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Abstract: Pulmonary sarcomatoid carcinoma (PSC) is a heterogeneous category of primary

lung cancer accounting from 0.3% to 3% of all primary lung malignancies. According to the

most recent 2015 World Health Organization (WHO) classification, PSC includes several

different variants of malignant epithelial tumors (carcinomas) histologically mimicking sarco-

mas showing or entirely lacking a conventional component of non-small cell lung cancer

(NSCLC). Thus, this rare subheading of lung neoplasms includes pleomorphic carcinoma,

spindle cell carcinoma, giant cell carcinoma, pulmonary blastoma, and carcinosarcoma.

A diagnosis of PSC may be suspected on small biopsy or cytology, but commonly requires

a surgical resection to reach a conclusive definition. The majority of patients with PSC consists

of elderly, smoking men with a large, peripheral mass characterized by well-defined margins.

However, presentation with a central, polypoid endobronchial lesion is well-documented,

particularly in pleomorphic carcinoma and carcinosarcoma showing a squamous cell carci-

noma component. As expected, PSC may pose diagnostic problems and immunohistochem-

istry is largely used when pathologists deal these tumors in routine practice. Indeed, PSC tends

to overexpress molecules associated with the epithelial-to-mesenchymal transition, such as

vimentin, but the panel of immunostains also includes epithelial markers (cytokeratins, EMA),

TTF-1, p40 and negative markers (e.g., melanocytic, mesothelial and sarcoma-related primary

antibodies). Although rare, PSC has increased their interest among oncologist community for

different reasons: a. identification of the epithelial-to-mesenchymal phenomenon as a major

mechanism of secondary resistance to tyrosine kinase inhibitors; b. over-expression of PD-L1

and effective treatment with immunotherapy; c. identification of c-MET exon 14 skipping

mutation representing an effective target to crizotinib and other specific inhibitors. In this

review, the feasibility of the diagnosis of PSC, its differential diagnosis and novel molecular

findings characterizing this group of lung tumor are discussed.
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BasicConceptsofPulmonarySarcomatoidCarcinoma
The occurrence of pulmonary carcinomas showing a sarcomatoid or sarcomatous cell

component is a well-wknown phenomenon indicating a divergent tumor cell ded-

ifferentiation from epithelial to mesenchymal phenotype in conventional non-small-

cell lung cancer (NSCLC).1 The term pleomorphic (spindle/giant cell) carcinoma was

first introduced in 1994 by Fishback et al2 to recognize and better categorize a specific

subset of high-grade carcinomas, including unusual variants previously defined

inflammatory-type sarcomatoid carcinoma and pseudoangiosarcomatous carcinoma

(so-called pseudovascular adenoid squamous cell carcinoma).3–10
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The seminal paper by Fishback et al,2 subsequently

supported by other similar series,11–23 provided the basis

of the 2004 World Health Organization (WHO) classifica-

tion of lung cancers under the designation of “sarcomatoid

carcinoma”, then including five main variants, namely

pleomorphic carcinoma, spindle cell carcinoma, giant cell

carcinoma, carcinosarcoma and pulmonary blastoma.24

According to this statement, overall sarcomatoid carci-

noma is a group of poorly differentiated NSCLC (squamous

cell carcinoma, large-cell carcinoma and/or adenocarcinoma)

containing a component of sarcoma-like elements or true

sarcomatous areas. Of note, the occurrence of small-cell

carcinoma (SCLC) or large-cell neuroendocrine carcinoma

(LCNEC) with sarcoma or sarcoma-like component is con-

sidered a combined variant into the category of neuroendo-

crine neoplasms.25,26

Pleomorphic carcinoma is the most common type of PSC

(>50%), followed by spindle cell carcinoma, giant cell carci-

noma, carcinosarcoma, and pulmonary blastoma.2,5,13–16,24

Several review articles have been performed on this topic

and there is general agreement on the pathogenesis of this

intriguing tumor entity. Indeed, previous works have consis-

tently evidenced the clonal origin of PSC demonstrating

identical mutations of KRAS and p53 in either carcinoma

and sarcoma/sarcomatous component,27–35 as also disclosed

in sarcomatoid carcinoma arising in other sites.36–38

Basically, the appearance of an additional sarcomatoid/

sarcomatous component in an otherwise conventional

NSCLC is due to up-regulation of the epithelial-to-

mesenchymal transition (EMT) secondary to activation of

genetic mechanisms generally associated with resistance to

chemotherapy and tyrosine kinase inhibitors, such as

KRAS mutations, c-MET gene alterations, overexpression

of vimentin, ZEB1, Snail, MiR-34 coupled to down-

regulation of E-cadherin and expression of epithelial mar-

kers, miR-200, mutations of EGFR (Figure 1).39

Epidemiology, Imaging Studies,
Clinical Features
Several series of PSC have been published in literature

using the current criteria of the WHO classification.2,11–23

Overall, the incidence of PSC ranges from 0.3% to 3% of

all lung malignancies with a significant higher prevalence

in male gender, current/former smokers. The median age

at diagnosis is about 65 years, although pulmonary blas-

toma usually affects younger smokers without gender

predilection.

Pelosi et al7 in a series of 92 PSC reported a male/female

ratio of about 4:1, with 90% of smoking patients. As in

conventional NSCLC, PSCmay occur also in patients under

the age of 40 years and non-smokers,40 while even asbestos

exposure seems to have a promoting role in PSC.41

At imaging studies, PSC may present as either a central

or peripheral location.2,5,24,42 Pleomorphic carcinomas with

squamous cell carcinoma component and carcinosarcoma

may show a peculiar endobronchial, polypoid appearance

(Figure 2), while peripheral PSC typically manifests as

a large mass (over 10 cm) with rounded, well-defined mar-

gins (Figures 3 and 4) with necrotic and/or hemorrhagic

areas and soft surface with/without cavitation (Figure 5).

Clinical symptoms are generally non-specific and basically

related to the tumor location and involved structures, such as

main bronchi, mediastinal infiltration, and chest wall.5,7

Of note, giant cell carcinoma is often characterized by

peripheral neutrophilia and fever due to production of

granulocyte colony-stimulating factor (G-CSF) or other

paraneoplastic symptoms.43,44

A summary of the most characteristic features of

patients with PSC is reported in Table 1. As conventional

NSCLC, PSC may metastasize through lymphatic chan-

nels and blood vessels leading to usual distant metastases

(i.e., brain, bone, adrenal gland, liver), but unusual sites

(i.e., pancreas, and kidney) and involvement of the diges-

tive tract are not infrequent.5,7,45,46

The overall survival of stage-matched, surgically

resected PSC is generally worse than that observed in

conventional NSCLC. This finding has been further con-

firmed by some large series of PSC.15,16

The median survival is about 10 months and the estimated

5-year survival rate 15%.15,16 In the recent study of the Mayo

Clinic, multivariate analysis showed that T and M stage, and

surgery plus neoadjuvant or adjuvant therapy were significant

prognostic parameters.15,16 At matched analysis, PSC con-

firmed a worse survival when compared with adenocarcinoma

and squamous cell carcinoma.

PSCs are staged as for otherNSCLC, according to themost

recent edition of the AJCC/UICC/IASLC staging system.

Diagnosis of Pulmonary
Sarcomatoid Carcinoma According
to the WHO Classification
The classification of sarcomatoid carcinomas of the lung has

posed significant challenges over the years, mainly based on

their rare occurrence, heterogeneous histology, and unclear
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histogenesis. This led to multiple changes along their subse-

quent WHO classifications, both in terms of diagnostic cri-

teria and nomenclature. Moreover, alternative descriptive

classifications have been formulated, which encompass the

following: monophasic and biphasic lesions, the latter further

subdivided into homologous or heterologous neoplasms.4,47

The 2004 WHO classification established the unification

of a spectrum of histological subtypes under the generic term

of sarcomatoid carcinoma, which includes pleomorphic car-

cinoma, spindle cell carcinoma, giant cell carcinoma, carci-

nosarcoma, and blastoma.48 Since then, no significant

changes have been made as the current 2015 WHO classifi-

cation basically adopts the same terminology and diagnostic

criteria with few recommendations, mainly regarding mole-

cular tests for predictive gene alterations.24,49 Importantly,

most of the entities encompassed under the definition of PSC

can be recognized from their morphological features, with

immunohistochemical stains being necessary only in a subset

of cases (Table 2).

More in details, in the current WHO classification, pleo-

morphic carcinoma is defined as a poorly differentiated

Figure 1 A concise scheme illustrating the balance of epithelial-to-mesenchymal transition markers in sarcomatoid carcinoma sustained by up- and down-regulation of

different molecules and gene alterations governing the tumor cell cellular program.

Figure 2 Bronchoscopy showing a whitish polypoid lesion consistent with carci-

nosarcoma at histology.
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NSCLC (squamous cell carcinoma, adenocarcinoma, or

large cell carcinoma) containing at least 10% of spindle cell

and/or giant cell component, or a carcinoma consisting exclu-

sively of spindle and giant cells (Figure 6). The occurrence of

different histotypes of carcinoma varies widely across

studies, with adenocarcinoma representing the most frequent

finding, up to 73% of the cases.2,50,51 Spindle cells and/or

neoplastic giant cells can be found intimately admixed with

differentiated carcinomatous elements. Once identified, the

NSCLC component should be mentioned in the report.

Malignant spindle cells generally consist of fusiform ele-

ments with eosinophilic cytoplasm, arranged in sheets and

fascicles. However, a certain degree of morphological varia-

bility exists: slender cells with fibroblastic appearance can be

seen admixed with frankly epithelioid elements, displaying

large nuclei and prominent nucleoli (Figure 7). Vascular

invasion is very common in spindle cell carcinoma even in

the bland-looking inflammatory type. A meticulous exami-

nation of the vessel wall, also using a pan-cytokeratin stain, is

crucial to diagnose spindle cell carcinoma (Figure 8). Giant

tumour cells are often discohesive, with multiple nuclei or

a single pleomorphic nucleus, which can assume anaplastic

and bizarre features; their cytoplasm is typically abundant

and eosinophilic, sometimes characterized by neutrophil

emperipolesis (Figure 9). These cells are embedded in

a variably fibrous to myxoid stroma.

Figure 3 Sarcomatoid carcinoma of the right lung presenting as a large, rounded

mass at chest X-rays.

Figure 4 Sarcomatoid carcinoma appearing as a large nodular lesion of the right upper

lobe with relatively well-defined margins at computed tomography of the thorax.

Figure 5 Macroscopic appearance of a pulmonary carcinosarcoma consisting of

a large (>10 cm), whitish and fleshy mass with well-demarcated tumor border and

heterogenous cut surface.
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Spindle cell carcinoma and giant cell carcinoma are

almost entirely composed of spindle-shaped and malignant

giant cells, respectively, without differentiated carcinoma-

tous elements. Histological characteristics are superimpo-

sable to those previously described. Caution should be

used to distinguish between spindle cell carcinoma and

desmoplastic stroma. In this regard, cytological atypia

and mitotic activity favour the diagnosis of carcinoma.

However, immunohistochemistry may be of help in diffi-

cult cases. In addition, an inflammatory background is

frequently found in association with these variants.

Carcinosarcoma is a mixture of NSCLC and true sar-

comatous elements (rhabdomyosarcoma, chondrosarcoma,

osteosarcoma, liposarcoma, leiomyosarcoma, angiosar-

coma or combinations of these elements) (Figure 8).

Again, pathological report should list all histological

types. In a classical study, the most frequent epithelial

component was squamous cell carcinoma, followed by

adenocarcinoma, adenosquamous carcinoma, and large-

cell carcinoma.17 Nonetheless, a component of high-

grade in well-differentiated fetal adenocarcinoma/clear

cell carcinoma represents a non-negligible finding; in

such cases, the term carcinosarcoma should be used

instead of the traditional expression “blastomatoid variant

of carcinosarcoma”, according to the WHO scheme.24,49

Combinations of neuroendocrine components and sar-

coma-containing heterologous elements are exceedingly

rare, and the WHO recommends to classify these cases

as “small-cell lung carcinoma or large-cell neuroendocrine

carcinoma with associated sarcomatous elements”. Along

with the most common sarcomatous elements, cases dis-

playing liposarcoma or angiosarcoma components have

been described, although rarely.52,53 Less differentiated

sarcomatous components with spindle or round cell fea-

tures can also be observed in the background of more

differentiated sarcomatous elements.

Finally, pulmonary blastoma is defined as a biphasic

tumour that contains both fetal adenocarcinoma (low-

grade/well differentiated) and a primitive mesenchymal

stroma, which occasionally has foci of differentiated sar-

coma (Figure 10). The epithelial component is character-

ized by irregularly branching glandular structures, lined by

pseudostratified columnar cells with clear cytoplasm and

little nuclear atypia, thus resembling the fetal lung in the

pseudoglandular phase. Despite the generally bland

appearance, foci of cellular atypia consistent with fetal or

conventional adenocarcinoma can be found in up to a third

of cases.54 In most cases, solid cell aggregates (morules)

can be noted. The occurrence of a neuroendocrine epithe-

lial component such as small-cell carcinoma is overtly rare

in pulmonary blastoma, whereas sparse neuroendocrine

cells represent a common finding. An embryonic stroma

composed of oval cells with high nuclear-to- cytoplasmic

ratio is present by definition, but in a subset of cases (up to

25%) heterologous elements such as osteosarcoma, chon-

drosarcoma and rhabdomyosarcoma can be identified.

Table 1 Characteristics Possibly Indicating a Patient with Pulmonary Sarcomatoid Carcinoma

Additional Notes

Clinical

features

● Male ≫ Female

● Smoker ≫ Former ≫ Never smoker

● 60–70-years-old

● Negative neoplastic history

Imaging

studies

● Large peripheral mass with smooth, well-defined margins and

heterogeneous appearance

● Polypoid endobronchial lesion

Symptoms ● Nonspecific

● Serum markers nonspecific

● Fever with serum neutrophilia due to G-CSF production or

gynecomastia due to beta-HCG production in giant cell

carcinoma

Cytology/

Biopsy

● Diagnosis of possibility when atypical spindle and/or giant cells or

heterologous sarcomatous elements accompany conventional

NSCLC component

Ancillary

techniques

● Expression on cytology, cell block or biopsy of CKs, TTF-1, p40

or p63, EMA

● Negative markers excluding sarcomas may be helpful

Abbreviations: NSCLC, non-small-cell lung carcinoma; CK, cytokeratin; EMA, epithelial membrane antigen; TTF-1, thyroid transcription factor-1; HCG, human chorionic

gonadotrophin; PSC, pulmonary sarcomatoid carcinoma; G-CSF, granulocyte-colony stimulating factor.
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Immunohistochemistry
The diagnosis of PSC is mainly based on morphological

features, although immunohistochemical stains can be help-

ful to highlight the different cell components that character-

ize these tumours (Table 3). This is particularly useful to

demonstrate carcinomatous differentiation in small biopsies

or in those cases lacking an unambiguous epithelial compo-

nent despite thorough sampling, thus prompting differential

diagnosis with true sarcoma. As expected, the differentiated

epithelial component stains with cytokeratins and other

markers including epithelial membrane antigen (EMA)

and carcinoembryonic antigen (CEA), whereas the sarco-

matoid component often displays immunoreactivity with

vimentin and fascin.7 In most cases, a single pancytokeratin

antibody is sufficient to confirm the carcinomatous differ-

entiation of spindle cell/giant cell components, while the

use of AE1AE3 alone or in combination with Oscar is

highly recommended compared with other pools that

proved less sensitive.55 Of note, different cytokeratin fila-

ments can be detected in PSC according to the subtypes of

epithelial cells: high-molecular-weight cytokeratins (i.e.

34βE12 and 5/6) are found in squamous and adenosqua-

mous carcinoma and low-weight cytokeratins (i.e. 7, 8 and

18) in adenocarcinoma and large-cell carcinoma.7,56 In par-

ticular, CK7 represents a sensible marker to highlight the

spindle/giant cell component and was identified in up to

78% of cases in a recent study,57 in keeping with previously

reported rates of 60-70%.14

Table 2 Diagnostic Criteria of Pulmonary Sarcomatoid Carcinomas

Basic Histologic Features Immunohistochemistry Additional

Notes

Differential Diagnosis

Pleomorphic

carcinoma

An NSCLC (adenocarcinoma,

squamous cell carcinoma, large cell

carcinoma, adenosquamous

carcinoma) with at least 10% of

spindle and/or giant cell

component

CKs, EMA, TTF-1 and napsin (in

case of adenocarcinoma

differentiation), p40 and high-

molecular-weight CKs (in case of

squamous cell carcinoma)

Metastasis from similar biphasic

tumors elsewhere (particularly

mesothelioma and mixed

Mullerian tumors of the

gynecological tract)

Spindle cell

carcinoma

Pure monophasic spindle cell

proliferation with/without

inflammatory infiltrate, lacking any

NSCLC component

CKs, EMA, TTF-1 and napsin (in

case of adenocarcinoma

differentiation), p40 and high-

molecular-weight CKs (in case of

squamous cell carcinoma)

Peculiar

vascular

invasion/

angiotropism

Primary/secondary sarcomas

(inflammatory myofibroblastic

tumor, leiomyosarcoma, synovial

sarcoma, others)

Giant cell

carcinoma

Pure, monophasic discohesive giant

cell proliferation, lacking any

NSCLC component

CKs, EMA, TTF-1 and napsin (in

case of adenocarcinoma

differentiation), p40 and high-

molecular-weight CKs (in case of

squamous cell carcinoma)

Emperipolesis

phenomenon

Melanoma, anaplastic/large cell

lymphoma, histiocytic sarcoma,

pleomorphic undifferentiated

sarcoma

Carcinosarcoma NSCLC with heterologous

sarcomatous component

(leiomyosarcoma, osteosarcoma,

rhabdomyosarcoma,

chondrosarcoma, liposarcoma,

angiosarcoma)

CKs, EMA, TTF-1 and napsin (in

case of adenocarcinoma

differentiation), p40 and high-

molecular-weight CKs (in case of

squamous cell carcinoma)

Markers of sarcomatous

differentiation

Metastasis from carcinosarcoma

elsewhere (particularly

gynecological tract); primary

(biphasic synovial sarcoma) and

metastatic sarcomas

Blastoma Fetal type adenocarcinoma with

primitive mesenchymal

blastematous stroma, occasionally

demonstrating

rhabdomyosarcomatous

differentiation

CKs, CK7, TTF-1 and napsin

expression in the adenocarcinoma;

vimentin in blastematous stroma

(myogenic markers in case of

rhabdomyosarcoma component)

Primary or metastatic biphasic

sarcomas

Abbreviations: NSCLC, non-small-cell lung carcinoma; CK, cytokeratin; EMA, epithelial membrane antigen; WT-1, Wilm’s tumor-1; TTF-1, thyroid transcription factor-1;

PSC, pulmonary sarcomatoid carcinoma.
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Although cytokeratins have significant diagnostic value in

sarcomatoid carcinomas, staining is often focal and weak, and

some cases can even be completely negative with a number of

antibodies. In these cases, additional markers can be helpful,

with thyroid transcription factor-1 (TTF-1) demonstrating

higher sensitivity than Napsin A for the detection of sarcoma-

toid carcinoma.55,57 Markers associated with squamous differ-

entiation, including p63, p40, and Desmocollin-3, have been

repeatedly tested in sarcomatoid carcinomas of the lung.

Among these, p63 showed the highest sensitivity (50%) and

diagnostic utility, being positive in the spindle cell component

of 2/4 cases, where staining for pan-cytokeratins and EMA

was completely negative.58 On the other hand, p40 and

Desmocollin-3 were expressed in the spindle/giant cell ele-

ments in 8% and 3% of cases, respectively.57 Nevertheless,

a word of caution on p63 expression is necessary, since this

marker is characterized by low specificity (i.e., positivity in

high-grade lymphomas).59 A modified histological score for

Vimentin (M-VHS), an intermediate filament involved in the

EMT, has also proved a valuable tool for diagnosing sarcoma-

like lesions with spindle and/or giant cells changes, especially

in small biopsies. Indeed, an intense and diffuse expression of

vimentin strongly supports the diagnosis of pulmonary

sarcoma.60 Finally, the observation of patchy reactivity with

mesothelioma-associated markers (Calretinin and D2-40) in

a subset of PSC suggests to include sarcomatoidmesothelioma

in the differential diagnosis.61

In carcinosarcoma, immunohistochemistry is required to

demonstrate a poorly differentiated sarcomatous component

which cannot be recognized from morphology. Most of these

cases harbour a rhabdomyosarcomatous component which

can be highlighted with skeletal muscle markers such as

myogenin and desmin. In the same way, S100 will confirm

a chondrosarcomatous component. On the other hand, cyto-

keratins allow to demonstrate the epithelial component, with

TTF-1 and p63 being particularly useful in cases of adeno-

carcinoma and squamous cell carcinoma, respectively.14,17

In pulmonary blastoma, the epithelial component stains

with cytokeratins, EMA, CEA, TTF-1. In particular, TTF-1

and GATA-6, a fetal lung transcription factor, proved useful

Figure 6 Histology of pleomorphic carcinoma revealing an adenocarcinoma (at the

top) intermingled with neoplastic spindle cell component (A). Pure spindle cell

carcinoma (B) consisting of a dense and irregular proliferation of atypical spindle

cells with marked nuclear atypia and eosinophilic cytoplasm.

Figure 7 Tumor cell infiltration of a medium-sized vessel wall by spindle cell

carcinoma (A) also highlighted by the expression of pan-cytokeratins (clone

CAM5.2) (B).
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to highlight the morules.62 The mesenchymal component

can express smooth muscle actin and vimentin, whereas

desmin and myogenin are found in cases showing rhabdo-

myosarcoma elements; pancytokeratins (AE1AE3) can also

show focal positivity.63 The occurrence of neuroendocrine

differentiation, with consistently positive chromogranin,

neurone-specific enolase (NSE) and polypeptide hormones,

is seen mainly within morules in up to two-third of cases.54

Finally, nuclear and cytoplasmic staining of β-catenin in

both tubular structures and blastematous component of pul-

monary blastoma prompts differential diagnosis with the

blastomatoid variant of carcinosarcoma.64

Diagnosis of Sarcomatoid
Carcinoma in Selected Conditions:
Cytology/Small Biopsy and
Intraoperative Examination
Some entities in lung cancer require a large amount of tumor

tissue to achieve a correct and reliable diagnosis, including

PSC. By definition, definitive diagnosis is not possible on

small biopsy or cytology in light of the requirement for

a sarcomatoid/sarcomatous component in at least 10% of the

neoplasm.24,49 Nevertheless, a diagnosis of “NSCLC with

sarcomatoid/sarcomatous component, possible sarcomatoid

carcinoma” is reasonable.7

Indeed, in an adequate sample, smeared cytology, cell-

block or small biopsy may contain either malignant epithe-

lial components (adenocarcinoma or squamous cell carci-

noma) and sarcomatoid elements, namely spindled and/or

giant neoplastic cells. Akin to neoplastic cells, the back-

ground may also contain a significant rate of inflammatory

cells (mainly neutrophils and lymphocytes).64–66 The

spindle and giant cells usually show loss of intercellular

cohesion, mitotic figures and necrotic debris. In small

biopsy/cell block, the finding of epithelial component

thorough serial haematoxylin–eosin sections and/or immu-

nostains with pan-cytokeratins (low to high-molecular-

weight, such as AE1/AE3, MNF116, CAM5.2), EMA,

p40, TTF-1, CEA is extremely helpful (Figure 11).

Figure 8 Inflammatory-type spindle cell carcinoma showing a chaotic proliferation of

spindle cells with prominent nucleoli into collagenized stroma with a mixed inflam-

matory infiltrate (A). Positive staining with pan-cytokeratins (clone AE1/AE3) reveal-

ing the epithelial/carcinoma differentiation of spindle elements (B).

Figure 9 Histology of giant cell carcinoma showing a discohesive proliferation of

bizarre, large tumor cells and the presence of sparse inflammatory infiltrates focally

involving the cytoplasm of tumor cells (emperipolesis) (A). Carcinosarcoma con-

sisting of a poorly differentiated squamous cell carcinoma (right) with

a heterologous chondrosarcomatous component (left) (B).
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A prompt diagnosis of PSC during frozen section

examination may be a real challenge, even in the hands

of expert pathologists. Knowledge of the clinical history of

previous neoplasms and careful search for an NSCLC

component using serial sections and/or analysis of more

samples are mandatory. In any case, a provisional diagno-

sis of NSCLC is entirely adequate for practical purposes to

guide the surgical procedure.7

At intraoperative examination or definitive gross sam-

pling, abundant tumor sampling is crucial in the diagnosis

of PSC, particularly when facing with a huge mass (at least 1

block per centimeter of the entire tumor size is necessary).

The differential diagnosis may include several tumors

with various cell differentiations and non-neoplastic condi-

tions. Primary or metastatic monophasic and biphasic sar-

comas (i.e., synovial sarcoma, malignant solitary fibrous

tumor, inflammatory myofibroblastic tumor), sarcomatoid

mesothelioma, spindle cell melanoma, sarcomatoid thymic

carcinoma, choriocarcinoma are the main neoplastic lesions

entering in differential with PSC (Table 2).5,7,65–75

Even benign spindle cell lesions (i.e., desmoid tumor,

inflammatory pseudotumor, organizing pneumonia) may

mimic malignant spindle cell carcinoma.76 This is particu-

larly true at frozen section or in small biopsy when exten-

sive immunostains and molecular analysis (i.e., SYT-SSX

fusion gene indicating synovial sarcoma) are not accessi-

ble or have several limitations, respectively. Nevertheless,

pathologists should keep all these diagnostic options in

differential diagnosis with PSC.

Among sarcomatoid/sarcomatous lesions in the thoracic

region, PSC and sarcomatoid mesothelioma may overlap

clinical presentation (i.e., localized malignant mesothelioma)

and morphology. Pathologists should keep in mind that

immunostains indicating mesothelial and epithelial

Figure 10 Pulmonary blastoma showing a minor component of well-differentiated

adenocarcinoma (top) admixed with an undifferentiated blastematous component.

Table 3 Ancillary Techniques in Differential Diagnosis Between Pulmonary Sarcomatoid Carcinoma and Mimicking Tumors

Confirmatory Immunostains Additional Notes Molecular Findings

PSC CKs, EMA, TTF-1, napsin, p40 (depending on the original

cell differentiation)

Expression of sarcoma-related

markers in heterologous component

of carcinosarcoma

Sarcomas Myogenic markers (smooth-muscle actin, desmin,

h-caldesmon, myogenin), S100, vascular markers (ERG,

CD34, CD31), beta-catenin (desmoid tumor), STAT6

(solitary fibrous tumor)

Some types of sarcoma may express

CKs (e.g., angiosarcoma, synovial

sarcoma, malignant SFT)

SSX/SYT fusion (synovial

sarcoma); EWSR1/CREB1

(myxoid sarcoma);

Melanoma S100, HMB45, Melan-A, SOX11, tyrosinase, MiTF

Mesothelioma Calretinin, CK5/6, D2-40, WT-1, BAP-1 (negative

staining favors mesothelioma)

Expression of CK7 and CK5/6 may

be shared with PSC

Other:

choriocarcinoma

CKs, beta-HCG Some giant cell carcinoma may

express beta-HCG

Abbreviations: NSCLC, non-small-cell lung carcinoma; CK, cytokeratin; EMA, epithelial membrane antigen; WT-1, Wilm’s tumor-1; TTF-1, thyroid transcription factor-1;

HCG, human chorionic gonadotrophin; PSC, pulmonary sarcomatoid carcinoma; SFT, solitary fibrous tumor.
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Figure 11 A generous transthoracic biopsy consistent with a carcinosarcoma showing an undifferentiated spindle cell carcinoma (asterisk) and a heterologous chondro-

sarcoma (dot) (A). Immunostains with pan-cytokeratins (clone MNF116) (B) and TTF-1 (clone 8G7G3/1) (C) demonstrate the epithelial adenocarcinomatous differentiation

of the spindle cell component.
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phenotype may be aberrantly expressed either in PSC and

mesothelioma.77 A careful evaluation of clinicopathologic

and imaging information with histology, immunohistochem-

istry and molecular biology has been advised to render the

correct final diagnosis. Of note, BAP-1 negativity at immu-

nohistochemistry may be very helpful in ruling out PSC and

favouring mesothelioma.78

Recent Insights into PSC Genetic
and Transcriptional Features
PSCs are a highly peculiar and biologically fascinating

forms of NSCLC,2,5,14 characterized by highly aggressive

clinical behaviour with dismal outcome and variable

response to chemo-radiotherapy.79,80 Owing to their rarity,

the genetic events and molecular pathways that account for

PSC development and progression have been eluded for

a long time and recently, began to emerge.

The first clues about the genetic landscape of PSC

became available only in the most recent years.81–86 The

raise and rapid expansion of the new sequencing techni-

ques, together with the collection of relatively large series

of PSC samples available for the analysis have represented

major turning points in getting clues into the genetic assets

of these tumors.

In 2015 Fallet and colleagues described the first multi-

targeted genetic analysis on a large cohort of PSCs.81

Using the LungCarta Panel on the Sequenom platform

these Authors investigated the mutational assets of 26

oncogenes in 114 surgically resected PSCs. They reported

mutations in TP53 (22.6%) KRAS (27.2%), EGFR (22.2%)

and STK1 (7.4%) as the most common genetic alterations

in these lesions. Additional but less frequent alterations

were found in NOTCH1, NRAS, and PI3KCA. In 2016,

Schrock et al used a deep sequencing approach to map

whole-exome mutations in a cohort of 125 PSCs.82 While

confirming that mutations in KRAS (34.4%) and TP53

(73.6%) are the most common mutations in PSCs, the

results of these study refined the frequency of mutations

and called into questions other relevant oncogenes that

were not present in the Sequenom panel. In particular,

these authors showed that PSCs are characterized by

a quite high tumor mutational burden (TMB, average of

8.1 mutations/Mb) and that both TP53 mutated tumors and

KRAS mutated tumors were characterized by a higher

TMB than WT samples.

TP53 mutations were found in a consistent part of

PSCs analyzed in this study and were reported to be

widely heterogeneous as subsequentially confirmed by

other reports.83 Furthermore, the occurrence of TP53

mutations in PSCs seemed to underpin a specific genetic

subtype. For instance, mutation in NF1 and RB1 were

reported to preferentially occur in TP53 mutated vs wild-

type samples while NF2 mutations were more frequent in

TP53 wild-type samples, thus hypothesizing distinct evo-

lution pathways for PSCs with different genetic assets.

Besides TP53 and KRAS mutations, additional frequent

alterations were found, including those in CDKN2B

(23.2%), CDKN2A (37.6%), MET (13.6%) and NF1

(17.6%). Noticeably, mutations in EGFR (8.8%) were

detected at a lower frequency than previously reported

and BRAF alterations (7.3%) were limited to a reduced

number of PSC samples. Even if providing new important

clues into the genetic event of PSCs, these data did not

highlight genetic specificity that separates PSCs from

NSCLCs. In this regard, the work by Liu et al83 has

marked a major point. By means of whole-exome sequen-

cing, the Authors identified mutations in the exon 14 of

MET as preferentially associated with PSC.

MET exon 14 skipping mutations already described in

other tumors including NSCLC affect either donor or accep-

tor splice site between exon 13 and exon 14, causing a 47

amino acid deletion in the juxta-membrane domain of the

MET proteins. This region is crucial for the correct home-

ostasis of MET signaling being the docking site for the

c-CBL ubiquitin E3 ligase (Y1003).87,88 Loss of c-CBL

binding either by point mutations in the accepting site or by

exon 14 skipping, leads toMETstabilization and constitutive

activation of MET-dependent signaling.88 As in NSCLC, in

PSC MET exon 14 mutations were mutually exclusive with

other oncogene mutations like KRAS, BRAF, EGFR or ALK

rearrangement, but co-occurrence with PI3K mutations has

been reported.82,83 Furthermore, at least in the original report,

METexon 14mutations were exclusively found in pure PSCs

or PSCs with an ADK component.83,89 Noticeably, while

MET exon 14 mutations occur in about 3% of NSCLCs

(according to TCGA data), up to 32% of PSCs are reported

to carry this alteration. Indeed, according to a recent systema-

tic meta-analysis,90 the incidence ofMET exon 14 mutations

in PSC is variable. Overall, its frequency in NSCLC is 2% in

adenocarcinoma, 1% in squamous cell carcinoma, 6% in

adenosquamous carcinoma and 13% in PSC. Despite the

different characteristics of analyzed case series, MET exon

14mutations seem to occur particularly in PSC, ranging from

3% to 31.8%.81–83,87-93 The particular attention focused on

MET exon 14 skipping mutations is then related to the
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relatively high frequency of this genetic alteration in PSC

histology when compared with other conventional NSCLC,

also predicting a good clinical response to MET inhibitors.

The rate ofMET exon 14 mutations is significantly higher in

case series including PSC without common targetable

mutations in EGFR, KRAS, ALK, ROS1, and RET.92,93

Nevertheless, whenever possible all histological types of

NSCLC should be investigated for this mutation.

Activation of MET signaling is frequently associated

and functionally supports the Epithelial to Mesenchymal

Transition (EMT),90,91 which is believed to be a driver

mechanism in the progression of PSC from well-

differentiated lesions.

The frequent coexistence of both well-differentiated and

sarcomatoid components within the same lesions led to the

common assumption that PSCs originate from the progres-

sive de-differentiation of well-differentiated NSCLC into

sarcomatous like entities.

This hypothesis has found supporting evidence in

recently released studies in which genetic and molecular

profiling were used to investigate similarities and differ-

ences between the different components of PSCs. A recent

study used exome sequencing to compare the mutational

landscape of well-differentiated and sarcomatoid compo-

nents in a small series of four PSCs.92 Even if limited by

the number of cases analyzed, the authors concluded that

during evolution, the sarcomatoid component branches

very early from the well-differentiated epithelioid compo-

nent and independently accumulates mutations establish-

ing a profound difference with the original lesions.

We took further these observations showing in vivo

that the transcriptional activation of an EMT program

drives PSC phylogeny.93 Using Nanostring technology,

we performed a deep transcriptional analysis of a series

of 32 biphasic PSCs (17 training sets, 15 validation sets).

We identified a list of 146 genes whose expression largely

marks the phenotypic differences between epithelioid and

sarcomatoid components of PSC. Gene Ontology (GO)

enrichment analysis demonstrated loss of cell-adhesion

and cell-junction properties as well as other epithelial

specific features in the sarcomatous components and iden-

tified TGF-beta and many TGF-beta-induced transcription

factors as upstream regulators of this phenotype. In accor-

dance with previous reports, ECAD, a typical marker of

epithelial cancers, emerged as differentially expressed

gene and was consistently lost in sarcomatoid cells.

Noticeably, from our analysis strongly emerged that the

molecular reorganization that sustains the acquisition of

the sarcomatoid phenotype relies on a profound rewiring

of the gene expression program. This is driven by

a functional switch between epithelial-associated TFs and

mesenchymal-associated TFs, thus providing new clues

into the molecular events that underline PSCs evolution

but also the first formal proves that the activation of the

EMT program drives this process.

Clinical Impact of PSC Molecular
Profiling
Given the discouraging results with conventional che-

motherapy, new therapies are needed to improve the man-

agement of PSCs. The recent identification of MET exon

14 mutations shed new lights on the unique biology of

PSCs and opened the first prospective on PSC-oriented

therapy. Here, we discuss on how the recently gained

molecular insights into their biology may overturn PSCs

therapy in the next years.

While providing confirmation of the close genetic

proximity between PSC and NSCLC, these studies also

indicate how these lesions harbor precise differences that

at least in part may account for the failure of previously

attempted targeted therapy in PSC.94 For instance, EGFR

actionable mutations are quite frequent in NSCLC and

treatment with TKI is a first-line therapy for EGFR

mutated patients. Few reports of PSC patients treated

with EGFR inhibitors are currently available but thus far

a lack of significant and stable response has been

observed.50,95 EGFR mutations in PSC is controversial

(0–28% depending on series) but surely inferior to

NSCLC.81–84,96–98 Furthermore, according to the available

information, the number of actionable EGFR mutations (p.

L858R) is even lower further reducing the rationale for the

employment of these drugs in this setting. Besides, the

absence of evident response to EGFR inhibitors even in

EGFR mutated PSCs, seems to indicate that EGFR muta-

tions in these tumors may not be an essential driver but

rather a secondary event.

KRAS mutations are among the most common altera-

tions detected in non-squamous NSCLC. Together with

alterations in TP53, KRASmutations are also quite frequent

in PSCs with a reported occurrence that range between 15%

and 39% depending on series.81–85 Mutations in 12 codon

are the most frequent even if mutation in codon 61 has also

been reported. KRAS mutations have been found signifi-

cantly associated with pure sarcomatoid or with PSC with

an adenocarcinoma component.82,84 KRAS mutations are
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predominantly found in PSCs from smokers, and the major-

ity of the alteration detected are transversions, the typical

DNA alterations found in smokers’ adenocarcinomas.84

Prognostic significance of KRAS mutations in PSC has

been a matter of debate, in particular due to the limited

number of cases in the analyzed series that precluded con-

clusive results. However, we recently showed that KRAS

mutations alone or in combination with TP53 mutations

were associated with local metastases at recurrence and

with a significantly decreased survival probability in

a cohort of surgically resected PSCs.84 Similarly, Mehrad

and colleagues reported a significant correlation of KRAS

mutations with worse patients’ outcome.86 We also showed

that the presence of KRAS mutations significantly corre-

lates with increased PD-L1 expression suggesting

a possible correlation, to be further investigated, between

these mutations and response to immunotherapy.99 These

results together with the recent emerging MEK inhibitors

may imply a potential value of KRAS mutations as relevant

predictive markers in orienting PSC tailored treatment. Last

but not least, the encouraging preclinical success of KRAS-

specific inhibitors further consolidate the relevance of these

mutations in the managing of these tumors.100,101

MET exon 14 skipping mutations cause stabilization of

MET protein leading to the constitutive activation of its

signaling.87 NSCLCs with activating alterations of MET

(includingMET locus amplification) have shown remarkable

response to small molecules like crizotinib, cabozantinib or

capmatinib that target MET activity.102 For the same reason,

the presence of MET activating mutations in PSCs would

qualify a good portion of patients (about 30%) based on the

reported mutations incidence82,83,87,103 for treatment with

these drugs. Preclinical evidence shows that tumor cells

harboring MET ex14 mutations are responsive to MET inhi-

bition, even if co-occurrence of PI3KCA concomitant gain

of function alterations may partially reduce effectiveness of

MET inhibition.83 Preliminary clinical data on small series

or single case confirmed that in vivo, PSC harboring MET

exon 14 mutations show effective response to MET target-

ing drugs.83,104–107

Even if revolutionary in the desolated PSC treatments

landscape, the discovery of MET exon 14 mutations and

the consequential possibility of directing patients to MET

inhibitors is limited to a reduced number of patients.

Besides, MET inhibitors as well as other selective target-

ing drugs are limited by innate or adaptive resistance

keeping the need of new PSC-oriented therapies. The

identification of effective therapies for rare cancer like

PSCs poses many challenges and does not fit within the

standard design of clinical trials. Thus, alternative strate-

gies like the one of drug re-purposing offer obvious appeal

(reduced costs and time) and represent a sustainable strat-

egy for rare cancers. Coherently with this reasoning, we

used gene expression profiling data based on human sam-

ples as the basis for searching the cMap database108 con-

taining information of over one million FDA-approved

drugs and identified ready-to-use compounds potentially

matching the ability of counteracting the PSC-associated

gene program. Dasatinib was found as the top scoring drug

in this analysis. In vitro studies confirmed the effectiveness

of this drug in PSC-like cancer cells and its preferential

activity for PSC vs well-differentiated NSCLC model.96

Dasatinib is a broad-spectrum TKI designed to target

among the others pro-oncogenic kinases like SRC, DDR1

and DDR2. It has obtained positive results in NSCLC trials

and has been registered for clinical use in this setting.109

Furthermore, consistent evidence indicates that Dasatinib

suppresses TGF-beta-mediated EMT in both lung normal

and cancer cells preventing insurgence of pulmonary fibro-

sis and EMT-mediated drug resistance.110

Targetable mutations in PSC are less frequent than in

NSCLC with adenocarcinoma histology. However, Fallet

et al81 reported uncommon/rare EGFR mutations in 22%,

NRAS and PI3KCA in 5%. Li et al85 performed an NGS

study evidencing hot spot druggable gene alterations

involving EGFR (exon 19 deletion) and EML4-ALK fusion

in sporadic cases. Mehrad et al86 evidenced actionable

genetic mutations in EGFR in 2 out of 23 PSCs (8.7%)

and Schrock et al82 observed targetable genomic alteration

in EGFR (8.8%), BRAF (7.2%), erb-b2 receptor tyrosine

kinase 2 gene (HER2) (1.6%), and ret proto-oncogene

(RET) (0.8%). Of note, no rearrangements in ALK, ROS1

and NTRKs were found in the last series.

Finally, Alì et al111 disclosed sporadicmutations inEGFR

(1 case),MET (2 cases) and BRAF (1 case), KRAS (2 cases),

PI3KCA (2 cases) and 1 ALK-rearranged case among 14 PSC

using a combined approach with Sequenom Mass-Array and

Sanger sequencing and NanoString technology.

By contrast, Nakagomi et al95 evidenced prevalent

mutations in TP53 and KRAS coupled to Microsatellite

instability/Mismatch repair system alteration in one case

among four PSCs deeply investigated by NGS.

Several reasons may explain the wide range of inci-

dence of druggable gene alterations in PSC, as follows: a)

a selection bias related to the accuracy in diagnosing this

unusual histology (i.e., application of morphologic criteria
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in biopsy versus resections, lack of specific diagnostic

primary antibodies at immunohistochemistry); b) various

methodologies in detecting gene alterations, including

techniques with a significantly large range of sensitivity;

and c) different ethnicities of the reported case series.

Overall, targetable gene alterations are less frequent in

PSC than in non-squamous NSCLC, although MET and

BRAF oncogene mutations are relatively more common in

this unusual histology.82,94

Interestingly, among acquired resistance mechanisms dur-

ing treatments with tyrosine kinase inhibitors (i.e., EGFR and

ALK inhibitors) or chemotherapy, histologic “change” from

adenocarcinoma to small cell or squamous cell carcinomas

have been well demonstrated in EGFRmutated (about 10% of

cases) and ALK rearranged adenocarcinomas. However, acti-

vation of epithelial-to-mesenchymal (EMT) transition leading

to sarcomatoid “transformation” has been recently reported by

Hsieh et al112 in 6 cases of adenocarcinoma (5 EGFRmutated,

1 ROS1 rearranged). The change from adenocarcinoma histol-

ogy to PSC was often associated with PD-L1 over-expression

(83%), c-MET gene alterations or MET overexpression (5 out

of 6 cases), further supporting the activation of EMT phenom-

enon in tumor cells.

This histologic change has been previously observed in

EGFR-mutated cell lines of lung adenocarcinoma by

Sequist et al,113 demonstrating that acquired resistance to

EGFRTKI was sustained by EMTactivation with sarcoma-

toid spindle cell modification at histology and increased

expression of vimentin. EMT as mechanism of resistance

to TKI is observed in 1% to 10% of cases112–114 and sarco-

matoid change in the experience of Hsieh et al is observed

in 5% of EGFR-mutated NSCLC.112

Xu et al115 reported a case of lung adenocarcinoma

resistant to EGFR TKI with concurrent acquired T790M

secondary EGFR mutation and sarcomatoid spindle cell

occurrence.

Finally, a case of exon 21 L858R EGFR-mutated sar-

comatoid carcinoma of the lung resistant to icotinib was

recently reported.116 Coexistence of Nkx2-4 mutation was

considered responsible of its intrinsic resistance to EGFR

TKI.116

PSC and Immunotherapy
Immunotherapy by blockade of immune checkpoint path-

ways like the PD1/PD-L1 signaling has dramatically

impacted on therapy of many chemo-resistant cancer

patients.117,118 Rational exists for the use of immune

checkpoints inhibitors also in PSCs, relying on at least

two different assumptions. First, immunotherapy has

shown remarkable results in NCSLC improving progres-

sion-free and overall survival, causing fewer adverse

events than standard chemotherapy in a significant portion

of patients.119 Second, recent evidence indicates that the

strength of immunotherapy is higher in tumors that like

PSC or, more in general tobacco-associated tumors, are

characterized by high degree of genetic damage.120 Up to

now only sporadic reports of single cases on the use of

immunotherapy in PSCs are available, but these prelimin-

ary data are encouraging and seem to corroborate the

employment of immune checkpoint blockade in this

setting.121

Currently, no definitive predictive marker to anticipate

response to anti-PD1 or anti-PD-L1 antibody is available.

PD-L1 expression in either tumor or lymphocyte infiltrate

positive122 and tumor mutational burden120 have been

reported to be positively associated with the strength of

immunotherapy response and investigated as potential pre-

dictive markers.

In PSCs, several reports have investigated the expres-

sion of PD1 and/or PD-L1 to envisage a possible use of

these therapies in this setting.101,123–133 Although widely

employed and approved from different national drug

agencies,123 PD-L1 expression is an imperfect predictive

biomarker for immunotherapy in lung cancer. PSC tends to

show high levels of immunohistochemical expression with

PD-L1, even if it is quite difficult to compare the data so

far reported in literature in this histology. Indeed, the main

problem is related to technical clues related to numerous

cut-offs of expression to quote positivity, different primary

antibody clones and automated platforms as well as

laboratory-developed tests used in scientific works.

A recent paper by Alì et al111 showed PD-L1 expression

≥1% in 84% out of 44 PSC and 47% of these cases revealed

staining ≥50% (clone SP263 using BenchMark XT/Ventana

platform). Similarly, Nakagomi et al95 demonstrated high

PD-L1 expression ≥50% in all four PSCs analyzed (clone

28–8 using ULTRA/Ventana platform). Wu et al124 detected

PD-L1 expression in 21 cases (87.5%) of PSC and SUVmax

of 17 lesions with PD-L1 expression degree ≥50% was

higher than that <50% and related to KRAS mutations.

Chan et al125 assessed the PD-L1 expression in 713 conse-

cutive NSCLC by four commercially available PD-L1

immunohistochemical assays (22C3, 28–8, SP142 and

SP263) evidencing a high PD-L1 expression ≥50% signifi-

cantly associated with PSC (p < 0.001) and mutant KRAS

(p = 0.005) also reporting good agreement between 22C2,
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28–8 and SP263 primary antibodies. Sim et al126 showed

high levels of PD-L1 in 8 out of 13 PSC (61.5%) and Yvorel

et al127 analogously reported high expression of PD-L1

(clone E1L3N, Cell Signaling Technology) in 75% of 36

PSC. In the series of Kim et al129 PD-L1 and PD-L2 were

highly expressed in PSC (90.2%; 37/41 and 87.8%; 36/41),

respectively. Of note, PD-L1 expression in pulmonary PCs

was significantly higher in sarcomatous areas than in the

carcinomatous component (p=0.006). Vieira et al130 reported

high PD-L1 (clone 5H1) immunoreactivity in 40 out of 75

(53%) PSC, also confirming a significant association with the

presence of KRAS mutations. High expression of PD-L1 in

PSC has been similarly noted in other studies.101,131

The frequency of PD-L1 positive PSC samples is sig-

nificantly higher than the one observed in NSCLC, coher-

ently with higher presence of CD3+ or CD163+ infiltrating

lymphocytes or macrophages observed in these tumors.130

Together, these observations encourage the use of immu-

notherapy in the treatment of PSCs.131,133

Take-Home Messages
● Patients with PSC are generally elderly smoking men

with large peripheral mass with rounded margins or

endobronchial fleshy polyp. Symptoms are non-

specific, as well as serum markers, but giant cell carci-

noma may produce G-CSF or beta-HCG leading to

paraneoplastic conditions (i.e., fever and gynecomastia,

respectively).
● The diagnosis of PSC is based on careful examination

of morphologic features on hematoxylin–eosin-stained

slides using a light microscope, but ancillary techniques

(immunohistochemistry, molecular morphology or

even ultrastructure analysis) are very helpful in challen-

ging cases. Extensive sampling and serial consecutive

sections may be required to disclose the NSCLC com-

ponent, especially on small biopsy.
● A diagnosis of possible PSC is acceptable on cytology,

cell-block and small biopsy, but definitive confirma-

tion should be made on surgical specimen, according

to the last 2015 WHO classification of lung tumors.
● In agreement with the 2015WHO scheme, PSC encom-

passes five different histological subtypes, namely

pleomorphic carcinoma, spindle cell carcinoma, giant

cell carcinoma, carcinosarcoma and blastoma.24

● Sarcomatoid/sarcomatous component in PSC has

a monoclonal origin driving from metaplastic changes

of the carcinoma, secondary to the activation of a genetic

program of epithelial-to-mesenchymal transition.39

● Prognosis of PSC is dismal; surgery remains the

mainstay of treatment and the role of neoadjuvant/

adjuvant chemo-radiotherapy is controversial and

rarely effective.125

● PD-L1over-expression andMETexon 14 skippingmuta-

tion are the most important predictive biomarkers for

effective targeted therapies in PSC.134–136
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