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Abstract: Paroxysmal nocturnal hemoglobinuria is a rare disorder of hemopoietic stem cells. 

Affected individuals have a triad of clinical associations – intravascular hemolysis, an increased 

risk of thromboembolism, and bone marrow failure. Most of the symptoms experienced in this 

disease occur due to the absence of complement regulatory proteins on the surface of the red 

blood cells. Complement activation is thus not checked and causes destruction of these cells. 

Eculizumab is a monoclonal antibody treatment which specifically binds to the complement 

protein C5, preventing its cleavage, and so halts the complement cascade and prevents the 

formation of the terminal complement proteins. Eculizumab prevents intravascular hemolysis, 

stabilizes hemoglobin levels, reduces or stops the need for blood transfusions, and improves 

fatigue and patient quality of life as well as reducing pulmonary hypertension, decreasing the 

risk of thrombosis and protecting against worsening renal function. It is not a curative therapy 

but has a great benefit on those with this rare debilitating condition.
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Introduction
Eculizumab is a humanized monoclonal antibody which binds to the complement 

protein 5 (C5), thereby inhibiting the formation of the terminal components of the 

complement cascade.1 It was licensed by the Food and Drug Administration in March 

2007 and by the European Medicines Agency in June 2007 for the treatment of 

paroxysmal nocturnal hemoglobinuria (PNH). It has been shown to be a well tolerated 

and highly effective treatment for patients with PNH.2–4 PNH is a rare hematological 

disorder where hematological stem cells (HSCs) acquire an abnormality that is then 

passed on to their progeny. The red blood cells derived from these abnormal HSCs 

are extremely sensitive to complement mediated lysis which leads to many of the 

symptoms of the disease.5 Prior to eculizumab, treatment was mainly supportive in 

nature with a median survival of 10 to 15 years for patients treated between 1940 and 

1970.6 More recently, data from France reported a median survival of 22 years.7 This 

increase in survival may reflect improved supportive care as well as better treatment 

of more specific complications, such as thromboses.

The genetic defect
The disease is characterized by hemopoietic clones which harbor somatic muta-

tions of the phosphatidylinositol glycan synthetic pathway due to inactivation of the 

complementation class A gene (PIG-A).8 The PIG-A gene is one of a number of genes 

needed for the synthesis of the glycophosphatidylinositol (GPI) anchor within the 
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endoplasmic reticulum (ER).9 GPI biosynthesis occurs via 

a stepwise addition of sugar nucleotides and phospholipids 

within the ER before the completed protein is transferred 

to the cell surface10 (Figure 1). The GPI moiety serves as 

a membrane anchor for a variety of cell surface proteins. 

Mutations of the PIG-A gene disrupt the first step of GPI 

biosynthesis leading to an absence of the GPI anchor and, in 

turn, a marked deficiency of all GPI linked proteins.11

PIG-A is located on the X chromosome and is mono-

allelically expressed. All the other genes involved in GPI 

biosynthesis are autosomal. A single mutation in the PIG-A 

gene is therefore sufficient to disrupt GPI assembly leading 

to complete loss of function. For the remainder of genes in 

this pathway, both alleles would need to be mutated in the 

same cell to affect GPI production. This explains why all 

cases of acquired PNH which have been examined, harbor 

PIG-A mutations.12,13

The complement cascade 
and hemolysis in PNH
The complement cascade is an integral part of the innate 

immune system. It involves sequential reactions that 

ultimately cause cell lysis either by opsonization and sub-

sequent cell phagocytosis, or by the formation of a phos-

pholipase, called the membrane attack complex (MAC) 

that punches holes in the cell membrane (Figure 2). CD55 

(decay accelerating factor, DAF) and CD59 (membrane 

inhibitor of reactive lysis, MIRL) are widely expressed on 

all hemopoietic cells and are both involved in the regulation 

of complement activation. CD55 increases the removal of 

C3 convertase, thereby reducing the amount of C3 that is 

cleaved.14 CD59 inhibits C9 binding to C5b, C6, C7 and C8 

which together make up the MAC. The MAC is then inserted 

into the cell membrane causing cell lysis.

The absence or reduced expression of CD55 and CD59 

on PNH red blood cells leads to their increased sensitivity to 

complement mediated attack. This in turn causes the major-

ity of symptoms of the disease. Based on their sensitivity to 

complement attack, erythrocytes in PNH have been classi-

fied into 3 groups.14 Type I cells are normal red blood cells, 

type III cells have a complete deficiency of GPI anchored 

proteins and type II cells have a partial deficiency (Figure 3). 

The degree of hemolysis suffered by individuals is relative to 

the proportions of the type II and III cells present. In general, 

the larger the proportion of type III cells, the more severe the 

hemolysis suffered by the affected individual.

PNH diagnosis
As PNH is a rare disease, its precise incidence and prevalence 

has not been well documented. It is not unusual for patients to 

be misdiagnosed or remain undiagnosed for long periods. The 

most reliable data on the incidence and prevalence of the dis-

ease is from work undertaken in Yorkshire, England.15 In this 

study, the prevalence of patients with PNH clones of any size 

is 15.9 per million and the incidence is 1.3 per million of the 

total population. Eighty-two percent of these patients had a 

granulocyte clone size greater than 1%, with 43% of these 

greater than 10% and a quarter greater than 50%. Clone sizes 

down to 0.05% were detected in this study while evaluating 

a minimum of 1 × 106 flow cytometry events.

Initially, PNH diagnosis relied on a biochemical assay, 

the Ham test, in which red blood cells are exposed to acidified 

serum. Under these conditions, complement is activated 

via the alternative pathway and causes lysis of PNH cells 

as they are sensitive to complement attack.16 This test 

was time consuming, non-specific, insensitive and lacked 

standardization. It was succeeded by flow cytometry in 

the 1990s.

Flow cytometry is routinely performed to evaluate the 

size of erythrocyte and granulocyte clones and is considered 

the “gold standard” for diagnosing PNH. Peripheral blood 

granulocyte clone size is believed to be the best marker for 

evaluating the extent of affected HSCs in the bone marrow 

as the erythrocyte clone size can vary depending both on 

the degree of intravascular hemolysis present and whether 

an individual has had a recent red cell transfusion of normal 

erythrocytes. The granulocyte clone size also correlates well 

with the platelet clone size.

Initially, flow cytometry was used to look for the absence 

of specific GPI-linked proteins such as CD55 and CD5917 
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Figure 1 Glycophosphatidylinositol biosynthesis: an illustration showing the stepwise 
addition of sugar residues and the sites at which PIG-A and PIG-M are required.
Abbreviations: M, mannose; NA, N-acetylglucosamine; PI, phosphatidylinositol.
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and determination of the presence of these antigens is still 

routinely used in evaluating the proportion of PNH red blood 

cells present. The use of both of these targets in conjunction 

excludes rare single antigen deficiencies and allows a red 

cell clone as small as 0.01% to be detected.18 Evaluation of 

CD59 expression usually provides the clearest separation of 

type I, II and III red blood cells (Figure 3).

A wide variety of different GPI-linked proteins have 

been used to assess the PNH granulocyte clone size. The 

most recent development in this diagnostic field is the devel-

opment of the FLAER reagent.18 FLAER is a fluorochrome-

labeled inactive variant of the protein aerolysin which 

selectively binds directly to the GPI anchor. It cannot be 

used to ascertain the extent of the PNH red cell clone size 

as the presence of glycophorin, a non-GPI-linked protein on 

erythrocytes, binds to the FLAER non-specifically. FLAER 

can be used alone or in combination with other monoclonal 

antibodies to GPI-linked antigens to evaluate the granulo-

cyte clone size. At the moment there is no standardization 

for the diagnosis of PNH with a marked diversity seen in 

the antibodies used between different centers. FLAER is 

becoming increasingly used for granulocyte clone evaluation 

and provides a more accurate assessment, especially of small 

PNH clones.19 In our center, one of the 2 National Centers for 

treating PNH patients in England, we routinely use 6 color 

flow cytometry with a combination of FLAER, CD16, CD24, 

CD33, CD15 and CD14 for granulocyte analysis and CD59, 

CD55 and CD235a for evaluating erythrocyte clone sizes.

A standardized approach to PNH
A proposed classification to allow a standard approach to 

PNH patients for clinicians is to divide them into three 

distinct groupings.20

1. Classical PNH – these patients have the characteristic 

symptoms of PNH with intravascular hemolysis and a 

cellular bone marrow. They have no evidence of any 

other bone marrow pathology.

2. PNH in the setting of another specified bone marrow 

disorder – these patients have symptoms of intravascu-

lar hemolysis but also have, or have previously had, an 

underlying bone marrow abnormality such as aplastic 

anemia (AA) or myelodysplasia (MDS).

3. Subclinical PNH – these patients have no evidence of 

ongoing hemolysis. They have small PNH clones present 

and are often seen in patients with bone marrow failure 

especially in AA and MDS. These patients have been 

identified due to the development of improved diag-

nostic flow cytometry as prior to this these small clones 
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would have remained undetected.19 The significance 

and relevance of subclinical PNH is unclear and will 

be evaluated in ongoing studies on otherwise healthy 

individuals.

The concern with this approach relates to the overlap 

between those with classical PNH that may have a small 

degree of aplasia and those with PNH in the setting of another 

specified bone marrow disorder that may have significant 

intravascular hemolysis.

The pathogenesis of PNH
There is good evidence to suggest that all patients who 

develop PNH have bone marrow failure (usually AA and 

occasionally MDS) either before or at the time their PNH 

is diagnosed.21,22 Since there is no definitive evidence that 

GPI deficient cells have an intrinsic survival advantage 

over normal cells, a cell extrinsic effect is likely to explain 

the preferential development of PNH clones concurrent 

with bone marrow failure.22 Bone marrow failure, AA in 

particular, appears to provide the environment needed for 

the expansion of PNH clones and small PNH clones can be 

found in up to two thirds of patients with AA.23

While the etiology of AA is often poorly defined, a pri-

mary role for immune mediated destruction of hemopoietic 

marrow elements is generally accepted. Consequently one 

of the main therapies used in AA is immunosuppression, 

via antithymocyte globulin and ciclosporin. The success 

of these therapies supports the proposed immune etiology. 

Furthermore, in vitro experiments demonstrate that removal 

of T-cells from aplastic bone marrow improves the number 

of colonies formed in tissue culture and analysis of these 

T-lymphocytes has identified them as activated cytotoxic 

T-cells (CTL).24 The cause of T-cell activation in AA is 

unknown but drug exposure and viral infection are potential 

candidates. The role of immune activation in AA leads to 

the hypothesis that immune evasion is a mechanism for the 

emergence of the PNH clone.

Some patients with PNH have multiple PNH clones 

detectable.25–27 Multiple clones are also found in those with 

PNH who have co-existing AA.28 Endo et al reported other 

features in relation to the presence of multiple clones.26 Their 

study identified four PIG-A mutations in one PNH patient 

and they proposed that the phenotypic mosaicism was due to 

genotypic mosaicism. They hypothesized that this genotypic 

mosaicism was due to hypermutability of the PIG-A gene.

In cases where multiple clones are present in a patient, one 

of these often makes up the majority of mature PNH cells. 

This domination of a single clone may be due to only one of 

the clones developing in the HSC pool,29 whereas the others 

are generated later during hemopoiesis in progenitor cells. 

Alternatively, accumulation of a dominant clone may reflect 

that an additional factor, not related to the PIG-A mutation, 

is responsible for clonal expansion.

Despite dramatic improvements in treating PNH, the 

underlying process that determines the expansion of PNH 

clones remains unclear. Occurrence of a PIG-A mutant clone 

is not sufficient for development of PNH, since these occur 

frequently in the normal population at very low levels.30 

In view of the association with bone marrow failure, and 

especially AA, it is likely that expansion of the clone is 

immune mediated. The simplest theory is that the immune 

attack in AA requires a GPI-linked protein and that absence 

of one of these proteins protects PNH cells from attack. 

Consequently, in the absence of a PIG-A mutant clone, an 

affected individual would present with AA, but in the pres-

ence of a PIG-A mutant clone, hemopoiesis is rescued and 

the individual presents with PNH, the clinical manifestations 

of PIG-A deficient hemopoietic cells.25 An alternative theory 

to this, involving the absence of specific GPI-linked proteins 

which provide a clonal advantage to PNH cells, has also 

been proposed.31 Hanaoka et al proposed that the absence 

of stress inducible proteins on PNH blood cells provide the 

basis for clonal expansion. Such a model however does not 

readily explain the link with AA, the failure of PNH clones 

to become dominant in normal individuals, and the lack of 

intrinsic proliferative advantage in vitro.

Inoue et al proposed a two stage model for the disease 

whereby clonal selection and clonal expansion occur by two 

separate events.32 In this model, clonal selection relates to 
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the PIG-A mutation, occurring in the setting of bone marrow 

failure with clonal expansion being due to a separate mutation 

within the PIG-A mutated HSC which confers a proliferative 

advantage.

Another potential mechanism that has been proposed is 

that lack of GPI molecules on PNH cells can render them 

resistant to apoptosis.33,34 However, other investigators have 

failed to observe this difference in apoptosis rates between 

GPI deficient and normal granulocytes.35

Furthermore, mouse models of PIG-A deficiencies do not 

develop clonal expansion of PNH-like cells.36,37 These results 

argue against a cell intrinsic role for PIG-A deficiency in the 

development of PNH. One clear explanation for the failure to 

develop a PNH-like syndrome is that these mouse models do 

not have underlying bone marrow failure or immune insult. 

Hence, the conditions for clonal expansion of PNH-like cells 

are not met.

Clinical symptoms and the role 
of nitric oxide
In general, the size of the PNH clone correlates with the 

degree of symptoms observed. Therefore, patients who 

have symptomatic PNH tend to have larger clones of 

PNH cells present. Affected individuals have chronic low 

grade hemolysis with episodes, or “paroxysms”, of severe 

intravascular hemolysis. During periods of intravascular 

hemolysis, free hemoglobin is released into the circulation. 

Haptoglobin, a protein produced mainly by hepatocytes in 

the liver, rapidly binds free hemoglobin and this haptoglobin–

hemoglobin complex is then degraded in the liver. This 

process is overwhelmed in PNH and leads to excess free 

hemoglobin avidly and irreversibly binding to nitric oxide 

(NO).38,39 NO plays an important role in the maintenance of 

vascular tone by relaxation of smooth muscle which conse-

quently causes blood vessel vasodilation. Depletion of NO 

in individuals with PNH leads to smooth muscle dystonia 

and this may be responsible for many of the symptoms of 

the disease. These include esophageal spasm and dysphagia, 

abdominal pain, severe lethargy and erectile dysfunction in 

men. NO depletion is associated with the development of a 

number of cardiovascular morbidities including pulmonary 

hypertension. Recently it has been shown that PNH patients 

have a high prevalence of pulmonary hypertension which 

is likely secondary to NO depletion.39

The clinical outcome of patients with PNH is highly vari-

able from one individual to the next. Thrombosis remains the 

commonest cause of death in the disease, occurring in 40% of 

patients, with a third of these being fatal.6,7 These thromboses 

predominantly occur in the venous system with an increase 

in thromboses in typical sites such as deep vein thromboses 

and pulmonary emboli as well as at unusual sites, such as 

the hepatic, mesenteric and cerebral veins.6 The arterial 

thrombosis risk is also elevated with increased occurrences 

of myocardial infarctions and strokes. Hall et al reported the 

risk of thrombosis in patients with a 50% or greater PNH 

clone to be 44%, and those with a less than 50% PNH clone 

to be 5.8%.40 Although the risk is far greater in those with 

larger PNH clones, even those with small clones (as low as 

10%) have a much higher thrombotic risk when compared 

with the general population.41,42

The underlying mechanisms causing thromboembolism 

in individuals with PNH has not been clearly defined and 

may be multifactorial in nature. NO depletion due to bind-

ing of NO to free hemoglobin causes both increased platelet 

aggregation and adhesion.38 Additionally, platelets lacking 

GPI-linked proteins are susceptible to complement mediated 

attack which leads to platelet activation and the formation 

and exocytosis of prothrombotic microvesicles containing 

the MAC.43 These microvesicles have been shown to be 

present at high levels in the blood of patients with PNH.44 

Another potential cause for the increased thrombotic risk is 

due to GPI deficient neutrophils lacking urokinase type plas-

minogen activator thereby reducing plasminogen activation 

and causing a reduction in fibrinolysis.45 It is likely that the 

increased thrombotic risk in PNH is due to a combination of 

these factors rather than a single underlying mechanism.

PNH treatment
Allogeneic bone marrow transplantation is the only cura-

tive therapy for PNH.46–48 However it carries a high rate of 

mortality and morbidity due to infection, graft versus host 

disease and graft failure. It is only an option for a minority 

of patients either because they are not suitable candidates 

for the procedure, a donor is unavailable or treatment with 

eculizumab may be deemed more appropriate. The introduc-

tion of eculizumab treatment plus the fact that around 15% 

of patients with PNH undergo a spontaneous remission of 

the disease, result in transplantation only being undertaken 

in specific circumstances.6 Transplantation should be consid-

ered when there is an associated severe bone marrow failure, 

life-threatening hemolysis with no access to eculizumab, 

recurrent thromboses despite eculizumab treatment and in 

cases of syngeneic twins.

Prior to eculizumab, the mainstay of treatment for patients 

with PNH has been supportive in nature. Folic acid is rou-

tinely taken, as in other hemolytic anemias, in view of the 
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increased red cell production. Many patients have become 

transfusion dependent in an effort to alleviate symptoms 

related to their anemia. Some of these patients have devel-

oped iron overload due to the number of transfusions and 

require treatment with iron chelation. The majority, however, 

remain in an iron deficient state due to their persistent hemo-

globinuria and therefore need to take oral iron supplements. 

In those patients with a large PNH clone, warfarin therapy 

has been employed, which can reduce the risk of developing 

thrombosis.40

Eculizumab
Eculizumab is a humanized monoclonal antibody that binds 

to the complement protein C5 and prevents its cleavage into 

C5a and C5b. It is comprised of murine complementarity-

determining regions within a human antibody framework that 

includes IgG2 and IgG4 regions. Treatment with eculizumab 

therefore prevents C5b formation which is necessary to form 

MAC through binding to the complement proteins C6, C7, 

C8 and C9. As the clinical features in PNH are caused by 

the MAC attack on erythrocytes, preventing its formation 

was likely to protect PNH red blood cells in the circulation 

(Figure 4). Information on the possible effects eculizumab 

might have in treating PNH was first seen in a case reported 

by Yonemura et al of a patient with co-existing PNH and 

a deficiency of C9.49 This patient was well with only mild 

hemolysis and only became unwell after receiving a whole 

blood transfusion after an operation. Transfusion of whole 

blood includes exogenous C9 allowing the symptoms of 

PNH to manifest.

The importance of both the proximal and the terminal 

complement proteins can be shown by examining people with 

rare inherited complement protein deficiencies. Congenital 

deficiencies of proximal complement proteins result in recur-

rent severe infections and death early in life.50 Deficiencies 

of the terminal complement proteins, C5, C6, C7, C8 or 

C9 increase the susceptibility to infection with the bacteria 

Neisseria meningitidis.50 In these individuals however, the 

proximal complement cascade remains intact allowing the 

formation of C3b and its subsequent opsonization and clear-

ance of most other bacteria.

C5 is a good therapeutic target as all the proximal comple-

ment pathways converge at C5 (Figure 2). Complement 

blockade at C5 will therefore halt the complement cascade 

preventing activation of the terminal complement compo-

nents no matter which initial pathway has been activated.

Eculizumab was initially evaluated in the treatment 

of patients with rheumatoid arthritis and systemic lupus 

erythematosis.51,52 These early clinical studies provided 

information on the frequency of dosing as well as the doses 

required to provide complement blockade.

Clinical trials of eculizumab
The pilot study
Eleven patients were entered into this initial study in 2002 

to assess the effect of eculizumab in PNH patients.2 Indi-

viduals needed to have received 4 or greater red blood 

cell transfusions in the preceding 12 months to enter the 

study. Patients were also vaccinated against N. meningitidis 

(serotypes A + C).

Eculizumab was administered at a dose of 600 mg 

weekly for the first 4 weeks followed by a dose of 900 mg 

every fortnight from the 5th week onwards. Data were col-

lected on the drug pharmacokinetics and pharmacodynamics, 

markers of hemolysis (lactate dehydrogenase (LDH), 

haptoglobin and bilirubin), hemoglobin and reticulocyte 

levels, PNH clone size proportions as well as the degree 

of hemoglobinuria and the individual transfusion require-

ments. European Organization for Research and Treatment 

of Cancer (EORTC) questionnaires were employed to assess 

potential changes in quality of life. Concomitant medication 

such as immunosuppressive and anticoagulant medication 

was continued.

There was a dramatic reduction in LDH levels in these 

patients from a mean level of 3111 IU/L prior to treatment 

down to 594 IU/L in the study. The proportion of type III 

erythrocytes during the 12 weeks increased significantly 

from a mean of 36.7% to 59.2% which supports an increased 

survival of these cells due to the prevention of intravas-

cular hemolysis. Transfusion requirements reduced in all 

11 patients with 5 becoming transfusion independent for the 

entire trial period. Hemoglobinuria resolved in most and there 

was a rapid and sustained improvement in quality of life.

On completion of the pilot study these 11 patients all 

enrolled into a 12 month extension trial to evaluate the 
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long-term safety and efficacy of eculizumab.53 Complement 

blockade with a consequent sustained reduction in both 

intravascular hemolysis and transfusion requirement was 

observed during the extension period. The initial dramatic 

improvement in quality of life was also maintained. The 

use of eculizumab appeared to be safe and well tolerated in 

these patients.

The pilot study supported the importance of terminal 

complement activation in PNH and suggested that eculi-

zumab could be used to reduce hemolysis and transfusion 

requirements whilst increasing the proportion of type III 

erythrocytes and improving quality of life in this debilitat-

ing disease.

The TRIUMPH study
Following the success of the pilot study, a double-blind, 

randomized, placebo-controlled multicenter phase 3 trial 

(TRIUMPH) was undertaken.3 Patients could enter into a 

3 month observation period if they were more than 18 years 

old, had received four or more red cell transfusions in the 

preceding twelve months, had 10% PNH type III eryth-

rocytes present, a platelet count 100 × 109/L and an LDH 

level 1.5 times the upper limit of normal. Patients that were 

transfused during the observation period were then eligible 

to enter the study. Eighty-seven patients were randomized to 

receive either eculizumab or placebo for 6 months with 44 of 

these receiving eculizumab and the rest being given placebo 

infusions. At the end of the 26 week period patients who had 

been given placebo were allowed to cross-over and receive 

eculizumab. The protocol for administration of eculizumab 

was the same as in the pilot trial.

The TRIUMPH study was designed to see if eculizumab 

stabilized hemoglobin levels and reduced transfusion 

requirements. Secondary trial endpoints included assessment 

of intravascular hemolysis, fatigue and quality of life.

Stabilization of hemoglobin levels was achieved in 49% 

of the patients treated with eculizumab and this did not occur 

in any patient in the placebo group. Fifty-one percent of the 

study group remained transfusion independent throughout 

the 26-week study whereas all the placebo group patients 

had been transfused by the 14th week of the study. There 

was a 44% reduction in the number of transfusions needed 

by the patients who did not become transfusion independent 

on eculizumab. As in the pilot study, there was a marked 

reduction in intravascular hemolysis in the eculizumab 

group with LDH levels falling from a mean of 2199.7 IU/L 

to 327 IU/L. Levels in the placebo group remained high with 

a mean of 2418.9 IU/L during the 26 weeks. Fatigue was 

assessed using the Functional Assessment of Chronic Illness 

Therapy (FACIT) instrument and quality of life by EORTC 

questionnaires. Both showed huge improvements in those 

treated with eculizumab. Although the TRIUMPH study was 

not designed to look at thrombotic events, no thromboses 

occurred in the patients receiving eculizumab.

This study confirmed the importance of eculizumab in 

stabilizing hemoglobin levels, reducing or stopping the need 

for transfusions as well as improving anemia, fatigue and 

quality of life for PNH patients.

The SHEPHERD study
The SHEPHERD study was a phase 3 trial designed to 

evaluate the safety and efficacy of eculizumab in treat-

ing a more diverse population of patients with PNH 

including those with fewer transfusion requirements and 

thrombocytopenia.4 The trial entry criteria included patients 

transfused at least once in the preceding 2 years, a platelet 

count of 30 × 109/L, 10% PNH type III erythrocytes 

present and an LDH level 1.5 times the upper limit of 

normal. Ninety-seven patients were enrolled and 96 of 

these completed the 52 week study period. The protocol for 

administration of eculizumab was the same as in the pilot 

and the TRIUMPH trials.

Eculizumab was well tolerated with a similar rate of 

adverse events (AE) reported to the TRIUMPH study. 

The commonest AEs reported were headaches (53%), 

nasopharyngitis (32%) and upper respiratory tract infec-

tions (30%). The incidence of headaches was greater in 

the first 26 weeks (49%) of the study compared to the last 

26 weeks (15%). The majority of these headaches were 

mild to moderate in severity and most occurred only within 

the first 2 weeks of their eculizumab infusions. Forty-four 

serious AEs were reported but none were thought to be 

probably or definitely due to eculizumab though 7 of them 

were possibly related to the drug. These 7 events included 

2 of pyrexia, 1 of headache, 1 of abdominal distension, 1 of 

a viral infection, 1 of anxiety and 1 of renal impairment. Two 

patients, both with a prior history of thromboembolism, had 

a further thrombosis during the study. Eighty-nine patients 

(91%) had mild or moderate infections during the study with 

the majority of these thought to be unrelated to eculizumab. 

Low titer anti-eculizumab antibodies occurred in 2 patients 

(2%) but with no loss of drug efficacy.

Eighty-nine patients (91%) had serum eculizumab 

levels 35 µg/mL, throughout the trial period. This level 

has been shown to completely block terminal complement 

activation and prevent intravascular hemolysis.2 The other 
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8 patients experienced breakthrough hemolysis 1 to 2 days 

prior to their next eculizumab infusions, but after reducing 

the dosing interval from 14 to 12 days, consistent comple-

ment blockade was resumed. There was a marked reduction 

in intravascular hemolysis in the eculizumab group with LDH 

levels falling from a mean of 2201 IU/L to 297 IU/L and the 

proportion of type III erythrocytes present increased from a 

mean of 33.5% to 55.7%. Transfusion requirements reduced 

from a mean of 12.3 units per patient in the 12 months prior 

to the study to 5.9 units per patient, with 51% of patients 

remaining transfusion independent for the entire 52 weeks.

This trial shows that eculizumab appears to be safe and 

well tolerated and provides marked benefits to a broader group 

of PNH patients by reducing intravascular hemolysis.

Eculizumab: its effect 
on thromboembolism 
and renal function
Clinical trial patients from all three of these trials were 

entered into an extension study and the rate of thromboem-

bolism assessed.54 Thrombosis rates in these 195 trial patients 

were compared before and after treatment with eculizumab. 

Prior to eculizumab treatment this group had a thromboem-

bolic rate of 7.37 thromboses per 100 patient years. This 

decreased dramatically to 1.07 thromboses per 100 patient 

years with complement blockade. The question arises as to 

whether patients that are treated with eculizumab should also 

receive warfarin. Warfarin has been shown to reduce the risk 

of thrombosis in PNH but it also carries a significant risk 

(2% to 13%) of severe bleeding.55 Patients who have had a 

prior thrombosis have a high risk of subsequent thrombosis7,56 

and in view of this, these patients are often treated with both 

eculizumab and anticoagulation. However it remains unclear 

whether it is better to use eculizumab alone or in conjunction 

with anticoagulation in patients with PNH who have not suf-

fered a thrombosis and are deemed to be high-risk.

Renal damage is a common finding in patients with 

PNH and this damage may be due to repeated microvascular 

thrombosis, renal cortical hemosiderosis, repeated exposure 

of the kidney to heme proteins or reduced kidney perfusion 

due to the reduced availability of NO.57–60 The 195 patients 

from the PNH clinical trials were screened for evidence of 

chronic kidney disease (CKD) before and after 18 months 

of treatment with eculizumab.61 Sixty five percent (126/195) 

of patients had evidence of CKD and administration of 

eculizumab was generally associated with an improvement 

in renal function with 21% of patients with prior CKD no 

longer classified with CKD during eculizumab treatment. 

The patients with more mild baseline kidney disease were the 

most likely to have an improvement in their renal function.

Specific issues on eculizumab 
treatment
Neisseria meningitidis infection
One of the main concerns for physicians treating patients 

with eculizumab is that of infection with N. meningitidis. 

In the PNH clinical studies, 2 out of 195 patients experienced 

meningococcal sepsis. Both patients were treated promptly 

and remain well. Since the completion of these clinical trials 

there has been 1 fatality due to meningococcal sepsis. The 

risk of this infection is low and has been further reduced by 

vaccinating patients with the quadravalent vaccine against 

serotypes A, C, W and Y, prior to starting eculizumab. Unfor-

tunately at present there is no vaccine against serotype B 

which is a common strain of the bacteria in Europe. As in 

the TRIUMPH and SHEPHERD studies in our center we 

routinely give the patients two 750-mg doses of ciprofloxacin 

to keep at home and take if unwell while also seeking medical 

attention. It is important that both patients and physicians are 

educated and remain vigilant about the signs of the disease 

so that they seek and receive prompt targeted medical treat-

ment when needed.

Breakthrough hemolysis
A significant minority of patients treated with eculizumab 

develop symptoms of intravascular hemolysis 1 to 2 days prior 

to their next eculizumab infusion (around 7%–9% – personal 

experience). In some patients this can be resolved by reducing 

the treatment from every 14 days to every 12 days.2,4 Treatment 

every 12 days can be inconvenient as the day of treatment 

varies and infusions are also required at weekends. A 1200-mg 

dosing schedule every 14 days has been used in our center 

and found to consistently block complement even in patients 

who still have breakthrough symptoms on 900mg eculizumab 

every 12 days.62 Patients treated with this 1200 mg dose were 

found to have a good correlation between eculizumab and 

LDH levels, suggesting that a breakthrough in complement 

activity due to insufficient drug levels can be monitored by 

measuring LDH near the end of the dosing interval.

Extravascular hemolysis
Despite the enormous health improvements seen in most 

patients with PNH there are some patients that remain anemic 

and dependent on transfusions. This suboptimal response 

may be due to the complement protein C3 binding to PNH red 
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blood cells causing an increase in extravascular hemolysis.63 

Co-existent bone marrow failure is also likely to be con-

tributory. Eculizumab blocks the formation of the terminal 

components of the complement cascade but has no effect on 

the proximal components. The absence of CD55 (DAF) on 

the surface of the PNH red cells means the usual regulation 

and accelerated decay of cleaved C3 products is disrupted 

and the red cells are bound with C3. This phenomenon has 

emerged with the use of eculizumab as prior to it these blood 

cells were likely to hemolyzed intravascularly.

Pregnancy
Pregnancy carries an increased risk of mortality and morbidity 

in PNH compared with the non-pregnant state.64–66 The main 

risks to the mother are in the form of thromboembolism and 

infection, whereas in the baby most complications relate to 

prematurity which occurs in around half of pregnancies to 

mothers with PNH. Eculizumab has been used in pregnancy 

in one patient during the third trimester.67 It has also been 

used for the first time from conception and through the entire 

pregnancy.68 In this case eculizumab was not detected in the 

cord blood or breast milk, suggesting it does not cross the 

placenta or into mother’s milk. The use of eculizumab in 

pregnancy will become an increasingly frequent conundrum 

as more young women treated with the drug feel well enough 

to consider starting a family.

Conclusion and summary
Eculizumab has dramatically changed the way clinicians 

approach treatment for patients with PNH. It took just 5 years 

from the pilot study in 2002 to the drug gaining its Food and 

Drugs Administration license and its European Medicines 

Agency license in March and June 2007 respectively. The 

eculizumab clinical trials have shown that it is safe and well 

tolerated and provides huge benefits for PNH patients who 

previously received supportive therapies. It has been shown 

to stop intravascular hemolysis and the subsequent symptoms 

patients develop, reduce or abolish the need for transfusions, 

stabilize hemoglobin levels, improve patient quality of 

life, reduce fatigue, reduce the risk of developing thromboses, 

protect against worsening renal function and decrease pulmo-

nary hypertension. It is likely that in the future eculizumab 

will improve patient mortality.

Although it has many positive points, there are some 

negatives to eculizumab treatment. It has to be given as 

an intravenous infusion every 2 weeks, there is a small 

but definite increase in susceptibility to N. meningitidis, it 

costs ∼ US$400,000 per year and it does not cure the disease. 

Eculizumab is of use in treating classical PNH, ie, where 

hemolysis is the predominant disease component. It does 

not have a role in the treatment of patients with subclinical 

PNH with no evidence of hemolysis.

Further research into PNH is needed to ascertain why and 

how it occurs and may allow future therapies to be developed 

to cure the disease. For the time being, eculizumab provides 

patients who have previously suffered with a chronic illness 

the ability to lead normal family and working lives within 

their communities.
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