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Objective: Apoptosis plays an essential role in cell development and aging, which is

associated with a series of diseases, such as neurodegeneration. MircoRNAs exert important

roles in the regulation of gene expression. As a stress-responsive deacetylase in mitochon-

dria, sirtuin-3 (sirt3) is a key regulator for mitochondrial function and apoptosis. Also, miR-

195 has been demonstrated to be involved in cell cycle and apoptosis. Therefore, this study

aimed to investigate the effects of miR-195-sirt3 axis on angiotensin II (ANG II)-induced

hippocampal apoptosis and behavioral influence.

Materials and methods: ANG II infusion was used to establish the hypertensive model in

HT22 cells and 129S6/SvEvTac mice, respectively. TUNEL assay was used to evaluate the

apoptosis level. Mitochondrial membrane potential (MMP) was measured to evaluate the

mitochondrial property. Immunohistochemistry, RT-PCR, Western blotting, and luciferase

reporter assay were conducted to determine the underlying molecular mechanism.

Results: The results revealed that ANG II treatment promoted apoptosis in the hippocampal

cells and tissues, along with increased sirt3 and decreased miR-195 expression. Silencing

sirt3 by genetic engineering or siRNA reversed ANG II-induced hippocampal apoptosis.

Sirt3 was identified as a direct target gene of miR-195. Forced expression of miR-195 could

play counteractive roles in hippocampal apoptosis induced by ANG II. Furthermore, the

behavioral assay demonstrated that ANG II-induced hippocampal apoptosis impaired the

performance in the spatial navigation task, but not in the spatial memory task.

Conclusion: The results suggested that miR-195-sirt3 axis plays an important role in the

ANG II-induced hippocampal apoptosis via altering mitochondria-apoptosis proteins and

mitochondria permeability and that hippocampal apoptosis is associated with impaired

learning capability in hypertensive mice. This study provides insights into the molecular

architecture of apoptosis-related neurodegenerative diseases.
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Introduction
Apoptosis is a common type of programmed cell death that is a homeostatic

regulator that maintains the cell population in multicellular organisms.1 The

mechanisms of apoptosis are highly complicated and involve sophisticated mole-

cular and cellular cascades. There are two interactive pathways mediating apopto-

sis, namely, the extrinsic pathway associated with the ligand-receptor pattern and

the intrinsic pathway that is highly related to the involvement of mitochondria.2 To

date, apoptosis has been demonstrated to be highly associated with a series of
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neurodegenerative diseases, such as Alzheimer’s disease,3

Parkinson’s disease,4 and ischemia.5

Furthermore, as an important risk factor, the correlation

between hypertension and apoptosis has also been uncov-

ered in neurodegenerative diseases.6,7 Growing evidence

demonstrated that hypertension is involved in aberrant cog-

nition ability and dementia in both humans and rodents.8,9

For example, hypertension-associated aberrant synaptic

plasticity and synapse loss in the hippocampus lead to

cognitive impairment in mice, displaying aging-like

phenotypes.10 Moreover, Moonga et al reported that hyper-

tension also links to declined cognition and hippocampal

glucose hypometabolism, worsening the phenotype of

Alzheimer’s disease.11 Therefore, exploring the mechanism

of hypertension-associated apoptosis would open an impor-

tant window for understanding the underlying mechanisms

for these diseases.

MicroRNAs (miRNAs), 21–24 nucleotides, are a group

of small non-coding RNAs that play important roles in the

post-transcriptional regulation.12 As an important regulator

of gene expression, miRNAs bind 3ʹUTR of target genes,

thereby silencing gene expression through inducing

mRNA degradation or inhibiting subsequent translation.13

It has been demonstrated that miR-195 exerts essential

roles in various diseases, including schizophrenia, cardio-

vascular disease, and cancer.14 Also, numerous studies

suggest that miR-195, along with its target genes including

WEE1, CDK6, and Bcl-2, regulate cell cycle and apopto-

sis, in particular, miR-195 promotes apoptosis while sup-

presses cell proliferation.15

Sirtuin-3 (sirt3), belonging to the sirtuin family, is pri-

marily distributed in the mitochondria.16 Sirt3, a highly

conserved deacetylase, is critical for the regulation of mito-

chondrial function and the anti-oxidative process.17 Many

lines of evidence reveal that sirt3 is associated with several

neuronal apoptosis-related diseases.18 So far, the functions

of sirt3 in neuronal apoptosis are still not completely under-

stood. Thus, this study aimed to investigate the effects of

miR-195-sirt3 axis on angiotensin II (ANG II)-induced

hippocampal apoptosis in mice and elucidate the underlying

mechanism.

Materials and Methods
Animals
In this study, experimental protocols were approved by the

Ethical Review Board of Shandong University. All animal

procedures and care were performed according to the Animal

Care and Treatment Administration of the National Ministry

of Health and the requirement of the Ethics Committee in

Qilu Hospital of Shandong University (No. 2017047). Male

sirt3-knockout (sirt3-KO) 129S6/SvEvTac mice aging 6–7

weeks were purchased from the Jackson Laboratory (Bar

Harbor, USA). Male wild-type (WT) 129/SvlmJ mice at the

same age (6 weeks) were purchased from the Animal Center

Laboratory at Peking University (Beijing, China). All mice

were individually housed at 20–26°C with 40–70% relative

humidity and a 12:12-h light-dark cycle (6:00 AM to 6:00

PM). Water and food were given ad libitum.

Establishment of the Hypertensive Mouse

Model
The hypertensive mouse model was established by sys-

temic ANG II (Sigma Chemical, Co., St. Louis, USA)

infusion (1500 ng/kg/min) into wild-type mice via subcu-

taneous osmotic minipumps (Alzet, Cupertino, USA) for

21 days. Blood pressure and heart rate were measured

daily from one day before the infusion to one-day post-

infusion, and the procedures followed those described in

previous reports.19,20

Cell Lines
The hippocampal cell line HT22 was a gift obtained from

the Cardiovascular Remodeling and Function Research

Key Laboratory in Qilu Hospital of Shandong University

(Jinan, China) and the usage of HT22 was approved by the

Ethical Review Board of Shandong University. Cells were

cultured in DMEM medium containing 10% fetal bovine

serum (Gibco BRL, Grand Island, USA) under a condition

of 5% CO2 at 37 °C. The ANG II treatment was per-

formed at a concentration of 5–10 nmol/L for 48 hrs.

Three candidate sirt3-siRNAs (si-sirt3-340, si-sirt3-752

and si-sirt3-1613) were synthesized by GenePharma Co.,

Ltd (Shanghai, China). The transfection of sirt3-siRNAs

into HT22 cells was conducted according to the manufac-

turer’s instructions of Lipofectamine™ 2000 Transfection

Reagent (Invitrogen, Waltham, USA). The sirt3-siRNA

with the highest transfection efficiency was selected for

subsequent experiments.

Quantification of Apoptosis
Mouse hippocampal tissues were collected and fixed in 4%

paraformaldehyde in PBS containing 0.12 mM sucrose for

15 mins. Apoptosis was evaluated by the terminal deox-

ynucleotidyl transferase dUTP nick end labeling (TUNEL)
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apoptosis detection kit (Beyotime Institute of

Biotechnology, Nantong, China) according to the manu-

facturer’s instructions. The apoptotic cells were observed

by fluorescence microscopy (Carl Zeiss, Germany).

Detection of the Mitochondrial

Membrane Potential (MMP)
The MMP was detected by the MitoProbe JC-1 Assay Kit

(Beyotime Institute of Biotechnology, Shanghai, China)

according to the manufacturer’s instructions. The ratio of

decreased red to increased green fluorescence intensity was

evaluated. Red color represents mitochondrial membrane

potential indicator (m-MPI) accumulates in the mitochon-

dria in healthy cells while green color indicates m-MPI

accumulates that are converted to green fluorescent mono-

mers when mitochondrial membrane potential (MMP)

depolarizes and cells in a less healthy state. The cells

were observed via the confocal laser scanning microscope

(Nikon Instruments, Melville, USA) and the changes of

mitochondrial membrane potential were evaluated by the

red/green fluorescence intensity ratio.

Immunohistochemistry (IHC) Analysis for

Expressions of Apoptosis-Associated

Factor
Mouse hippocampal tissues were fixed in 4% paraformal-

dehyde for 48 h, embedded in paraffin, and cut into 3–5

μm sections (5 sections for each animal). The detailed

procedures followed those in the report.21 The primary

antibodies for caspase-3, Bcl-2, bax, and CytC (Santa

Cruz, Shanghai, China) were applied. Three random

regions in the sections were selected to analyze.

Real-Time PCR
Total RNA was extracted from HT22 cells or hippocampal

tissues following the manufacturer’s instructions for the

RNeasy Mini kit (Qiagen, Hilden, Germany). Then, cDNA

was synthesized by using the High Capacity cDNA Reverse

Transcription kit (Applied Biosystems, Carlsbad, USA) fol-

lowing the manufacturer’s instructions. Real-time PCR reac-

tions were performed on a Lightcycler (Roche, Mannheim,

Germany). Gene expression data were analyzed using the

2−ΔΔCt method,22 and β-Actin was used as a constitutive

control. The primers were used as followed: miR-195

(Forward, 5ʹ-CCTAGCAGCACAGAAA-3ʹ; Reverse, 5ʹ-

GAGCAGGCTGGAGAA-3ʹ), sirt3 (Forward, 5ʹ-CTGGAT

GGACAGGACAGATAAG-3ʹ; Reverse, 5ʹ-TCTTGCTGG

ACATAGGATGATC-3ʹ), and β-Actin (Forward, 5ʹ-CAGG

GCGTGATGGTGGGCA-3ʹ; Reverse, 5ʹ- CAAACATCAT

CTGGGTCATCTTC-3ʹ).

Western Blot Analysis
Apoptosis-related proteins in cells and tissues were mea-

sured by Western blotting (n=6 for each group). Total

protein was isolated from hippocampal tissues and HT22

cells by using cell lysis buffer (Beyotime Institute of

Biotechnology, Shanghai, China). Protein extracts were

separated by 8%–12% SDS-PAGE electrophoresis and

electrically transferred to PVDF membranes, which were

blocked with 5% skim milk in PBS-0.05% Tween 20 for

2 hrs at room temperature. Subsequently, the primary anti-

body for β-actin (Catalog #: sc-47778), caspase-3 (Catalog

#: sc-56053), Bcl-2 (Catalog #: sc-509), bax (Catalog #:

sc-20067), CytC (Catalog #: sc-13560), and sirt3 (Catalog

#: sc-365175) (Santa Cruz, Shanghai, China) respectively,

was applied overnight at 4°C. The membranes were then

incubated with their respective secondary antibody for 1 hr

at 37°C and visualized by enhanced chemiluminescence

assays (Thermo Fisher Scientific, Rockford, Ill). Optical

densities of bands were normalized to the abundance of β-
actin and analyzed by using ImageJ software.23

miR-195 Mimics Transfection in vitro and

Delivery in vivo
MiR-195 mimics and negative control (20 nmol/l) were

obtained from RiboBio (Guangzhou, China). Transfection

procedure was performed by using cardiomyocytes by

using Lipofectamine™ 2000 Transfection Reagent

(Invitrogen, Waltham, USA) following the manufacturer’s

instructions. MiR-195 Mimics and Negative control were

mixed with Invivofectamine® 2.0 reagent (Thermo Fisher

Scientific, Waltham, USA) and injected into tail veins of

ANG II-treated mice (7 mg/kg body weight) on three

consecutive days. Twenty-four hours post-injection,

expression of miR-195 was evaluated by RT-PCR.

Luciferase Reporter Assay
The target gene of miR-195 was analyzed by several online

tools, including TargetScan (www.targetscan.org), MiRcode

(http://www.mircode.org/index.php), and miRDB (http://

www.mirdb.org/). A putative binding site of miR-195 was

predicted in the 3ʹUTR of sirt3. The luciferase reporter

assay kit (Promega, Fitchburg, USA) was applied to verify

the online prediction that there is a miR-195 binding site in
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3ʹUTR of sirt3. The protocol was performed in accordance

with the manufacturers’ instructions.

Behavioral Analysis
The Morris Water Maze assay was applied to evaluate the

spatial learning and memory performances of mice and the

detailed procedures were described in another study.24 The

spatial navigation task was conducted in the first five days

and the spatial memory task was performed on the

sixth day.

Statistical Analysis
Data were analyzed by SPSS 19.0 software (SPSS Inc,

Chicago, USA) and were expressed as mean ± S.D. Mean

differences between groups were analyzed using the

Tukey’s test. In this study, differences were regarded to

be significant at P < 0.05.

Results
ANG II Treatment Enhanced the

Expression of Sirt3 and Hippocampal

Apoptosis
In this study, HT22 cells and wide-type mice were sub-

jected to ANG II treatment to establish the hypertensive

cell and mouse model, respectively.19,20 The average blood

pressures and heart rates of hypertensive mice were 160/

100 mmHg and 644 beats per minute (BPM), respectively.

The results revealed that sirt3 mRNA (Figure 1A and B)

and protein (Figure 1C and D) expression were increased

in HT22 cells and hippocampal tissues of hypertensive

mice, respectively. Meanwhile, MMP assay indicated that

ANG II was associated with decreased MMP in HT22

cells (Figure 1E), suggesting the apoptosis level of HT22

was elevated by ANG II. Also, the TUNEL assay demon-

strated that more apoptotic cells were found in the hippo-

campal tissues treated with ANG II compared with the

control group (Figure 1F). Collectively, these results

together indicated ANG II exerted the pro-apoptotic effect

on both hippocampal cells and tissues. To further investi-

gate the pro-apoptotic effect of ANG II, the expressions of

apoptosis-associated factors were evaluated by Western

blot and IHC in HT22 cells and hippocampal tissues,

respectively (Figure 1H and G). The results showed that

the level of Bcl-2 was reduced while the levels of Bax,

CytC, and caspase-3 were increased in both hippocampal

cells and tissues, indicating the increased apoptotic level

was promoted by ANG II. Furthermore, we tested the

behavioral impact of ANG II in hypertensive mice. In

the spatial navigation task, mice treated with ANG II

displayed longer latency time to reach the platform in all

five testing days (Figure 1I), indicating the learning was, at

least in part, impaired by ANG II treatment. However,

ANG II did not cause the behavioral difference in the

spatial memory test (Figure 1J).

The Effect of Sirt3 on ANG II-Induced

Hippocampal Apoptosis
To investigate the role of sirt3 in ANG II-induced hippo-

campal apoptosis, we applied sirt3-siRNAs to silence sirt3

in HT22 cells while established sirt3-KO mouse model.

The efficiency of siRNA and sirt3 protein expression were

evaluated by Western blot, and the result indicated that

sirt3 was successfully silenced in both HT22 cells and the

hippocampal tissues (Figure 2A and B). Meanwhile, HT22

cells treated with both ANG II and si-sirt3 showed higher

MMP than those treated with only ANG II (Figure 2C).

Also, less apoptotic cells were found in the hippocampal

tissues of sirt3-KO mice compared with those of wide-type

mice (Figure 2D). In addition, both Western blot and IHC

assay revealed that Bcl-2 was increased while Bax, CytC,

and caspase-3 were reduced in both sirt3-siRNA treated

HT22 cells and hippocampal tissues of sirt3-KO mice

(Figure 2F and E). These results together suggested that

“sirt3-silencing” may attenuate the pro-apoptotic effect of

ANG II in hippocampal cells and tissues. This hypothesis

was also verified in the behavioral response of sirt3-KO

mice. In the spatial navigation task, sirt3-KO mice treated

with performed shorter latency time to reach the platform

on the first, third, and fourth testing day (Figure 2G). We

did not observe the behavioral difference in the spatial

memory assay (Figure 2H)

miR-195 Was Increased in ANG

II-Induced Hippocampal Apoptosis
MiRNAs play important roles in neurodegeneration-

associated apoptosis.25 By reviewing previous studies,

miR-195 has been demonstrated to be essential to the

regulation of apoptosis.26 To investigate if miR-195 is

associated with ANG II-induced hippocampal apoptosis,

we first detected the expression of miR-195 in ANG

II-treated HT22 cells and hippocampal tissues. The

results suggested that miR-195 expression significantly

decreased by ANG II treatment (Figure 3A and B),

implying the potential roles of miR-195 in hippocampal
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apoptosis induced by ANG II. By online prediction

tools, a binding site of miR-195 was found in 3ʹ UTR

of sirt3 (Figure 3C). Then, we performed a luciferase

reporter assay and results showed that luciferase activity

was reduced in miR-195-transfected HT22 cells with

wild-type 3ʹUTR reporter while there was no difference

of luciferase activity in HT22 cells transfected with the

mutant 3ʹUTR reporter (Figure 3D). Collectively, these

results suggested that miR-195 was involved in the

ANG II-induced apoptosis and sirt3 was a direct target

gene of miR-195.

Effect of miR-195 on ANG II-Induced

Hippocampal Apoptosis
To investigate the effect of miR-195 on ANG II-induced

hippocampal apoptosis, we delivered miR-195 mimics to

ANG II-treated HT22 cells and hypertensive mice. The RT-

PCR results indicated that miR-195 expression was enhanced

in both HTcells and hippocampal tissues of hypertensive mice

(Figure 4A and B). In addition, HT22 cells treated with both

ANG II and miR-195 mimics displayed higher MMP than

those only treated with ANG II (Figure 4C). Hippocampal

tissues from miR-195 mimics-treated hypertensive mice

Figure 1 Effect of Angiotensin II (ANG II) on hippocampal apoptosis. (A, B) Sirt3 mRNA expression was measured by RT-PCR in HT22 cells (HT22) and hippocampal

tissues (Hippo), respectively. (C, D) Sirt3 protein expression was measured by Western blot in HT22 cells (HT22) and hippocampal tissues (Hippo), respectively. (E)
Representative images of HT22 cells stained with JC-1 and the red/green fluorescence intensity ratio (scale bar=50 µm). (F) Representative images of TUNEL staining

indicating apoptotic cells in the mice hippocampal tissues (scale bar=50 µm). (G) The expressions of apoptosis-related proteins measured by immunohistochemistry assay in

the hippocampal tissues (scale bar=20 µm). (H) The expressions of apoptosis-related proteins measured by Western blot in HT22 cells. (I) Spatial navigation testing assay. (J)
Spatial memory testing assay. The data are expressed as the means ± standard deviation (n=6 for each group) and asterisk (*) indicate a difference at P < 0.05.
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showed less apoptotic cells than those of hypertensive mice

without miR-195 mimics treatment (Figure 4D). For apopto-

sis-associated factors, miR-195mimics significantly promoted

expression of Bcl-2 while inhibited expressions of Bax, CytC,

and caspase-3 in ANG II-treated HT22 cells (Figure 4F) and

hippocampal tissues (Figure 4E). Furthermore, miR-195

mimics-treated hypertensive mice displayed shorter time

latency time to reach the platform on the second, third, and

fourth testing day (Figure 4G). Similarly, the performance in

the spatialmemory assaywas not affected by enhanced expres-

sion of miR-195 (Figure 4H). Accumulatively, these results

demonstrated thatmiR-195mimics reversed the effect ofANG

II on the hippocampus.

Discussion
The mitochondria working with a group of apoptosis-

related proteins play important roles in neurodegenera-

tive diseases, such as Parkinson’s disease, Alzheimer’s

disease, and Huntington’s disease.27 The hippocampus is

a key neural region involved in these diseases.28 In

addition, previous studies suggest that hypertension

is one of primary factors leading to apoptosis and

neurodegeneration.29,30 Therefore, the ANG II-induced

hypertensive mouse model was used in this study to

investigate the functions of miR-195 and sirt3 in hippo-

campal apoptosis and associated behavioral influence.

Figure 2 Effect of sirt3 on hippocampal apoptosis. (A) Sirt3 expressions were measured by Western blot and Sirt3/β-actin ratio. Negative Control (NC). (B) Sirt3 protein

expression was measured in sir3-KO mice. (C) Representative images of HT22 cells stained with JC-1 and the red/green fluorescence intensity ratio (scale bar=50 µm). (D)

Representative images of TUNEL staining indicating apoptotic cells in the mice hippocampal tissues (scale bar=50 µm). (E) The expressions of apoptosis-related proteins

measured by immunohistochemistry assay in the hippocampal tissues (scale bar=20 µm). (F) The expressions of apoptosis-related proteins measured by Western blot in

HT22 cells. (G) Spatial navigation testing assay. (H) Spatial memory testing assay. The data are expressed as the means ± standard deviation (n=6 for each group) and asterisk

(*) indicate a difference at P < 0.05.
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In this study, the apoptosis level was enhanced by ANG

II treatment in both HT22 cells and hippocampal tissues

along with the upregulation of sirt3. Also, silencing sirt3 via

either genetic engineering or siRNA displayed counteractive

roles to hippocampal apoptosis. To date, the function of the

mitochondrial sirt3 in the apoptosis regulation is controver-

sial. In Bcl2-related apoptosis, sirt3 displays a pro-apoptotic

effect,31 and cells lacking sirt3 is associated with reduced

stress-induced apoptosis.32 On the other hand, sirt3 plays

anti-apoptotic roles in preventing cell death in response to

cellular DNA damage.33 In this study, we also found that

the effect of sirt3 on apoptosis is related to a group of

apoptosis-associated factors, such as Bcl-2, Bax, CytC,

and caspase-3. It is reported that overexpression of sirt3

leads to apoptosis and elevates the expressions of Bcl-2 and

Bax in lung adenocarcinoma cells.34 Sirt3 regulates apop-

tosis induced by Bcl-2 silencing in epithelial cancer cells.35

Thus, these results collectively demonstrated that sirt3

exerts pro-apoptotic roles in ANG II-induced apoptosis in

the hippocampus.

As a multifunctional factor, miR-195 is involved in

various cell activities and diseases.15 Liu et al reported

that miR-195 inhibits tumorigenicity and enhances apop-

tosis in colorectal cancer cells.36 MiR-195 has also

observed to promotes palmitate-induced apoptosis in car-

diomyocytes by silencing Sirt1.26 Guo et al reported that

miR-195-EGR3 axis is the core regulatory network for

schizophrenia.37 In this study, the downregulation of

miR-195 was found to be associated with enhanced hip-

pocampal apoptosis induced by ANG II while forced

expression of miR-195 reversed the pro-apoptotic effect

of ANG II the hippocampus. Sirt3 was also identified as

a direct target gene of miR-195 in hippocampal apoptosis.

Thus, these results together imply that ANG II attenuated

Figure 3 MiR-195 targeted 3ʹUTR of sirt3. (A, B) MiR-195 expression was measured by RT-PCR in HT22 cells (HT22) and hippocampal tissues (Hippo), respectively. (C)

Prediction of the binding site of miR-195 in sirt3. (D) Luciferase assay. The data are expressed as the means ± standard deviation (n=6 for each group) and asterisk (*)

indicate a difference at P < 0.05.
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the inhibitory effect of miR-195 on sirt3, leading to the

amplified pro-apoptotic function of sirt3 in hippocampal

apoptosis. This hypothesis was also verified by results

from silencing sirt3 and enhancing miR-195 experiments,

in which miR-195 acts as a sponge of sirt3 in hippocampal

apoptosis.

Mitochondrial dysfunction is a major characteristic of

apoptosis, which is involved in the intrinsic apoptotic

pathway.2 In this study, MMP was downregulated by

ANG II treatment while increased apoptosis level was

detected by the TUNEL assay. It is well known that the

initiation of the intrinsic apoptotic pathway results in

changes in mitochondrial membrane properties via the

regulation of the Bcl-2 family, such as the inhibition of

Bcl-2 and translocation of Bax. In turn, cytochrome

c (CytC) leads to the generation of intracellular “apopto-

some” which causes the activation of caspase-9. Thus, the

signaling from both the intrinsic and extrinsic apoptosis

pathways converges on caspase-3/7, eventually triggering

terminal pathways of apoptosis.38 In this study, ANG II-

induced apoptosis was observed to be associated with

these intrinsic pathway regulators mentioned above,

Figure 4 Effect of miR-195 on hippocampal apoptosis. (A, B) MiR-195 expression was measured by RT-PCR in miR-195 mimics-treated HT22 cells (HT22) and hippocampal

tissues (Hippo), respectively. (C) Representative images of HT22 cells stained with JC-1 and the red/green fluorescence intensity ratio (scale bar=50 µm). (D) Representative

images of TUNEL staining indicating apoptotic cells in the mice hippocampal tissues (scale bar=50 µm). (E) The expressions of apoptosis-related proteins measured by

immunohistochemistry assay in HT22 cells (scale bar=20 µm). (F) The expressions of apoptosis-related proteins measured by Western blot in the hippocampal tissues. (G)

Spatial navigation testing assay. (H) Spatial memory testing assay. The data are expressed as the means ± standard deviation (n=6 for each group) and asterisk (*) indicate

a difference at P < 0.05.
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suggesting that ANG II-induced apoptosis may mainly

rely on the intrinsic pathway of apoptosis regulation.

Beyond the molecular and cellular studies, the Morris

Water Maze test was applied in this study to evaluate the

effects of apoptosis on memory and learning performance.

The results suggested that hypertensive mice showed

a longer latency time to navigate the platform. Whereas

either sirt3-KO mice treated with ANG II or hypertensive

mice treated with miR-195 mimics displayed better perfor-

mance in navigation test. Furthermore, it is interesting that

the performance in spatial memory assay was not affected

by hippocampal apoptosis. These results indicated that hip-

pocampal apoptosis impaired learning capability hyperten-

sive mice, and there may be two distinct regulatory

pathways regulating behavioral response in these two beha-

vior tests.

Conclusion
In conclusion, the results suggested that sirt3 exerts pro-

apoptotic roles in ANG II-induced hippocampal apoptosis

while ANG II attenuates the inhibitory effect of miR-195 on

sirt3, collectively promoting apoptosis level. Also, activities

of apoptosis-associated factors demonstrated that ANG

II-induced hippocampal apoptosis might mainly replay on the

intrinsic apoptotic pathway. Furthermore, hippocampal apop-

tosis is associated with impaired learning capability in mice

treated with ANG II. This study provides insights into the

molecular mechanism and therapeutic strategy of apoptosis-

related neurodegenerative diseases.
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