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Abstract: Central nervous system (CNS) malignancies are associated with poor prognosis,

as well as exceptional morbidity and mortality, likely as a result of low rates of early

diagnosis and limited knowledge of the tumor growth and resistance mechanisms, dissemi-

nation, and evolution in the CNS. Monitoring patients with CNS malignancies for treatment

response and tumor recurrence can be challenging because of the difficulty and risks of brain

biopsies and the low specificity and sensitivity of the less invasive methodologies that are

currently available. Therefore, there is an urgent need to detect and validate reliable and

minimally invasive biomarkers for CNS tumors that can be used separately or in combination

with current clinical practices. The circulating tumor DNA (ctDNA) of cerebrospinal fluid

(CSF) samples can outline the genetic landscape of entire CNS tumors effectively and is

a promising, suitable biomarker, though its role in managing CNS malignancies has not been

studied extensively. This review summarizes recent studies that explore the diagnostic,

prognostic, and predictive roles of CSF-ctDNA as a liquid biopsy with primary and meta-

static CNS malignancies.
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Introduction
Central Nervous System (CNS) malignancies, including primary tumors of the

brain or spinal cord and intracranial metastases tumors, are common worldwide

and are associated with significant morbidity and mortality. The current standard

methods used to diagnose and monitor CNS tumors are neuroimaging techniques,

such as CT or MRI, but both methods lack sensitivity and specificity. Neuroimaging

approaches provide no genetic information and little data pertaining to treatment

response or disease progression.1,2 So, it is inadvisable to wait for changes in MRI/

CT necessary to tailor treatment regimens while patients miss potential therapeutic

opportunities.

The genomic landscape and molecular profile of a tumor are highly heteroge-

neous and evolve dynamically over time.3 Identifying actionable mutations and

providing tailored therapies has become increasingly important. Unlike extracranial

tumors, the biopsy of intracranial lesions is invasive and risky, and sampling is

biased because of tumor heterogeneity. Moreover, some CNS tumors are located in

the vital regions, such as the brain stem, thalamus, and spinal cord, making biopsy
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or surgery to obtain tumor tissues extremely difficult. As

a result, there is an urgent need to seek reliable tumor

biomarkers that provide real-time quantitative information

regarding tumor burden and qualitative information on

genetic profiles that could be used for diagnosis, prog-

nosis, and prediction of CNS tumors.

For primary or metastatic CNS tumors, the cerebrosp-

inal fluid (CSF) is in intimate contact with tumor lesions

and represents a reliable source of CNS tumor-derived

circulating DNA (Figure 1). Hence, the CSF may serve

as an alternative “liquid biopsy” for evaluating the ctDNA

of CNS malignancies for evaluating ctDNA to characterize

tumor-specific mutations, monitor tumor dynamics and

genomic evolution, and assess acquired resistance

mechanisms.3–6 Several past studies have reported the

presence of cell-free circulating tumor DNA (ctDNA) in

the CSF of patients with CNS primary tumors or meta-

static lesions.7–10 This review is an overview of current

Figure 1 Schematic showing the source of CSF-ctDNA and CTCs from primary and metastatic CNS tumors. CSF serve as a “liquid biopsy” of CNS malignancies for

evaluating ctDNA to characterize tumor-specific mutations.
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studies and prospects on the application of CSF-ctDNA in

the management of primary and secondary CNS malig-

nancies, including their diagnostic, prognostic, and predic-

tive roles (Table 1). The review also contains the biology

of ctDNA and technological features.

Characteristics of Cell-Free
Circulating DNA and Circulating
Tumor DNA
Before looking at cell-free circulating tumor DNA

(ctDNA), we need to first present the concept of cell-free

circulating DNA (cfDNA). cfDNA consists of 70–200

base-pairs of DNA fragments released from apoptotic

and necrotic cells into blood circulation or other bodily

fluids, including CSF, sputum, stool, pleural fluid, urine,

and saliva.11 The presence of cfDNA in the blood of

healthy individuals was first reported in 1948 by Mandel

and Metais.12 Leon et al then revealed for the first time, in

1977, that the concentration of cfDNA increased in the

serum and plasma of pancreatic cancer patients and

decreased in some patients after treatments; it was, how-

ever, not until 1994 that KRAS mutations were identified

in the plasma of patients with pancreatic cancer.13,14 The

subgroup of tumor-derived cfDNA, called cell-free circu-

lating tumor DNA (ctDNA), is shed from apoptotic or

necrotic cancer cells in tumor microenvironments, or

from circulating tumor cells.15–18 According to reports,

ctDNA accounts for only 0.01% of the total cfDNA in

the circulation or up to 90%.19–21 The half-life of ctDNA

is less than 1.5 hrs, providing real-time and dynamic

information on tumor evolution.21 ctDNA carries informa-

tion on two different changes: quantitative changes that

monitor tumor burden and qualitative changes that detect

tumor-specific genetic or epigenetic alterations, such as

point mutations, copy number variations (CNVs), chromo-

somal rearrangements, and DNA methylation patterns.22

The distinction between ctDNA and normal cfDNA is

based on the fact that tumor DNA harbors specific muta-

tions that do not exist in normal DNA. These tumor-

specific mutations are predominantly single base-pair

substitutions.23

For patients with CNS malignancies, the detection of

ctDNA in plasma is relatively insensitive.7,24–26 Less than

10% of glioma patients harbor detectable ctDNA in their

plasma.26 One explanation for the low detectability of

ctDNA in plasma is that the blood-brain barrier (BBB)

prevents the release of ctDNA into the blood circulation

and precludes the genomic characterization of CNS tumors

through plasma ctDNA. Moreover, the comparatively high

background of normal DNA in the plasma always dilutes

tumor DNA derived from the CNS. By contrast, the CSF

may serve as an optimal sampling source for CNS tumors,

especially the supernatant of the CSF, likely as a result of

the scarcity of cells in the CSF, which may reduce the

genomic background noise caused by normal DNA.6,9,10,27

In a study performed by Pentsova et al9 63% (20 of 32) of

patients with CNS metastases of solid tumors and 50% (6

of 12) of patients with primary brain tumors had high-

confidence somatic mutations in the CSF assessed using

next-generation sequencing (NGS). Pan et al28 also

reported that mutation detection using CSF-ctDNA was

more sensitive than sequencing plasma ctDNA (100% vs

38%, respectively) in brainstem glioma. More recently,

tumor-specific mutations have been detected and quanti-

fied in the CSF of patients with different types of primary

and metastatic CNS tumors, and these mutations have

been used for clinical diagnosis and monitoring tumor

burden or treatment response.4,7,9,10,24,29

Anatomical Constraints of CNS
Tumors
Several studies have, in the past, demonstrated that a CSF-

based liquid biopsy may not be feasible in genetically

diverse, anatomically sequestered, and low-grade CNS

tumors.4,7,10,30 The most important factor that is associated

with CSF-ctDNA levels is anatomical sequestration.

Jimenez et al described three CNS barriers – the BBB,

the blood-CSF barrier of the choroid plexus and arachnoid

membrane, and the CSF-parenchyma barrier of the epen-

dymal – as potentially usable for tumor studies.31 In cases

where parenchyma or arachnoid membranes surround

a tumor, the diffusive ability of tumor-derived DNA to

diffuse into the CSF could be limited significantly due to

the presence of the blood-CSF barrier and the CSF-

parenchyma barrier.4,10,30 Connolly et al30 found that

ctDNA was not detected in the CSF of three patients

with WHO grade II intramedullary spinal ependymoma,

possibly as a result of the tumor being encased in the

surrounding spinal cord parenchyma and pia mater. Wang

et al10 established that all medulloblastomas, ependymo-

mas, and high-grade gliomas directly adjoining the CSF

space or the cortical surface had detectable CSF-ctDNA

(100% of 21 cases; 95% CI=88–100%), whereas no

ctDNA was detected in patients whose tumors were
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encapsulated entirely by the brain or spinal cord parench-

yma. Interestingly, all four low-grade gliomas directly

adjacent to the CSF reservoir did not have reliably detect-

able ctDNA. Wang et al revealed that analyzing ctDNA is

not a dependable approach to examining and characteriz-

ing CNS tumors that are either completely encapsulated by

the parenchyma or are low grade. The level of CSF-

ctDNA in patients with leptomeningeal metastases (LM)

is remarkably higher than that in other CNS tumors.32

Heterogeneity of CNS Metastatic
Tumors
CNS metastatic tumors could harbor private and specific

genetic mutations that differ from corresponding primary

tumors or other extracranial metastatic lesions, termed

intermetastatic heterogeneity.5,7,33 Intermetastatic hetero-

geneity emphasizes the importance of sequencing intracra-

nial lesions to discover actionable mutations and provide

opportunities for CNS tumors to receive targeted therapies.

Table 1 Clinical Applications of ctDNA in Primary and Metastatic CNS Tumors

Role Application Primary or Metastatic CNS

Tumors

Methods Reference

Diagnostic Early detection Medulloblastomas, ependymomas,

and gliomas

WES 10

Gliomas qPCR 25

Gliomas Real-time PCR 42

Diffuse gliomas Targeted exome sequencing

+ddPCR

8

PCNSL qPCR 44

BM Digital PCR and targeted amplicon

sequencing

4

LM Cancer panel sequencing 4

LM NGS 61

LM Real-time PCR 58

LM ddPCR 7

LM ddPCR+NGS 5

LM Real-time MS-HRM+ real-time

TaqMan PCR

62

LM Direct DNA sequencing 29

Predictive Identification of therapeutic targets LM Direct DNA sequencing 29

BM WES 33

BM ARMS-PCR 60

CPU CellMax SMSEQ+NGS 68

Identification of drug-resistant mutations LM NGS 61

LM Real-time PCR 69

BM NGS 9

Monitoring treatment response GBM and BMs ddPCR 7

Gliomas Real-time PCR 42

Glioblastoma PCR 47

Prognostic Estimation of the risk for recurrence or

progression

Neuroblastoma Real-time qPCR 10

Medulloblastoma PCR 56

Monitoring tumor burden GBM and BMs ddPCR 7

LM NGS 61

Metastatic breast cancer with BM ddPCR+WES 72

Melanoma+ECD dPCR 32

Abbreviations: WES, whole exome sequencing; PCR, polymerase chain reaction; qPCR, quantitative PCR; ddPCR, droplet digital PCR; ARMS-PCR, allele refractory

mutation system PCR; PCNSL, primary central nervous system lymphoma; LM, leptomeningeal metastasis; BM, brain metastasis; GBM, glioblastoma; CPU, cancer of

unknown primary; NGS, next-generation exome; MS-HRM, methylation-sensitive high-resolution melting; ECD, Erdheim-Chester Disease.
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Intratumoral heterogeneity, in which different portions of

the same tumor exhibit different genetic profiles, must be

considered in addition to intermetastatic heterogeneity.34,35

A single biopsy or a surgical specimen of CNS tumors

only provides a single snapshot of tumor characteristics

that may not be representative of the genetic alterations of

the entire tumor. In the end, the information available

points to the fact that the intratumoral and the intermeta-

static heterogeneity of CNS tumors need further studies.

The Role of CSF-ctDNA in Primary
CNS Malignancies
ctDNA as a Diagnostic Biomarker
Primary CNS malignancies can be divided roughly into

malignant gliomas, primary CNS lymphomas (PCNSL),

medulloblastomas, and primary neuroectodermal tumors

that are common in children.36 There are two minimally

invasive methods for diagnosing CNS tumors – neuroima-

ging and CSF cytology – both of which have low sensi-

tivity or specificity and are inadequate for the early

detection of tumors.37 The evaluation of tumor-specific

genetic alterations in CSF-ctDNA offers a useful diagnos-

tic method for patients with primary CNS cancers to avoid

high-risk diagnostic biopsies or surgical operations. In one

study assessing 35 patients with primary CNS tumors

(medulloblastomas, ependymomas, and gliomas), CSF-

ctDNA was detected in 74% of the patients;10 two of

four patients with brainstem lesions had detectable

ctDNA in the CSF, as determined by whole-exome

sequencing, demonstrating that ctDNA plays a significant

role in the diagnosis of CNS tumors.

Moreover, some studies have indicated that the integ-

rity of circulating DNA, measured as the ratio of longer to

shorter DNA fragments, is higher in cancer patients than in

healthy individuals.38–41 Shi et al25 revealed that the relia-

bility of CSF-ctDNA or the ratio of long Alu repeats

(Alu247) to short Alu repeats (Alu115) could serve as

new markers for diagnosing and monitoring gliomas at

apparently high specificity and sensitivity levels. Liu et al42

found that promoter hypermethylation in multiple genes of

gliomas tissues is always accompanied by hypermethyla-

tion in the corresponding CSF-ctDNA, with 100% speci-

ficity, suggesting that a CSF-based multiple gene promoter

hypermethylation analysis could serve as a potential bio-

marker for early diagnosis in cases where CNS tumor

tissue samples are unavailable.

Diffuse gliomas are the most common primary malig-

nant tumors of the CNS, with different subtypes and

diverse prognosis. The genomic analysis of IDH1, IDH2,

TP53, ATRX, TERT, H3F3A, and HIST1H3B gene muta-

tions in the CSF-ctDNA of diffuse gliomas facilitates the

molecular diagnosis and subclassification of diffuse glio-

mas in a minimally invasive manner, boosting the clinical

management of diffuse gliomas and minimizing complex

and high-risk surgical interventions.8 Diffuse midline glio-

mas typically arise in young children and are not surgically

resectable due to their anatomic location (such as the

thalamus or brainstem), which limits the diagnosis and

molecular study of their tumor tissues.

Almost every patient with PCNSL undergoes invasive

surgical procedures to obtain an accurate diagnosis.

Nevertheless, the presence of a deep brain structure

makes it difficult to obtain tumor tissues during operation,

rendering the histopathological diagnosis of PNCSL diffi-

cult. Reportedly, PCNSL occurs in 2–13% of HIV-infected

patients,43 and the presence of the Epstein-Barr virus

(EBV) DNA in the CSF of HIV-infected patients could

be used as a more reliable detection method to help diag-

nose HIV-associated PCNSL.44 Quantifying EBV DNA in

the CSF using quantitative PCR improves its diagnostic

specificity for PCNSL; however, the positive predictive

value remains only 10%. Future studies need to examine

the use of CSF-ctDNA in the early diagnosis of asympto-

matic cancers or in the absence of tumor lesions in

neuroimaging.

ctDNA as a Predictive Biomarker
Identifying Therapeutic Targets and Drug-Resistant

Mutations

The concept of precision medicine has been studied and

employed in the field of oncology medicine over the last

decades, with the introduction of patient-tailored therapies

facilitating the development of personalized patterns of

tumors.45,46 A single biopsy or a surgical specimen of

CNS tumors provides a single genetic signature that may

miss a targetable mutation site. The discovery of novel

mutations in the ctDNA derived from the CSF, therefore,

provides new therapeutic targets that are not identifiable in

tumor tissues. Information from ctDNA reflects the entire

molecular makeup of CNS tumors, including information

on both targetable mutations and drug resistance mechan-

isms under selective therapeutic stress.3 Analyzing ctDNA

can reveal acquired drug-resistant mutations (that are only

visible by neuroimaging or conventional tumor biomarker
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analyses in patients with CNS tumors) prior to tumor

progression, and this information could lead to a switch

to a more effective treatment regimen, as soon as possible,

before the tumor is overburdened and incurable. At pre-

sent, there are few studies on the identification of thera-

peutic targets and drug-resistant mutations in CNS tumors

using CSF-ctDNA.

Monitoring Treatment Response

Treatment response is commonly assessed by clinical man-

ifestations, radiographic imaging, and tumor biomarkers.

Unfortunately, these methods are not very accurate in

monitoring treatment response and do not provide infor-

mation on the genetic alterations of tumors. One study

analyzed CSF-ctDNA at various time points in six patients

with primary or metastatic brain tumors and found that the

mutant allelic frequencies (MAFs) of DNA decreased after

surgical resection and response to systemic therapy but

increased with tumor progression. These results indicate

that CSF-ctDNA levels fluctuate longitudinally over time

and follow the changes in brain tumor burden, providing

biomarkers to monitor tumor progression and response to

treatment.7

MGMT (O6-methylguanine-DNA methyltransferase) is

a DNA repair protein that counteracts the cytotoxic effect of

alkylating agents, such as temozolomide. Hypermethylating

the MGMT gene promoter in glioblastoma could silence the

expression of the MGMT protein, thus, increasing the sen-

sitivity of tumor cells to temozolomide, and this might serve

as a useful predictor of prolonged survival.47 In glioma,

meanwhile, hypermethylating the MGMT gene promoter

in the CSF is an independent prognostic factor of prolonged

progression-free survival, likely due to patients benefiting

more from alkylating agents.42 From a clinical standpoint,

promoter hypermethylation in CSF samples might be

a useful predictor of the chemosensitivity of tumors to

alkylating agents, which could be used to predict treatment

response in advance.

ctDNA as a Prognostic Biomarker
Surveilling a Minimal Residual Disease

Several studies have shown that ctDNA levels in the blood

can be used to monitor minimal residual disease (MRD) after

curative-intent surgery or other treatments and may deter-

mine which patients will experience recurrence.48–51 The

amount of ctDNA is reportedly proportional to the residual

tumor burden after curative-intent surgery for gastric, lung,

and colorectal cancers.48,50,51 Per Chaudhuri et al,49 blood

ctDNA analysis after the first treatment of lung cancer could

help detect MRD earlier before macroscopic recurrence and

could facilitate individualized adjuvant treatment in the case

of the lowest disease burden.

For primary CNS tumors, except for those located in

critical areas (eg, brainstem), the preferred treatment option

is effective surgical resection. It is possible, currently, to

predict which patients will be cured after surgical resection

and which patients will have a residual disease leading to its

recurrence, which depends to a large extent on postoperative

pathological and neuroimaging criteria. However, these

methods are not effective in identifying MRD. ctDNA

could be used to select postoperative patients who can truly

benefit from adjuvant therapies, avoiding unnecessary treat-

ment for patients who have been cured and do not need such

potentially toxic treatments. Still, few studies have ventured

to investigate the role of ctDNA in CNS tumors in monitor-

ing MRD after surgical resection.

Determining Recurrence or Progression

Post-treatment monitoring of patients with primary CNS

tumors is challenging because alterations due to secondary

effects of chemoradiation or pseudoprogression cannot be

distinguished reliably from tumor recurrence using neuroi-

maging. Furthermore, the treatment of most primary CNS

tumors includes total surgical resection with or without

adjuvant radiotherapy and chemotherapy, but aggressive

resection must be balanced with the risk of adjacent normal

tissue injury, and recurrence occurs commonly in patients

with subtotal resection.30 Surveillance neuroimaging and

tumor biomarkers are commonly used to monitor recur-

rence or progression after subtotal resection of primary

CNS tumors, but these are traditional techniques with low

sensitivity and specificity that do not provide a timely detec-

tion recurrence or progression. The presence of ctDNA in

the CSF may serve as a biomarker for the early detection of

tumor recurrence or progression, even before neuroimaging

and tumor biomarkers recognize relapsed lesions.

Glioblastoma (GBM) is the most widespread and devas-

tating primary malignant brain tumor in adults.52 One of the

characteristics of GBM is that the tumors are likely to recur.7

However, Woodworth et al53 found, after pathological exam-

ination of repeated resected specimen, that approximately

30% of patients with GBMwho underwent a repeat resection

due to suspected recurrence exhibited necrosis, scarring, or

treatment-related changes rather than a recurrence of the

disease. Thus, CSF-ctDNA can provide a minimally invasive

method to identify true recurrence from treatment-related

Yan et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:13724

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


changes by assessing the genomic alterations of the sus-

pected relapsed GBM.

A previous study suggested that MYCN amplification is

strongly associated with tumor progression and is a significant

risk factor for CNS recurrence.54 Kimoto et al55 presented the

case of a 1-year-old female with stage-4 neuroblastoma after

MYCN amplification in CSF-ctDNA. Complete remission

was achieved after a series of effective therapies. However,

the MYCN copy number in CSF-ctDNA was revealed to be

high nine months later, pointing to tumor relapse in the CNS.

Since the relapse of neuroblastoma is difficult to detect,

changes in MYCN copy number in the CSF-ctDNA could

be used as a prognostic biomarker in neuroblastoma.

Per Wong et al’s56 assessment of a case involving

a medulloblastoma patient, mitochondrial DNA (mtDNA)

mutation was detected in the CSF one month after the com-

pletion of radiation therapy, and although there was no sign of

disease progression in the patient’sMRI at the time, they noted

a recurrence five months later. This case shows that by analyz-

ing ctDNA in the CSF, relapses could be detected several

months earlier than when using conventional surveillance,

like MRI. Hence, CSF-ctDNA can be used for screening and

catching CNS tumors before symptoms appear or neuroima-

ging is employed when chances for a cure are best. Moreover,

early detection of tumor recurrence or progression can help

avoid the unnecessary toxic effects of therapies doomed to fail

and would switch to alternative regimens.

Monitoring Tumor Burden

Radiographic imaging and tumor biomarkers are commonly

used in the clinical monitoring of tumor burden and tumor

management. However, CNS malignancies lack reliable

tumor biomarkers, which often lack specificity. CSF-

ctDNA could be used as a minimally invasive technique to

monitor tumor burden. The half-life of ctDNA is less than

1.5 hrs, and tumor changes can be assessed within hours

instead of weeks to months.21 Changes in ctDNA may take

several weeks to months, predating changes in neuroimaging

or protein biomarkers.19,21 Mattos-Arruda et al7 established

that the amount of ctDNA decreased with surgical resection

and increasedwith tumor progression. So, CSF-ctDNA could

be used to monitor tumor burden longitudinally.

The Role of CSF-ctDNA in
Metastatic CNS Malignancies
ctDNA as a Diagnostic Biomarker
CNS metastases are devastating neurological complications

of tumors; they are associated with significant morbidity and

mortality. The most common site of CNS metastases is the

brain parenchyma, followed by the leptomeningeal and cra-

nial nerves.36 The diagnosis of CNS metastases is usually

based on clinical presentation, primary malignant tumor,

neuroimaging (CT or MRI), and brain tumor biopsies or

CSF cytology. However, these methods are limited in their

ability due to insufficient sensitivity or specificity.

LM is an unfavorable complication of tumors that needs

to be diagnosed in the early stages of a disease. The diag-

nostic criteria for LM are a positive result on brain MRI and/

or CSF cytology, but MRI and CSF cytology have limited

sensitivity and specificity.5,57 Several studies have suggested

in the past that the analysis of tumor-specific DNA in the

CSF provides a useful biomarker for facilitating and supple-

menting the diagnosis of LM, especially in clinically sus-

pected LM cases with negative CSF cytology or MRI; the

analysis of CSF genomic mutations is apparently a more

sensitive technique for diagnosing LM than CSF cytology

or MRI.4,7,29,58–62 Pan et al4 identified seven somatic muta-

tions from the CSF of an LM patient that were consistent

with genetic alterations of the primary tumor. On their part,

Li et al61 detected EGFR mutations in 100% of CSF samples

from 26 EGFR-mutated non-small cell lung cancer (NSCLC)

patients diagnosed with LM. Another study revealed that

EGFR mutations in the CSF were detected in 5 of 16 LM

patients (31%) with negative CSF cytology.29 In another case

with suspected LM from EGFR-mutated lung adenocarci-

noma, EGFR mutations were spotted in the ctDNA of the

CSF, although CSF cytology was negative.63 Ballester et al5

and Shingyoji et al29 also revealed that a CSF-ctDNA ana-

lysis, in combination with MRI and CSF-cytology, could

improve diagnosis, detect genetic mutations, and monitor

the tumor burden of melanoma with LM.

ctDNA as a Predictive Biomarker
Identifying Therapeutic Targets

The choice of treatment regimens for patients with brain

metastases (BMs) are based primarily on the information

regarding the genetic profile of the primary tumor. Several

past investigations have pointed out that intracranial metas-

tases can gain new oncogenic mutations that are different

from those in the corresponding primary tumors and other

extracranial metastases.29,33,60,64–67 In the past, EGFR muta-

tions have been identified in the CSF of four LM patients but

not in the primary or metastatic lesions.29 The analysis of

EGFR mutations in primary or metastatic lesions may also

be inadequate to guide the use of Epidermal Growth Factor

Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) in LM.
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Similar results were expressed in a study on lung adenocar-

cinoma patients with BMs,78 in which EGFR mutations

were identified in the CSF of two patients but were not

present in the matched primary tumors, further demonstrat-

ing that CNS metastases can harbor specific mutations that

differ from those in primary tumors. The two patients were,

as a result, subjected to EGFR-TKI treatments with subse-

quent tumor remission. So, it is important to identify specific

genomic mutations in the CSF and provide novel targeted

therapeutic agents against these mutations in the treatment of

BMs. Huang et al68 identified somatic mutations in the CSF

of a patient with metastatic brain adenocarcinoma of an

unknown primary tumor using the SMSEQ NGS assay,

and the patient was given tailored treatments that led to

clinical remission. To put it briefly, a CSF-ctDNA analysis

helps with the characterization of tumor mutational profiles

that may refine the treatment protocols further and tailor the

tumor management plan.

Detecting Drug-Resistant Mutations in Real-Time

The analyses of CSF-ctDNA to detect secondary, acquired

drug resistance have already been carried out in samples of

patients with metastatic CNS tumors before.9,60,61,69,70 The

penetration ability of targeted agents is restricted signifi-

cantly by the presence of the BBB. Lower concentration

and stimulation of TKIs in the CSF leads to differences in

selective pressure, resulting in different mechanisms of

resistance in the CNS and peripheral system.61 The EGFR

T790M mutation is the most common cause of acquired

resistance in the CNS,71 but much lower frequencies of

T790M in CSF or CNS lesions have been reported.60,69,70

The occurrence of this phenomenon gives rise to the exis-

tence of other specific resistance mechanisms in the CSF. Li

et al61 reported that multiple copy number variations

(CNVs) of MET, KRAS, and ERBB2, and the loss of the

heterozygosity (LOH) of TP53 in CSF-ctDNA might be the

signal of a potential metastasis and acquired resistance

mechanisms of LM in EGFR-mutant NSCLC. Nanjo and

colleagues61 showed that a MET copy number gain in the

CSF is associated with LM’s resistance to gefitinib, but the

combination of EGFR-TKIs and the MET inhibitor, crizoti-

nib, relieved LM considerably. In a cohort of 12 patients

whose CNS disease progressed when receiving TKIs tar-

geted therapies (EGFR, ALK, HER2, or BRAF), four

patients were revealed to have drug-resistant mutations in

CSF-ctDNA that were absent in other metastatic tumor

tissues.9 These findings suggest that regularly monitoring

CSF-ctDNA to identify drug-resistant mutations early

gives room for the provision of tailored treatments that target

these resistant mutations when progression has not been

determined by imaging yet.

ctDNA as a Prognostic Biomarker
Monitoring Tumor Burden

There is an obvious need for sensitive and specific markers

to monitor the tumor dynamics of metastatic CNS lesions.

Li et al’s61 suggested that the CSF-ctDNA is a promising

biomarker that could help reveal dynamic changes in LM

tumor burden throughout treatment. Another report estab-

lished that CSF-ctDNA levels in a HER2-positive meta-

static breast cancer patient with BMs matched tumor

burden variations and might be more informative and

sensitive than traditional imaging.72 Momtaz et al32 used

digital PCR to quantify tumor-derived cfDNA in the CSF

of patients with BRAF V600E or K-mutated melanoma

(N=8) or BRAF V600E mutated Erdheim-Chester Disease

(ECD) (N=3) with suspected CNS involvement and found

that the level of CSF-ctDNA reflected tumor burden.

Technologies for ctDNA Detection
Considerable technology progress in sequencing and ana-

lyzing ctDNA has been made in recent years. Several

studies have demonstrated that high throughput sequen-

cing approaches can detect CNS tumor-derived cfDNA in

the CSF.4,6 At present, there are two main categories of

techniques for detecting ctDNA: targeted methods for

evaluating the presence of known point mutations, and

next-generation sequencing (NGS) or whole-genome

sequencing (WGS) for sequencing the whole genome or

pre-identified genomic regions of interest.27,73–81 The most

commonly used ctDNA analysis methods are based on

digital polymerase chain reaction (PCR) and NGS, which

allow for the assessment of point mutations, copy number

variations (CNVs), and chromosomal rearrangements.20,23

Targeted Approaches for the Analysis

CSF-ctDNA
A targeted approach for analyzing ctDNA is an approach

that uses known mutation information.82–85 Such methods

extract ctDNAs that correspond to probes or primers con-

taining known mutation sequences. Several PCR-based

technologies are used commonly for ctDNA analysis,

including ARMS (amplification refractory mutation sys-

tem), BEAMing (beads, emulsion, amplification, and mag-

netics), and droplet digital PCR (ddPCR).76,79,80,86–89
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Examples of the use of targeted approaches in tumor

mutations exist. Pan et al4 applied digital PCR, targeted

amplicon sequencing, and cancer panel sequencing to

characterize tumor mutations in the CSF samples collected

from seven patients with primary and metastatic brain

tumors. The first two methods, as presented above, were

used to evaluate the presence of known driver mutations to

monitor brain metastasis, while the third helped to char-

acterize the somatic mutation profile from the CSF total

DNA globally; 7 somatic mutations were identified from

the CSF of a patient with suspected LM. Another study, by

Wang et al10 used known tumor-specific mutations as

primers and a targeted sequencing method; 74% of 35

CSF samples had detectable levels of ctDNA. Ballester

et al5 recently reported the use of ddPCR in combination

with NGS to detect melanoma-associated mutations in the

CSF-ctDNA of melanoma patients with LM, and approxi-

mately 30% of the CSF-cytology negative samples were

positive for the presence of mutant DNA in the CSF after

ddPCR.

Untargeted Approaches for the Analysis

CSF-ctDNA
Untargeted approaches, such as WGS (whole-genome

sequencing) or WES (whole-exome sequencing) aim to

screen whole genomes or whole exomes and discover

new genomic aberrations, enabling the discovery of

novel mutations that do not require prior knowledge of

specific mutations.27,79,81,90 Novel NGS-based ctDNA

detection methods, including Safe-Seq (safe sequencing

system), TAm-Seq (tagged amplicon deep sequencing),

CAPP-Seq (cancer-personalized profiling by deep sequen-

cing), and Ampli-Seq, have improved the detection sensi-

tivity in identifying mutations,74,76,91–93 and there are

examples of this.

In 2016, Pentsova et al9 sequenced 341 cancer-

associated genes in CSF samples obtained from 53 patients

with suspected or known CNS malignancies. Using NGS,

they detected high-confidence somatic alterations in 63%

(20 of 32) of the patients with CNS metastases of solid

tumors, 50% (six of 12) of the patients with primary brain

tumors, and 0% (zero of nine) of patients without CNS

cancers. However, NGS-based methods are relatively

more expensive than digital PCR and cannot be applied

readily to monitor tumors, and they also have longer turn-

around times.

Future Perspectives
Immunotherapy has finally entered the treatment phase of

CNS tumors.94–100 However, there are no reliable biomar-

kers to screen appropriate populations and predict immu-

notherapy responses in CNS tumors. Tumor mutational

burden (TMB), as detected by tissue NGS, is a potential

predictor of immunotherapy response.101 Still, tissue

biopsy of CNS tumors is invasive, making it non-ideal.

A recent study published in Clinical Cancer Research

confirmed that there is a correlation between high altera-

tion number detection in ctDNA and improved response

following immunotherapy;102 supporting the use of

ctDNA in place of tissue biopsy. Weiss et al103 also lent

their support to the use of ctDNA, revealing that the copy

number variation in cell-free DNA correlated with

response to immunotherapy. According to forecasts from

previous studies, blood-derived ctDNA is expected to be

a non-invasive predictive marker for immunotherapy soon.

These forecasts seem imminent, as there is an urgent need

to evaluate the value of CSF-ctDNA in CNS tumors to

determine if it can be a good biomarker for assessing

immune checkpoint inhibitor responses.

Up to 10% of patients treated with PD-1 antibodies will

develop pseudoprogression, which occurs after the initial

development of new lesions or an increase in the size of the

target lesions.104 The confirmation of pseudoprogression

remains a continuing challenge despite the development of

immune-related response criteria (irRC).105 Cohen et al98

revealed that a patient with progressive brain metastases

who presented mental issues and was treated with a single

cycle of pembrolizumab showed changes 11 days later. An

MRI of his brain showed the progression of CNS lesions, but

histopathology results of the resected lesions revealed that all

the changes might have been inflammatory effects rather than

true tumor progression. Given the increasing use of immune

checkpoint inhibitors in patients with brain metastases from

melanoma and other diseases, early recognition of this

unique response pattern can prevent the premature termina-

tion of a potentially effective treatment in the management of

these patients. Following this line of understanding, Lee et -

al104 assessed the feasibility of using plasma ctDNA to

differentiate pseudoprogression from the true progression

of disease in patients with metastatic melanoma treated

with anti-programmed cell death-1 antibodies. The sensitiv-

ity of ctDNA in predicting pseudoprogression from true

progression was 90% (95% CI, 68–99%), and the specificity

was 100% (95%CI, 60–100%). Nevertheless, given its rarity,
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the application of CSF-ctDNA to identify the pseudoprogres-

sion of CNS tumors in the treatment of immunotherapy

requires further studies.

Limitations
While ctDNA testing is being researched extensively and

developed, it remains very expensive. The detection assays

are also time-consuming and require complex skills and

specialized equipment. Additionally, the acquisition of

results takes forever. In contrast, CSF cytology and neu-

roimaging are far more simple and can be performed

within a few hours. Also, although the extraction of CSF

through lumbar puncture is less invasive than surgery,

lumbar puncture is not always feasible in the case of

patients with bulky tumors that obstruct cerebrospinal

fluid flow or elevate intracranial pressure. A lumbar punc-

ture can lead to cerebral herniation, potentially hampering

the use of CSF-ctDNA in patients with symptoms of

hydrocephalus or elevated intracranial pressure. A recent

paper published in Science unearthed somatic mutations in

healthy tissues, some of them known in cancer cells,

which poses a challenge to the applicability of CSF. DNA-

based NGS also has limitations in detecting fusion genes

and breakpoint genes at long intron areas or at complex

intronic sequences. Moreover, a large panel NGS or

whole-exome NGS usually requires high purity and high

input DNA. One should be cautious when interpreting

final bioinformatic data under extreme low DNA purity,

particularly for genes with low mutant allele frequency.

A CSF-based liquid biopsy may not be suitable for CNS

tumors that are encased in the brain parenchyma and lack

any association with the CSF. Nevertheless, even with

their current limitations, circulating tumor DNAs have

shown tremendous clinical and research potential in

many types of CNS tumors and, if expertly explored,

may become the answer to most problems faced when

handling CNS tumors.

Conclusions
Finding minimally invasive techniques for the molecular

analysis of primary and metastatic CNS tumors has been

a daunting task. The high risk of biopsies or neurosurgical

procedures and the low sensitivity and specificity of current

neuroimaging modalities highlight these challenges. There is

light at the end of the tunnel, though, with the analysis of

ctDNA from the CSF of central nervous system tumors

presenting a feasible solution and, seemingly, more accurate

findings. Unlike the invasive means of acquiring tumor

tissue for analysis, CSF-ctDNA could be obtained via lum-

bar puncture. It has the advantage of representing tumor-

specific genomic information frequently and longitudinally,

which could help physicians to tailor treatment according to

individual molecular characteristics along the pathway of the

disease. This review summarizes the application of CSF-

ctDNA in the diagnosis, prognostication, and prediction of

different primary and metastatic CNS tumors.

In conclusion, we believe that a CSF-ctDNA analysis

could be combined with other techniques, including CSF

cytology examination, neuroimaging, and clinical tumor

biomarkers, in the management of CNS tumors. More

studies are warranted to determine the role of CSF-

ctDNA in tumor types beyond those that have been studied

and to assess other nucleic acids in the CSF that may be

better in the management of CNS tumors. Furthermore,

extensive prospective trials are necessary to determine the

extent to which the CSF-ctDNA might be informative

regarding actionable genetic alterations in primary or

metastatic CNS tumors.
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