invest money in the research and development as regards to
diseases plaguing the developing nations.'®** It is very
pertinent to invest in researches that have an interest in
vaccine specificity on the pathogen antigens than totally
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on the efficacy. Fortunately, with global research efforts, the
genomes for several pathogens causing neglected tropical
diseases and several emerging pathogens are becoming
available.*> Computational vaccinology may now be
applied to screen these genomes for possible vaccine target.
With these tools, many proteins of virulence interest can be
sequenced and the most essential gene of interest modeled
for a potential vaccine candidate specific for that pathogen.
Immunoinformatics is the way forward in the identification
of vaccine candidates for these tropical ERID, for pathogens
with varying antigens and for individualized therapy.

Immunoinformatics and Infectious

Disease
Immunology studies produce data in colossal quantities.
Also, with proteomics and genomics projects, extensive
screening of pathogens and/or pathogen—host interaction, it
has become increasingly necessary to store, manage and
analyze these data, hence the birth of immunoinformatics.
Immunoinformatics deals with computational techniques
and resources used to study the immune functions.
Statistical, computational, mathematical and biological
knowledge and tools are applied in immunoinformatics in
order to accurately and specifically store, and analyze data
concerning the immune system and its functions.

To handle evidence diversity, immunoinformatics uses
tools that cut across several aspects of bioinformatics such

3435 yse and defi-

as creation and management of databases,
nition of both structural and functional signatures and the
formation and application of predictive tools.*>” These
strategies can synergize toward a better understanding of

the immune system of both man and animals and fight

against some less predictable pathogenesis. The complex
nature of vertebrates’ immune system, the variable nature
of pathogens and environmental antigens coupled with the
multi-regulatory pathways show that colossal quantities of
data will be needed to unveil how the human immune sys-
tems work. Conventionally, much cannot be achieved based
on the complexity of the immune system and the virulent
antigen but with the application of computational vaccinol-
ogy, researches on vaccine design have been made easier,
accurate and specific. Applying immunoinformatics in dis-
ease study (Table 2) requires the knowledge of disease
pathogenesis, the immune system dynamics, and computa-
tional vaccinology, painstaking searches of the database,
sequence comparison, structural modeling as well as motif
analysis.*>?® These methods can go a long way in analyzing
the pathogenesis of a disease and identification of vaccine
candidates.

In order to help understand complex pathogen-
related processes, computational models were devel-
oped for viral*®*’ bacterial,*® parasitic*’ and fungal
pathogens.”’

The bioinformatics tools (Table 3) are used to identify
possible epitopes for vaccine formulation. Each tool can
screen protein sequences and identify aggregates of MHC
binding and supertype motifs for possible use in epitope-
based vaccine development and for use among human
populations with genetic variability.

There are several databases (Table 4) that can pro-
vide a wide range of information for all forms of immu-
nological studies. Generated data from the studies are
further organized and stored in the databases (Table 4)
to provide a means for the development and advance in

Table 2 The Importance of Bioinformatics in the Research on Infectious Diseases

pathogens in circulation
a better targeting

Importance Applications Refs

Surveillance of infectious disease Microbial genotyping is used to either confirm or refute epidemiological links with potential 39
environmental sources.

Determining the various strains of The proteins used by variants of pathogens can be predicted and mutated for better analysis. 40,41

Even the genes that code for the proteins can be manipulated in silico in order to predictive

Diagnostic microbiology
disease outbreak

Bio-surveillance focused text-mining tools and microbial profiling are used to detect infectious | 42

Databases for Pathogens

Array of data on pathogens can help in their genome study and their virulence toward 43

development of vaccine candidate

Vaccinology

Bioinformatics have helped in the advance of DNA and Epitope-based vaccines both in silico and

as a preliminary study for the in vivo validation study

44,45
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Table 3 Bioinformatics Tools for MHC Cluster Binding and Super-Type Motifs and Protein Sequences

Bioinformatics | Applications/Description Refs

Tools

EpiMatrix This is an in-silico product of EpiVax developed for predicting and identifying the immunogenicity of therapeutic 51
proteins and epitopes. It is also used to re-design proteins and in designing T-cell vaccine

Conservatrix Has been applied in comparing strings from different strains of same pathogens and for pathogens identification. 51,52
Configuration of Conservatrix allows for amino acid replacement at unusual positions. Highly conserved T-cell
epitopes in variable genomes such as some viruses are amenable to the algorithm

ClustiMer Potential T-cell epitopes usually aggregate in specific immunogenic consensus sequence (ICS) regions as clusters of 9-25 | 1,53,54
amino acids with 440 binding motifs instead of randomly distribute throughout protein sequences. In combination with
EpiMatrix, the ClustiMer algorithm may be used to identify those peptides with EpiMatrix immunogenicity cluster scores
2 +10. Such peptides are usually immunogenic and tend to make a promising vaccine candidate.

BlastiMer Using BlastiMer program, one may also choose to automatically BLAST “putative epitopes against the human sequence | 55-57
database at GenBank”. BLASTing screens off those epitopes with possible autoimmunity and cross reactivity questions
and locates the epitopes that can safely be used in developing human or animal vaccine. BlastiMer can also BLASTs
sequences against PDB, SwissProt, PIR, PRF and non-redundant GenBank CDS translations.

Vaccine CAD This algorithm evaluates junctional epitopes for possible immunogenicity and inserts “spacers and breakers into the | 1,58,59
design of any string-of-beads construct”.

NERVE Predicts the best vaccine candidates starting from the flat file proteome of a prokaryotic pathogen. It’s a fully 60
automated reverse vaccinology system, developed to predict best VCs from bacteria proteomes and to manage and
show data by user-friendly output.

Jenner-Predict Predicts PVCs from proteomes of bacterial pathogens. The web server targets host-pathogen interactions and pathogenesis | 61
by considering known functional domains of protein classes such as adhesin, virulence, invasion, porin, flagellin etc

Vaxign Is a vaccine target prediction and analysis system based on the principle of reverse vaccinology? Two programs exist | 62
in Vaxign: |) Vaxign Query and 2)Dynamic Vaxign Analysis

Vaxijen Is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen 63
classification solely based on the physicochemical properties of proteins without recourse to sequence alignment.

VacSol A high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using 64
subtractive RV.

PanRV Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. It | 65
comprises of four functional modules including i) Pangenome Estimation Module(PEM) ii) Reverse Vaccinology
Module(RVM) iii) Functional Annotation Module(FAM) and iv) Antibiotic Resistance Association Module(ARM).

immunological research. A tour on these databases will
actually stimulate some interest in the vaccinology of
emerging and re-surging disorders attributable to patho-

gen including cancer.

Case of Emerging and Re-Surging
Disorders/Diseases Attributable to
Pathogens

Emerging infections (EIs) include infections that are
entirely new in a population or that may have existed
before in the population but are now gaining rapid and
continued spread and/or

wide geographical range.

Re-emerging or re-surging infections represent the infec-
tions that were previously of historical relevance but are
now quickly becoming relevant because of either increas-
ing incidence or increasing geographical and/or human
host range while emerging infections represent the infec-
tions that were not originally observed in man.°® Several
factors such as human behavioral changes, environmental
changes, and host/intermediate factors, animal-human
switching and microbial genetic changes all affect infec-
tious disease emergence and spread.®” These factors inter-
act to promote the evolution of pathogens into new
infect,

ecosystems, spread and thrive in their new

hosts.®® The overall consequences of these are continued
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Table 4 List of Some Immunological Databases

Immunological databases

IMGT It contains well over 32, 000 entries of Immunoglobulins and T cells Receptor sequences | http://www.imgt.org/IMGTindex/
from both human and non-human vertebrate species. A lot of information on the human | databases.php
leukocyte antigen is also provided.

HIV Molecular It contains an annotated pull of HIV-I CD4" and CD8" epitopes and antibody binding https://www.hiv.lanl.gov/content/

Immunology sites. immunology/

ExactAntigen Employed for the search of monoclonal antibodies utilised for therapeutic, commercial http://www.labome.com/index.
and academic purposes. html

EPIMHC This the major curated database for MH ligands and Epitopes for tailor-made http://imed.med.ucm.es/epimhc/

Computational Vaccinology

JenPen (Antijen)

This database contains quantitative binding data for peptides that bind to MHI, MH2 and
TAP molecules. Also provides quantitative binding data for TAP, TCR-MHC complexes
and MHC-ligand interactions

http://www.ddg-pharmfac.net/

antijen/Antijen/antijenhomepage.

htm

SNPBinder A known database of predicted antigenic peptides and minor histocompatibility antigens | http://www.imgt.org/about/immu
(mHAgs) noinformatics.php
SYFPEITHI This is a collection of MH ligands and peptide motifs http://www.syfpeithi.de/bin/
MHCServer.dll/
EpitopePrediction.htm
Bcipep This a repertoire containing immunant dominant B cell epitopes http://crdd.osdd.net/raghava/

bcipep/

kabat database

immunoglobulin

It contains sequences of important immunological proteins of including Ig, TcR, MHC

molecules, etc

http://immuno.bme.nwu.edu

OR
http://www.ftp.ebi.ac.uk/pub/data
base/kabat/

EpiVaxb Contains information on promiscuous and conserved epitopes of class | and Il http://lwww.epivax.comb

IEDB Binding, Uses 3 different methods to predict class |-peptide binding http://www.immuneepitope.org/
MHC Class | analyze/html/mhc_binding.html
IEDB Binding, Prediction of class Il-peptide binding http://www.immuneepitope.org/
MHC Class Il tools/matrix/iedb_input
MotifScan Summary and location of anchor motifs http://www.hiv.lanl.gov/content/

immunology/motif_scan

MHC Haplotype
Project

The haplotype of MHC-linked-diseases, showing full genomic sequences, ancestral

relationships and vital variations (SNPs and DIPs).

http://www.sanger.ac.uk/HGP/
Chr6/MHC

HCV Immunology

CD8p and CD4p T cell proteome and HCV epitopes maps

http://hcv.lanl.gov/immuno/

infectious disease emergence and re-emergence, epidemics
and public health challenges. Emerging infections and
multi-antibiotic-resistant strains of pathogenic bacteria
usually surge from one geographic location from where
it spreads to other places due to immigration of
people.®”®® Most emerging infections originate from
a specific population and can spread to a new population

or become selectively advantaged that it can lead to the

emergence of new strains of the pathogen.’”’*"! Also,
there could be microbial traffic, in which case, an infec-
tious agent transfers from animals to humans or spreads
from isolated groups to new populations.®”-"!72

Several factors, including ecology, are known to be
associated with infectious disease outbreaks. These factors
bring man into close contact with a natural disease

reservoir/host.”® With an increasing world population and
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poor infection control, the emergence of infection and
increased microbial populations are sure. The human
growth population will only increase the spread of the
infection across populations. The information provided in
Table 5 is the list of remerging infections and current
emerging diseases put forward during the WHO 2018
annual review.”> The review noted that these infections,
if not well controlled, can cause disease outbreaks, bioter-
rorism and similar occurrences requiring urgent public
health attention and that with the dearth of efficacious
medicines or vaccines, there is a compelling demand for
continuous as well as accelerated research and develop-
ment in those areas.

Advances in Genomics, proteomics, immunomics, vac-
cinomics and nanotechnology are being continually
exploited in diagnostic, therapeutic and in rational drug
and vaccine development. These advances have also served
in the control of the afore-mentioned emergences.”*”> The
knowledge of the emerging pathogen’s genome, protein
make-up, pathogen-immune system interactions and
researching the possible therapeutics will go a long way in

directing the optimum path to containing the infection

Table 5 Current Emerging and Re-Surging Infectious Disease

spread and controlling potential re-emergence or emergence
in a different population. Approaches in direct and compu-
ter-based structural determinations,’® protein—protein inter-
actions predicting, and bioinformatics tools now exist and
are used in modern-day development of drug and
biologics.”’

Vaccine development has been sped up through the
advance in the knowledge of the immune system of man.
Researches in the traditional targets of vaccines (adaptive
immune response) and the less specific and fast-acting innate
immune responses have been clear evidences for this
advance.”® ™ As our understanding of the intercourse between
innate and adaptive immunity increases, reasons and opportu-
nities for more effective vaccine adjuvants will open up. This
can be a step forward in solving a critical world’s health
challenge per population. Following the conventional
approach of vaccine design, much cannot be achieved but
when the knowledge of immunoinformatics is applied, popu-
lation safety and disease control can be achieved through
pathogen’s genome sequencing leading to optimum new vac-
cine design or development of a novel vaccine for the
infection.

Infectious Disease Endemic Population

Contributing Factors

Current Treatment

Lassa fever West Africa Urbanization favoring rodent host, Ribavirin (no specific vaccine)
increasing exposure
Streptococcus A (Invasive Global Uncertain Antibiotic

necrotizing)

Ebola

Central & West Africa

Unknown (In Europe, importation of

monkeys)

No proven therapy

(Experimental vaccine)

Variant Creutzfeldt-Jakob
disease (cattle)

UK, France, Spain

Changes in rendering processes

No specific therapy

Shigellae sonnei Infection

Consumption of iceberg lettuce

SARS Southern China, Canada Animal-to-animal transmission No specific therapy

2009 HINI Influenza Global attack Droplets of unprotected cough or sneeze | Antiviral therapy (No specific
vaccine)

Hantavirus pulmonary syndrome | USA Rodent infestation No specific therapy

MERS-CoV Saudi Arabia, Human-to-human, dromedaries No specific therapy

Human T lymphocyte Virus |
(HTLV-1)

Japan, Central & South
Africa, USA

Human-to-human, Sexual contact

Experimental vaccines

Human immunodeficiency virus-
2 (HIV-2)

Africa

Sooty mangabey monkey

No specific therapy

Human herpes virus-6 (HHV-6)

USA, UK, Japan, Taiwan

Shedding of viral particle into saliva

No specific therapy
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Pathogens with Variable Antigens
Antigenic variability is an important mechanism pathogens
use to evade their host immunity. The surface proteins of
pathogens are normally variable. This assists them to
escape recognition by the immune system. A successful
infectious agent presents to the host immune system infor-
mation that differs from that of its virulence. Pathogenic
organisms have organized systems of escaping destruction
by the immune system of their hosts. For instance,
Toxoplasma invades and appropriates the host cells
thereby circumventing phagocytosis and then spread
within their host to establish infection.®' Vertebrates on
their own are endowed with immune system robust enough
to efficiently and effectively surmount the non-self-attacks.
Yet the more the host’s immune system elaborates, the
better the organisms in their evasion of immune effector
cells.

Antigenic variation refers to a pathogen’s ability to
modify its surface proteins such that it can circumvent
the host’s immunological attacks. It involves several
mechanisms including the varying of surface protein’s
phase, shifting and drifting of surface protein antigens
and/or any other form of alteration of antigenic protein.™
Antigenic variation plays significant roles in the patho-
genicity of microorganisms by evasion of the host
immune responses and establishment of re-infection.
When a pathogen alters its surface antigens, it can
the host’s
establishes infection. The immune system may battle to

evade adaptive immunity and so re-
generate new immunoglobulins against the new antigen.
Certain bacteria like Neisseria gonorrhea, Neisseria
meningitides, Mycoplasma and species of the genus
Streptococcus show antigenic diversity.®® In eukaryotic
pathogens, antigenic variation is shown by Trypanosoma
brucei and Plasmodium falciparum ®'%*

Another vital cause of antigenic variation in bacteria is
horizontal gene transfer (more important than point muta-
tion) through plasmid acquisition and transduction via
bacteriophages. Virulence genes are normally acquired by
non-virulent organisms via these routes. Once this occurs,
the new bacteria may quickly get established and cause

fresh epidemic outbreak.

Neisseria

Species of the genus Neisseria are champions in the rapid
change of surface antigens amongst bacterial pathogens.
Pathogenic forms exhibit an amount of phenotypic

variability not found in the commensal species. The patho-
genic forms are implicated in STD and meningitis. They
employ amazing varieties

of antigenic variability

mechanisms.

e They can recombine their pilin genes in a similar
manner that eukaryotes recombine their own genes,
such that they can express variable surface protein.*’

¢ Some cell-surface proteins and enzymes synthesizing
bacterial cell-surface carbohydrates are expressed in
a variety of ways. This is as a result of replication
slipping or slippage errors and repairs of simple
tandem nucleotide repeats involving either the di-,
or tri- or tetra-nucleotides.®®

e Neisseria is able to take up and incorporate environ-
mental DNA into its genomes.***’

e Again, the chances of Neisseria acquiring new muta-
tions by replication errors are high compared to other
bacteria like E. coli.*®

These are why an effective vaccine against Neisseria
infections is not yet developed. Neisseria may be consid-
ered as an extreme example. However, many other bacter-
ial pathogens like Streptococcus and Mycoplasma in
promoting their antigenic variation tend to utilize one or
more of these techniques. Additionally, there are reports
that DNA-related defects have a much greater association
with bacterial pathogen from symptomatic patients than
samples of the same bacterial species isolated from envir-

onmental sources. 87-89

Pneumococcus
Streptococcus pneumoniae, Gram-positive cocci bacteria
that cause otitis media, bacteremia and pneumonia, are
a public health concern, causing morbidity and mortality
in adults and children.”® Two forms of vaccines (polysac-
charide and conjugate vaccines) are currently marketed for
the prevention of pneumococcal infections. While the
polysaccharide vaccines are for vaccination in the adult
population, conjugate vaccines have an added immuno-
genic non-pneumococcal protein conjugated to the pneu-
mococcal polysaccharides for enhanced immunogenicity
in children. It is not yet known that these vaccines can
evoke complete immunity against the infection.

A polysaccharide capsule is a major virulence factor in
the bacteria. Several of these capsule types have been
identified, and these form the basis of pathogen’s antigenic

91,92

serotyping. Current pneumococcal vaccines are
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combinations of various capsular (polysaccharide) anti-
gens from the serotypes most common in a particular
population. Currently, over 100 different serotypes are
known but are not all covered in the available
vaccines.”? The discovery of a common antigen(s) will
produce an effective vaccine. Knowledge of the genome
of the organism and the different strains has led to
a possible advance in driving the pneumococcal potential
vaccine search through a different approach. And this
consideration will help solve a lot of concerns about the
current vaccines. With this knowledge, many methods are
been tried to determine whether they can be a source of
effective vaccine design that can accommodate all the
serotypes of the organism. Search for antigen that is com-
mon to all the serotypes can be achieved with the knowl-
The

introduction of genomic and computational technologies

edge of Genomics and immunoinformatics.

has given new directions in the study of bacterial patho-

genesis and vaccine design.”>*

Plasmodium
Plasmodium falciparum undergoes two life cycles: one in
humans and the other in mosquitoes. The human host’s
erythrocytes and hepatocytes usually display modified
parasite proteins called Plasmodium falciparum erythro-
cyte membrane protein 1 (PfEMP1) and Plasmodium fal-
ciparum hepatocyte membrane protein 1 (PfHMP1),
respectively. These proteins function to assist the parasite
to evade destruction by the host immune systems.”>*® The
PfEMP1 proteins were identified as the prime ligands
responsible for cytoadherence and resetting.”” They cause
the infected RBCs of host tissues to sequester thus helping
the parasite to circumvent clearance by the host’s spleen.”®
The membrane proteins also shield infected host cells from
destruction by the spleen by adhering to the endothelium.
Luckily, if the PfEMP1 protein is expressed for a long
while; it comes under attack by the naturally acquired
immunity.”®® In defence to this, the parasite has expanded
the var genes coding for PfEMP1 such that the genes can
exist as a polymorphic family of as much as over 50
members in every genomic haploid. Antigenic switches
work well here in that members of the polymorphic family
(also called antigenic-variant-protein family) can be inter-
changed and cannot express their proteins at the same
time. In this way, only one particular protein at the surface
of the infected RBC is expressed at any given time.””'%
When studying antigenic-variant-protein families, it is
pertinent to understand if grouping them into single-family

results in any meaningful antigenic activity. Studies have
tried to understand the “languages” of the antigenic variant
of PFEMP1 proteins.””'°"1°% They sought to know the
PfEMP1 proteins binding properties or search to under-
stand the correlation between motifs and infection severity.

The varDB database is a repository for protein
sequences involved in antigenic variation and their asso-
ciated functionalities.'™ Antigenic variant data obtained
from several pathogens may be regrouped into a unified
database. This will enable researches from several multi-
copy gene families to be accessed and compared swiftly in
a single moment. Updated varDB database contains close to
10,000 DNA sequences, several protein translations, tens of
infectious diseases and pathogens with their gene families.
With a novel sequencing-based approach, PacBio, the dif-
ferent PFEMP1 proteins can be sequenced and the related

sequences used as potential vaccine targets.'®*'%

Trypanosoma

For many pathogens, antigenic variability occurs during the
infection pathogenesis and is to enable them to escape
destruction by the host antibodies. For instance, some
eukaryotic parasites take to genetic assortment and re-
arrangement thereby changing their surface antigens.
A ready example is seen in Trypanosoma brucei, the cau-
sative organism for sleeping sickness. Trypanosoma brucei
replicates in the bloodstream (outside the cells) of their host,
but at maturity, it crosses the blood-brain barrier to cause
several fatal complications. During replication in the blood-
stream, the parasites are subjected to humoral as well as
cellular immune responses. It evades the host defenses by
encasing itself in homogeneous coat of glycoprotein called
the variant surface glycoprotein (VSG).'**'°” Though at
initial invasion, the protein coat tends to protect the microbe
from the immune system but on constant exposure, the coat
will be identified as a foreign matter, and at this point the
immune effectors can launch an attack against it. In
a particular Trypanosoma brucei, there are diversities of
the VSG protein being coded by more than a thousand
genes in the parasite’s genome. Unfortunately for the host,
the expression of these genes is mutually exclusive.
Expressed VSG gene is normally due to genetic re-
assortments causing new alleles to be copied into the sites
of expression. Some trypanosomes with these abnormal
VSG genes evade humoral immunity and multiply thereby

causing re-infection and chronic recurring infections.'®”
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Influenza Virus
Influenza is a viral infectious disease due to infection by any
of the three types of RNA viruses, namely influenza Types A,
B and C. Current vaccines contain double Type A and single
Type B strains and induce strong antibody responses to
neuraminidase and the surface glycoprotein hemagglutinin.
These vaccines, however, cannot effectively protect against
newly emerging viruses with antigenic shift and drift.'%*'%°
Antigenic drift results in changes in the antigenic site
(a minor change) while antigenic shift results in a new
virus subtype. Hemagglutinin and neuraminidase are the
two enzymes dictating the antigenic properties of the
viruses. While inside its host, defined host proteases
break the peptide bonds in the hemagglutinin molecule to
form hemagglutinin 1 and 2 subunits. Virulence tendencies
are decreased when the amino acids at the cleavage sites
exhibits
tendencies.''" The surface glycoprotein can be regarded

are lipophobic, the virus high virulence
as antigen and hence can serve as a target for the immune
system which if sequenced, using the new immunoinfor-
matics approach and a common site for the varying pro-
teins identified, a potent vaccine can be developed which
can accommodate the antigenic drift/shifts of the virus.

Influenza viruses are able to thrive for a long while in
a given human population.''"""'* The virus has a high
mutation rate such that a once effective vaccine can easily
lose efficacy. Antigenic variability is only one of the
evidences of phenotypic variation in the biology of the
Influenza virus.

Multiepitope Vaccines
The use of immunoinformatics in vaccine development
has been accelerated toward the design of a multiepitope
vaccine construct which has and will fully address the
challenges faced with pathogens with mutagenic antigens.
Previous vaccines developed by conventional approaches
consist of several proteins or a whole pathogen. This
constitutes unwarranted antigenic load and increases the
chances of inducing allergy. The use of peptide-based
vaccines surmounts these challenges. The vaccines are
made from short peptide fragments capable of eliciting
highly specific immune responses, precision targeting and
multiepitope constructs, in the case of varying antigenic
peptides, which has been made feasible with the advance-
ments in the field of computational biology.''?''®
Vaccines for pathogens with immune escape potentials
can basically be constructed by using most, if not all, of their

immunogenic peptides''®'"” because such vaccines prove to
be better than single-epitope and classical vaccines.
Multiepitope vaccines enjoy the following advantages over
single-epitope and classical vaccines: a) they are an assem-
blage of several epitopes obtained from distinct protein tar-
gets/antigens of an intended infection; b) the multiple T-cell
receptors (TCRs) in the vaccine recipient can easily recog-
nize vaccines with multiple HLA epitopes; c); they can be
easily adjuvanted to improve their immunogenicity; d) they
can activate antibody-mediated and cell-mediated immuno-
logical responses because of their overlapping helper
T lymphocytes (HTL), CD8+ T-cell and B-cell epitopes;
and ¢) unwanted protein antigens are excluded in such con-
struct thereby reducing the chances of untoward effects and/
or immune responses likely to cause disease(s).!'®'?* Thus
producing a vaccine with these qualities can provide chances
of combating most infections such as Streptococcus pneu-
moniae and HIV infections.

Immunoinformatics can be employed in the docking of
single and multiepitope vaccines and subsequently to pre-
dict their properties (physicochemical, allergenic and anti-
genic). This approach has seen the use of diverse tools and
database in the analysis of ligands with their targets and has
greatly helped to predict the binding score of antigenic
peptides with the immune proteins like HLA. Peptides and
HLA allele modeling can be done by the 3D structural
designing of the epitopes using PEPFOLD3 (an online
server),'** retrieving from Protein Data Bank (PDB) the
x-ray crystallographic structure of human population most
occurring HLA alleles (HLA-DRBI1 01:01, 15:01 and HLA-
A 02:01) followed by filtration of previously bound ligands.

The following is a step-wise detail on how to construct
a single or multiepitope-based vaccine and its property
prediction;

e Molecular Docking Analysis: to determine the inter-
action pattern of the screened out epitopes with the
HLA alleles by employing ClusPro v.2 (a protein-
protein docking web server). This server performs
this task by energy minimization, calculation of
both the binding energy scores of the docked com-
plex and electrostatic/shape complementarity.

e Target-Protein Comparative Modeling and associated
Structure Validation: the sequence of the amino acid
in the target protein (e.g., TLR-9) can be retrieved
from UniProt and the tertiary structure with Raptor-X
and I tasser (online comparative modeling tools). The

and creates a 3D model

server constructs
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(mathematical representation) of the target protein

using hierarchical algorithms.''®'%>

e Designing of Final Single/Multiepitope Vaccine
Construct: in the case of multiepitope-based vaccine;
the different epitopes can be linked to each other
using AAY and GPGPG linkers and to the adjuvant
using EAAAK linker.

e Predicting the antigenicity and allergenicity together
with other physicochemical information: allergenicity
of the final vaccine construct can be analyzed by
Vaxijen v.2 tool, antigenicity of the vaccine by the
use of AlgPred server and the physicochemical prop-
erties (isoelectric point, half-life, solubility, molecular
weight, aliphatic index, and average hydropathicity)
with the ProtParam server.

¢ Structure modeling, Refinement and Validation of the
final Vaccine-these can be investigated using the
SOPMA server/Raptor-x, Galaxy Refine Server and
ProSA-web, respectively. This process is being fol-
lowed by molecular docking and molecular dynamics
of receptor and the epitope vaccine using ClusPro
and Molecular Dynamic Simulation (Desmond)'*®

respectively.

Case of Personalized Vaccination
Personalized vaccine refers to vaccines “targeted” toward
an optimized outcome. Immunogenicity is maximized
while either the risk of vaccine failure or reactogenicity
and side effect is minimized. Personalized are developed
in the following cases;

The Individual Level

Vaccines are developed to take care of haplotype and
polymorphism knowing that they can retard the formation
of a protective immune response or become pointers to the

risk of an adverse vaccine reaction.

The Gender Level

This is needed when it is clear that females produce
a higher antibody titre against a particular vaccine anti-

gen than do their male counterparts.

The Racial/Ethnic Level

Where it is clear that a particular human race or ethnic group
has a higher or lower immune response to a particular vac-

cine antigen.

The Subpopulation Level
Personalized vaccines arise due to known complex interac-
tions between host environmental, genetic and some other
factors that may be influencing the vaccine immune
responses. The associations between the immune response
gene polymorphisms and variations in immune responses to
a particular gene must be pine-pointed when it is clear that
a particular drug either suppresses or augments the tran-
scription of an immune response gene.'?”'*® This could
help in designing vaccines or vaccine adjuvants that can
circumvent restrictions due to immunological differences
arising from varying genetic compositions.'**!3°
Personalized vaccines stem from our understanding of
how, within the human leukocyte antigen (HLA) sys-
tem — also referred to as the major histocompatibility
complex (MHC), the T cells are able to recognize peptides
of pathogenic origin.'*"*'**> HLA molecules enjoy the dou-
ble advantages of having stable polymorphisms and being
fully characterized.'”” These advantages make good can-
didates for personalized vaccine design. HLA polymorph-
ism, although stable, is complex. For instance, more than
12,000 alleles of HLA class I molecules and greater than
4000 class II molecules have been identified among human
populations.’**!3* HLA class 1 and II molecules have
heterodimeric character comprising of o and B chains,
three highly variable extracellular domains (al, o2, and
a3) and then

domains that are less variable.'**'?> HLA genes contain

transmembrane and intracytoplasmic
eight exons. Exon 1 is responsible for producing the leader
peptide; exons 2,3,4 produce al, a2, and a3 extracellular
domains, respectively, for MHC class 1 or al, fland a3,
respectively, for MHC class II; exon 5 encodes transmem-
brane anchor; exons 6 and 7 encodes the cytoplasmic tail
while exon 8 encodes the 3’-untranslated region.'*> Most
of the several forms associated with the class I and II
genes are seen in a-1 and a-2 (as known as class I) and
in o-1 and B-1 (as known as class II) domains.'*> MHC
I and II bind and present the peptide to T cells.

T cell responses to viral pathogens differ from one
patient to the other, basically because of the expression of
differing HLA (MHC) alleles which determine the several
viral amino acid sequence brought to the T cells to
read."*>"37 It is most likely that during an infection, diverse
epitopes are usually presented to the T cells to read owing to
the several forms of HLA alleles and also because each
human person expresses six HLA Class I and six HLA
Class II alleles."*® Now, antibody-binding sites in a given
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HLA (MHC) molecule are mostly prediction-servers pre-
determined on the basis of particular binding motifs and the
anchor residues.'**'** These residues refer to known amino
acids located at defined locations in the peptide chain and
to each MHC molecule.'*"'*

Prediction-server database of peptide motifs and/or of

which are peculiar

MHC ligands may be obtained from web-based and/or
from prediction-servers dedicated to NetMHC family.'**'44

In another example, sequence analysis of Lassa fever
virus (the LASV) and other viruses’ immunoproteomic was
used to identify the best immunogenic protein predicting
T-cell as well as B-cell epitopes and also target sequence
143146 The SSNLYKGVY peptide

sequence at AA41-49 of glycoprotein 1 (produced by the

and binding sites.
L segment) was the best candidate epitope for the induction
of humoral as well as the cell-mediated immunity for Lassa
fever vaccine construct. 17 HLA-I and 16 HLA-II mole-
cules have been proven in sizable African populations and
their combination with the SSNLYKGVY peptide sequence
may prove useful in such Lassa fever virus endemic
areas.'® This approach will strongly improve individua-
lized vaccination and help combat emerging infections.
The HLA region is suspected to contribute, to a large
extent, to genetic propensity to infections and differences
in vaccine expected immune responses.'>>'*

Studies show that females exhibit stronger immune
responses to immunization compared to males.'*®!4’
There are differential antibody responses to rubella and
measles viral protein between males and females and that
both hormonal and genetic difference may be influencing
the immune responses.' #7131

Practical issues may stand in the way of achieving this
new development (personalized vaccinology). Having to
use different vaccines for different persons based because
of personal genetic composition requires more time and
labor during the vaccination process. Also, screening for
individual factors for targeted vaccination can significantly
increase vaccination cost. But with all these challenges,
personalized vaccination is the new age approach in achiev-
ing an optimum immunization that takes into consideration
the individual immune differences in a particular population
and it is a new dawn for vaccine development.

Personalized vaccine development is strongly improved
by vaccinomics. The field of vaccinomics looks at how
immune response gene polymorphisms affect the cell-
mediated, humoral and innate immune responses to vaccine
antigens at population and specific individual levels.
“Vaccinomics” encompasses both immunogenomics and

immunogenetics as it concerns immune responses to vaccine
antigen.'>® The fields of personalized vaccinology and vac-
cinomics were the products of Phase I of the international
HapMap and that of the Human Genome Project. Also,
modern molecular assay techniques permitting high-
throughput detection of variations at gene level, in particular
linkage disequilibrium maps and single nucleotide poly-
morphism (SNP), played significant roles in the development
of personalized vaccinology and vaccinomics. It has also
been shown that polymorphisms at vital immune response
genes can bring about differing immune responses to bio-
pharmaceutical products including vaccines.'**'>*

Newer, accurate, cheap and reproducible sequencing
technologies; validated databases containing genotype-
phenotype data; statistical and bioinformatics tools are
needed in order to analyze and interpret data that will
help and improve vaccine adverse and immune response
quantifiability and predictability.'>> The information will
enhance clinical practice and accelerate rational and direc-
ted vaccine development.

The Pregnant Women

Safe vaccines are a critical requirement for any immuniza-
tion program.'>® Conventional vaccination has been an
approach targeted at all groups and individuals but has
failed toward the enrolment of pregnant women into vac-
cination programs because of presumed fetal and maternal
harms.">”!*® Evidence on the safety of vaccination in
pregnancy is very small because pregnant women were
usually excluded from participating in vaccine trials.'>’
Pregnancy can alter the maternal as well as fetal immuno-
logical responses.'®® It is pertinent to explore research
opportunities presented in advanced vaccine designs such
as immunoinformatics (multiepitope vaccine docking) by
studying human immune system functions and responses

specific to pregnant women and their unborn children.'>’

According to a report'®" from the Dominican Republic
of Congo, during the 2016-2017 Zika virus outbreaks,
over a thousand pregnant women were suspected of
being infected with the virus and a sizable number were
at their first trimester. The report further stated that fetal
loss was approximately one-tenth of the pregnancies and
that there were up to 3 cases of fetus with head circumfer-
ences smaller than normal. The widespread morbidity
during the epidemic showed that Zika virus infection
adversely affects pregnancy outcome.'®%'¢!

Currently, there is no proof that pregnancy predisposes

to Ebola virus infections in comparison with the non-
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pregnant population, but there is some evidence suggesting
pregnancy to worsen the disease prognosis including fetal
loss. Also, evidence showed that the virus can pass the
placental barriers to establish infection in the unborn
child.'®® Designing, implementing and enrolling pregnant
women as well as perspective pregnant women into vaccine
trials and programs is imperative in order to protect this
group and ensure good vaccine uptake by them during
infection outbreaks and epidemics.'>”-'®?

These recommendations will give an informed decision
to be investigated using the immunoinformatic tools to
determine the immunogenic responses worthy of safe vac-
cine development for the pregnant women and perspective
pregnant women group.

Maternal immunization offers palpable benefits in sev-
eral ways. Some vaccines are primarily administered to
shield these pregnant women from morbid conditions and/
or death including fetal death.'®*'®> Pregnant women
stand the risk of being exposed to virulent pathogens and
may be at a higher risk of morbidity and/or mortality when

compared to the general population.'®®

Conclusion and Future Research

Directions

There has been an explosion of new immunological data
(Table 4) due to an increase in research to understand the
immune system pathway in infectious disease pathogen-
esis and the application of the knowledge of bioinfor-
matics has led to a better exposition of the immune
The
knowledge of immune system and the cost-effective, spe-

system importance through immunoinformatics.
cific and effective approach like immunoinformatics, the
concerns for emerging and re-surging diseases caused by
pathogenic organisms, antigenic variability/complex life-
cycle of pathogens and the need of personalized vaccina-
tion can be combated on a molecular level.

The future of immunological research is sharpened by
the ability to make discoveries in biologics (e.g., vaccines)
more effectively and efficiently. This will mean reduction
and better targeting of wet laboratory experiments and will
only be possible if wet laboratory experimentation is com-
bined with bioinformatics techniques.

Limitation of Immunoinformatics

Predictions in Vaccine Design
e Immunoinformatics depends on experimental science
(wet laboratory) to produce raw data for analysis.

The predictions are not formal proofs of any con-
cepts. They do not replace the traditional experimen-
tal research methods of actually testing hypotheses.
e The quality of immunoinformatics predictions depends
on the quality of data and the sophistication of the algo-
rithms being used. Sequence data from high-throughput
analysis often contain errors. If the sequences are wrong,
or annotations incorrect, the results from the downstream

analysis are misleading as well.'®’
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