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Background: Platelet activation and subsequent aggregation are the initial stages of thrombo-

sis. A molecular probe that specifically targets activated platelets and remains retained under

high shear stress in vivo can enhance the imaging effect to achieve early and accurate diagnosis.

Methods and materials: In this study, we constructed nanoparticles (NPs) using poly-

dopamine to carry two peptides that simultaneously bind integrin αIIbβ3 and P-selectin on

activated platelets to enhance the targeting of NPs to thrombus.

Results: The targeting specificity and binding stability of the NPs on red and white thrombi were

demonstrated in vitro using a simulated circulatory device and the targeting effect of the NPs on

mixed thrombus was studied by magnetic resonance (MR)/photoacoustic (PA) dual-modality

imaging in vivo. NPs that were surface modified with both peptides have higher selectivity and

retention to red and white thrombi in vitro than NPs with a single or no peptide, and the targeting

effect was closely related to the number and distribution of activated platelets as well as the

structure and type of thrombus. The NPs also have MR/PA dual-modality imaging functionality,

significantly enhancing the imaging of mixed thrombus in vivo.

Conclusion: These dual-targeted NPs have improved targeting specificity and binding stability to

different thrombi under high shear stress and are beneficial for the early diagnosis of thrombosis.

Keywords: dual-modality, dual-ligand, targeting effect, thrombus, magnetic resonance

imaging, photoacoustic imaging

Introduction
Thrombosis is an important event in vascular disorders and is related to considerable

morbidity and mortality.1,2 Therefore, the early and accurate diagnosis of thrombosis

followed by treatment is very important to increase the survival rate of patients and

improve the quality of life. Many imaging techniques, such as computed tomography

angiography (CTA), ultrasonography and magnetic resonance imaging (MRI), are cur-

rently used for identifying and monitoring thrombotic diseases in the clinical setting.

However, the early detection and differential diagnosis of thrombi, the distinction

between new and old thrombi, and the evaluation of thrombolytic efficacy are still

limited.3 In response to these unmet needs, non-invasive molecular imaging based on

targeted nanoparticles (NPs) has attracted wide attention.4–7

Although these encouraging studies have demonstrated that NPs modified by specific

ligands can be used for the selective delivery of contrast agents to thrombi, the targeting
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effect of these NPs in vivo is not as satisfactory as that in vitro,

especially in the arteries. Many factors influence the adhesion

of the NPs targeting to thrombi, including the ligand affinity,

carrier characteristics, target characteristics, target microenvir-

onment, andNPs behavior in circulation.8 The high shear stress

of arterial blood flow is also an important factor. To improve

the specificity and stability of the binding of the NPs to

thrombi, several methods have been reported: using phase-

change materials to prepare NPs to increase the contact area

with the thrombi,9,10 using acoustic radiation force tomake the

NPs aggregate and slow down near the vascular wall,11 using

specific interactions between ligands and receptors enriched in

the target tissues5,7,12,13 or even using two pairs of ligand-

receptor modes14,15 to increase the adhesion ability of NPs to

the targets.

Although NPs with dual ligands14,15 represent greater

adhesion strength than single-ligand NPs in vitro, to our

knowledge, there have been no reports on dual-ligand mole-

cular imaging and quantitative analysis of targeted thrombi in

vivo of different types and ages, especially in large arterial

vessels. Therefore, there is a need to construct a highly effi-

cient dual-ligand molecular probe to target different types of

fresh thrombi (ie, white, red and mixed thrombi) and to

improve the target effect under the impact of high-speed

blood flow in vivo monitored by dual-modality imaging.

One of the most commonly used ligands is RGD/cyclic

RGD (cRGD),5,7,16 a class of short peptides containing

arginine-glycine-aspartic acid (Arg-Gly-Asp), for targeting

the platelet membrane glycoprotein IIb/IIIa (GPIIb/IIIa,

also known as integrin αIIbβ3). However, Merten and his

colleagues17 found that the maximum activation of GPIIb/

IIIa occurred in the first 10 s and the GPIIb/IIIa-fibrinogen

complex would affect the binding of GPIIb/IIIa with mole-

cular probes carrying the RGD peptide. P-selectin, a mem-

ber of the selectin family of adhesion molecules, is

continuously over-expressed on the membranes of acti-

vated platelets in the late stage of thrombosis.17

Therefore, an increasing number of people have chosen

P-selectin as the new target.9,10,12,13 Selectin-ligand inter-

actions, which mediate leukocyte rolling, can not only

activate integrins but also facilitate the binding of integrins

to achieve firm adhesion.14,18 Furthermore Appeldoorn et

al19 demonstrated that GA-EWVDV (a Glu-Trp-Val-Asp-

Val pentapeptide modified with gallic acid) was more

easily bound to P-selectin and was more specific than

other P-selectin ligands.

If NPs can bind to abundant targets expressed on platelet

membranes at different stages of thrombosis at any time, their

targeting performance may be improved. Based upon this

assumption and our previous studies, in order to construct

highly effective and targeted photoacoustic (PA)/ magnetic

resonance (MR) dual-modality thrombus imaging agents, we

prepared core-shell NPs by a double emulsification method

with poly-(lactic-co-glycolic acid) (PLGA), paramagnetic iron

oxide (Fe3O4) NPs and Indian ink, and we adopted a simple

surface modification method based on polydopamine (pDA)

Double emulsification

Fe3O4 Ink PLGA Polydopamine GA-EWVDV

Thrombus

cRGD

Polydopamine

PLGA-DNPs PLGA-pDA DDNPs

Figure 1 Flow chart of the experimental design.

Abbreviations: PLGA, poly(lactic-co-glycolic acid); DNPs, dual-modality nanoparticles; pDA, polydopamine; DDNPs, dual-modality and dual-ligand nanoparticles; GA-

EWVDV, a Glu-Trp-Val-Asp-Val pentapeptide modified with gallic acid; cRGD, cyclic Arg-Gly-Asp.
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to simultaneously modify these NPs with cRGD and GA-

EWVDV ligands (Figure 1). By studying the general physi-

cochemical properties of the NPs as well as their targeting

properties and imaging characteristics to different types of

thrombi, we will demonstrate the targeting specificity and

binding stability of the NPs on red and white thrombi in

vitro and the targeting effect of the NPs on mixed thrombus

in vivo. To the best of our knowledge, this is the first time that

different types of thrombi were used to study the targeting

properties and differences of NPs. This is also the first that

dual-ligand-modified NPs have been used for thrombus dual-

modality molecular imaging.

Materials and methods
Materials
PLGA (LA:GA =75:25, carboxylic acid end group, molecular

weight: 8000, laboratorial reagent, LR) was purchased from

Jinan Daigang Biological Material Co., Ltd. (Shangdong,

China). Fluorescein isothiocyanate (FITC)-labeled or non-

FITC-labeled cRGD peptides, aminomethylcoumarin acetate

(AMCA)-labeled or non-AMCA-labeled GA-EWVDV pep-

tides (all peptides were LR) were synthesized by China

Peptides Co., Ltd. (Shanghai, China). Iron oxide NPs that

had been surface modified with oleic acid (Fe3O4, 25 mg/

mL, guarantee reagent, GR) were provided by Ocean Nano

Technology Co., Ltd. (Springdale, AR, USA). Polyvinyl alco-

hol (PVA, USP grade), dopamine hydrochloride (analytical

reagent, AR) and adenosine 5ʹ-diphosphate sodium salt (ADP,

high performance liquid chromatography grade, HPLCGrade)

were purchased from Sigma-Aldrich Corporation (St. Louis,

MO, USA). India ink (biological reagent, BR) and thrombin

(1000 units/0.85 mg solid, BR) were purchased from Solarbio

Science & Technology Co., Ltd. (Beijing, China). Collagen-I

(4 mg/mL, Chondrex, Inc, cell culture grade) was diluted with

0.02 M HCl at 100 μg/mL. Tris-HCl buffer (10 mM, pH=8.5,

LR) was obtained from Beijing Leagene Biotech. Co., Ltd.

(Beijing, China). DiI (1,1ʹ-dioctadecyl-3,3,3ʹ3ʹ-tetramethylin-

docarbocyanine perchlorate, biological stain, BS) was pur-

chased from Beyotime Biotechnology (Jiangsu, China).

Agarose (for electrophoresis use) was received from

Invitrogen (California, USA). The rest of the reagents

were AR.

Preparation and characterization of NPs
A double-emulsion solvent evaporation method was used

to prepare PLGA dual-modality NPs (PLGA-DNPs),

based on our previous study.9 One hundred milligrams of

PLGA and 80 μL of Fe3O4 solution were fully dissolved in

2 mL of dichloromethane as the oil phase. Next, 0.20 mL

of India ink (the concentration was diluted to 10% by

double-distilled water) and 10 mL of a 4% PVA solution

served as the inner and outer aqueous phases, respectively.

An ultrasonic liquid processor (Vibra-CellTM VCX-130,

Sonics & Materials, Inc., Newtown, CT, USA) was used

twice to apply acoustic vibrations for 3 min at 45% power

each time to produce a double-emulsion solution. Then,

20 mL of a 2% isopropanol solution was added into the

double-emulsion solution and stirred continuously at room

temperature for 2 h until the NPs surface solidified and the

dichloromethane volatilized. Finally, the PLGA-DNPs

were collected by centrifugation and rinsed with double-

distilled water.

The polydopamine-coated PLGA-DNPs (PLGA-pDA)

were created by incubating PLGA-DNPs in 1 mg/mL

dopamine hydrochloride dissolved in a 10 mM Tris buffer

(pH 8.5) for 4 h at room temperature with rotation, washed

with phosphate buffer saline (PBS) prior and then col-

lected by centrifugation at 10,000 rpm for 5 min.

To make the dual-ligand-modified DNPs (DDNPs), the

PLGA-pDAwere suspended in PBS buffer with the cRGD

and GA-EWVDV peptide mixture (1:1). After 4 h of

incubation at room temperature with rotation, the DDNPs

were collected by centrifugation. The single-peptide (GA-

EWVDV or cRGD)-modified DNPs were prepared by the

same method (named EDNPs or RDNPs, respectively).

After an appropriate amount of NPs was suspended in

double-distilled water, the morphology and dispersion

were observed with an optical microscope (OM,

Olympus IX53, Olympus Co. Ltd., Tokyo, Japan), the

internal and surface were observed with a transmission

electron microscope (TEM, Hitachi 7500, Hitachi Ltd.,

Tokyo, Japan) and a scanning electron microscope (SEM,

Hitachi SU8010, Hitachi Ltd., Tokyo, Japan), respectively.

The sizes and zeta potentials of the NPs were determined

using a laser particle size analyzer (Zetasizer Nano ZS

ZEN 3600, Malvern Instruments Ltd., Worcs, UK). The

binding of peptides onto the surface of PLGA-pDA was

confirmed by laser scanning confocal microscopy (LSCM,

Nikon A1, Nikon Corporation, Tokyo, Japan), and the

carrier rate of peptides was determined by flow cytometry

(CytoFlex, Beckman Coulter, CA, USA). Atomic absorp-

tion spectrometry (TAS-990, Beijing Pgeneral Instruments

Co., Ltd., Beijing, China) was used to measure the con-

centration of iron atoms, and the iron loading rate of the

NPs was calculated according to the following formula:
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iron loading rate = the actual measured iron mass/the total

added iron mass ×100%.

To determine the optimum excitation wavelength and

the best imaging concentration of DDNPs in vitro, the PA

signals of four concentrations of DDNPs (1.00, 5.00,

10.00, and 20.00 mg/mL) in a 3% agarose gel model

were first measured in a PA system (Vevo LAZR,

VisualSonics Inc., Toronto, Canada) equipped with a

LZ250 (fiber-optic bundles: 25.40×1.25 mm; focal depth:

10 mm; center frequency: 21 MHz; axial resolution:

75 μm) probe. Considering that the number of NPs was

linearly related to how much PLGAwas used, the concen-

tration of the NPs was indicated by the PLGA quantity in

this manuscript. The differences in PA property among the

five NPs, PLGA-DNPs, PLGA-pDA, RDNPs, EDNPs, and

DDNPs, with the best concentration were examined by

irradiating with the optimum laser source of our PA sys-

tem, while the PA signals were recorded over time. The PA

value of the region of interest (ROI) was measured 3 times

for each group.

To detect the MR properties of the NPs, 1.00 mg/mL of

a dopamine solution, 5.00 mg/mL of the five NPs (PLGA-

DNPs, PLGA-pDA, RDNPs, EDNPs, and DDNPs) and

0.25, 0.50, 0.75, 1.00, and 1.25 mg/mL of DDNPs were

used. All the NPs were separately added to 2.00 mL

Eppendorf tubes and placed in the same plastic container

of water to reduce artifacts. MR scanning was performed

using a 1.5 T MR scanner (HDXT2012, GE Medical

Systems, Fairfield, CT, USA) with a head coil. The para-

meters of T2-weighted imaging (T2WI) were as follows:

Fast spin echo (FSE) sequence, repetition time

(TR) =1,200.0 ms, echo time (TE) =110.4 ms, flip angle

(FA) =90°, field of view (FOV) =20×15 mm, and slice

thickness =3.0 mm. The scanning sequences for calculat-

ing the transverse relaxation rates (R2*) of the DDNPs

were as follows: TR =52.7 ms, 16 increasing TEs from

1.8 to 28.8 ms, number of excitations =1, and slice thick-

ness =3.0 mm. The data were transferred to an ADW4.6

image workstation (GE Medical Systems, Fairfield, CT,

USA), and the Research R2* software package was used

to measure the R2* values with ROI =20 mm2.

Targeting specificity and binding stability

of NPs in vitro
Preparation of white and red thrombi

The animal experiments were approved by the Animal

Ethics Committee of Chongqing Medical University and

conducted in accordance with the guidelines of the

Institutional Animal Care and Use Committee of

Chongqing Medical University. Sprague-Dawley (SD)

rats weighing between 200 and 250 g were purchased

from the Animal Center of Chongqing Medical University.

White thrombus was prepared by a method similar to

that described in a previous publication.20 Briefly, 5 mL of

whole blood was taken from the SD rat’s abdominal

aorta and drawn into a single-use evacuated tube with

EDTA-K2. One mL was taken for platelet counting and

the rest for platelet-rich plasma (PRP) preparation.

According to Landesberg’s method,21 after the first cen-

trifugation (200 g, 10 min, room temperature), the plasma

located immediately above the sediment of red blood cells,

including part of the buffy coat (middle layer), was col-

lected and transferred into another anticoagulant tube for

the second centrifugation with the same parameter set-

tings. Then, the upper volume of the plasma (platelet-

poor plasma, PPP) and the lower half (PRP) were collected

into tubes. The concentration of platelets was determined

with a Sysmex® XT-2000i 5-diff Automatic Hematology

Analyzer (Animal Center of Chongqing Medical

University). The PRP, PPP, and whole blood were mixed

to form a standardized plasma with a platelet concentration

that was approximately 2 times that of whole blood and a

hematocrit that was less than or equal to 0.5%. Then, an

appropriate amount of thrombin (1000 U/1 mL 0.9%

NaCl) was added to the standardized plasma for coagula-

tion to form a white thrombus.

For red thrombus, whole blood was collected in a pro-

coagulant tube until it coagulated at room temperature.

Red thrombus can also be prepared by adding thrombin

to whole blood to shorten the time of blood coagulation.

Receptor-specific binding studies and blocking studies

To confirm the presence of the activated platelets, white

and red thrombi were allowed to adhere to glass slides pre-

coated with a 100 μg/mL collagen-I solution. Then, the

adhered platelets were fixed with 4% paraformaldehyde,

and their presence on the slides was confirmed by a fluor-

escently labeled peptide mixture (AMCA-GA-EWVDV

and FITC-cRGD), followed by inverted fluorescence

microscopy imaging (Olympus IX53, Olympus Co., Ltd.,

Tokyo, Japan).

Two additional thrombi-adhered slides were used for

blocking studies, and the method was as follows: nonfluor-

escent DDNPs were incubated with the slides for 30 min;

then, the slides were washed with PBS and further
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incubated with FITC-cRGD and AMCA-GA-EWVDV for

30 min. The rationale was that if the dual-peptide-modified

NPs bound their specific target receptors, then the pre-

incubation with the DDNPs would possibly occupy many

of these receptors and block them from binding the fluor-

escent peptides in the subsequent step. On the other hand,

without pre-incubation of the DDNPs, the fluorescent pep-

tides would successfully stain the respective receptors.

Receptor-specific and stability binding studies in

dynamic conditions

Next, eight slides in two groups with red or white thrombi

were placed into a simulated circulatory device (Figure 2).

After circulation with DiI-labeled DDNPs for 1, 3, 5 and

10 min at a flow rate of 0.40 mL/s, the slides were removed,

observed under an inverted fluorescence microscope and

imaged with CellSence software to establish the receptor

specificity and stability binding studies; PLGA-pDA,

RDNPs, and EDNPs were used as control groups. Before

each observation, the slides were washed with PBS for 10 s

to remove the unstable NPs. The fluorescence intensity of all

the slides was measured by ImageJ software.

To observe and confirm the binding and distribution of

NPs to thrombi, equal volumes of red or white clots were

placed into the same simulated circulation device before

circulation with NPs at the same concentration and speed

for 30 min. Then, the sections of clots were observed

under OM after hematoxylin and eosin (H&E) staining.

Flow cytometry analysis of the binding of NPs to

activated platelets in static conditions

The whole blood of the rats was divided into 6 aliquots.

First, one of the samples was taken as a control group to

determine the gating of platelets with flow cytometer, and

the others were incubated with ADP at a concentration of

2×10–5 M for 30 min to activate the platelet population

and then fixed with 4% paraformaldehyde for 1 h. The

level of activated platelets was assessed by co-staining an

aliquot with FITC-cRGD and AMCA-GA-EWVDV and

running the sample through the flow cytometer to assess

the fluorescence associated with the gated platelet popula-

tion. Following confirmation of platelet activation, the

remaining samples were incubated with the DiI-labeled

NPs, PLGA-pDA, RDNPs, EDNPs, and DDNPs at a con-

centration of 5 mg/mL for 30 min and run through the flow

cytometer to analyze the platelet-associated fluorescence.

For all analyses, the gated platelet population fluorescence

was analyzed at 20,000 counts per sample.

Targeting effect and dual-modality imaging

performance of NPs in vivo
Preparation of a mixed thrombus

A mixed thrombus was induced by FeCl3 injury to the

abdominal aorta of SD rats. Before the experiment, the rats

were anaesthetized by injection of pentobarbital sodium

(35 mg/kg) and placed in a supine position with the head

mounted on the dissecting table. The next process was the

same as that previously reported.22 Briefly, after the

abdominal aorta was exposed and passively separated

with tweezers, a filter paper approximately 0.8 cm wide

soaked in a 10% FeCl3 solution was used to embed the

lower segment of the abdominal aorta for 3–5 min, and a

parafilm approximately 1.0 cm wide was placed behind the

filter paper to prevent the FeCl3 solution from contaminat-

ing the surrounding tissues. Then, the filter paper and

parafilm were removed, and the abdominal cavity was

sutured after washing it with saline.

PA molecular imaging

The PA signals were determined (wavelength ranging from

680 nm to 970 nm) after the abdominal aorta model of wall-

adherent thrombosis was successfully achieved to eliminate

the interference of the thrombus itself. The rats were then

divided into four groups at random (n=3 per group): PLGA-

pDA, RDNPs, EDNPs and DDNPs. Then, 1 mL of 5 mg/mL

NPs was administered via the tail vein of the rats, and PA

molecular imaging was performed after injection for 20 min.

MR molecular imaging

After the abdominal aorta thrombosis model was successfully

achieved, twelve rats in four groups (PLGA-pDA, RDNPs,

Pump

Thrombus

PBS WasteNPs

Figure 2 Simulated circulation device in vitro.

Abbreviations: NPs, nanoparticles; PBS, phosphate buffer saline.
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EDNPs and DDNPs) were scanned by a 3.0 T MR scanner

with a rat experiment coil (CG-MUC 18-H300-AP, Shanghai

ChenguangMedical Technologies Co., Ltd., Shanghai, China)

before and after injection via the tail vein. The T2WI sequence

was performed using the following parameters: turbo spin

echo sequence, TR =666.0 ms, TE =62.0 ms, FA =90°,

FOV =50.0 mm, and slice thickness =2.0 mm. The areas of

the thrombi were measured. The area change rate was calcu-

lated according to the following formula: area change rate

(%) = (area of the thrombus before injection − area of the

thrombus after injection)/(area of the thrombus before

injection) ×100%.

Pathological examination of thrombus

After the in vivo imaging was performed, all the rats were

sacrificed, and the abdominal aortas of the experimental

segment were removed and fixed with 4% paraformalde-

hyde. After H&E staining, the binding and distribution of

NPs to thrombi were observed under a microscope.

Safety evaluation
Three SD rats were used to study the toxicity of DDNPs in

vivo. After injection of 1 mL of 5 mg/mL DDNPs via the

tail vein, the body weight was recorded every morning,

and the overall health of the animals was carefully

observed to determine whether there were signs of irrita-

tion, pain, discomfort and inflammation. The orbital

venous blood was taken from the rats 1 day before injec-

tion and 7 days after injection to measure the blood routine

and liver and kidney function. The heart, liver, spleen,

lung and kidney were taken from the rats 7 days after

injection and observed by OM after the H&E staining

techniques. Another three rats were injected with 1 mL

of saline as a control group.

Data analysis
SPSS 22.0 (Chicago, IL, USA) was used for statistical

analysis. All the data are expressed as the mean ± stan-

dard deviation. The differences among groups were

analyzed by one-way ANOVA, and the difference

between the two groups was tested by independent sam-

ple and paired t-tests. P<0.05 indicates that there was a

significant difference.

Results and discussion
Characterization of the NPs
Surface modification and functionalization play a key role

in controlling the surface properties and conferring new

functionalities to materials. However, unless the NPs sur-

face is inherently reactive, decorating the surface with more

than one type of functional group by either chemical or

physical methods is a time-consuming and complicated

process, which is often detrimental to the integrity of the

NPs and the production yield. An alternative strategy is to

pre-functionalize materials and then produce NPs with these

modified materials.15 But the synthesis needs to be tailored

to each functional group, which is equally lengthy and

inefficient, and it may alter the properties of the NPs and

render them incapable of encapsulating drugs. To overcome

these problems, some researchers have used pDA for the

surface modification of other nanomaterials.23–25 Many stu-

dies have reported that mussel-inspired dopamine is a novel

and effective material with abundant catechol and amino

functional groups. These functional groups are helpful to

form a super-adherent water-insoluble film (pDA film) on

the surface of solid materials and to realize the functionali-

zation of materials.26,27

Due to the oxidation and self-polymerization of dopamine

under weakly alkaline conditions and the deposition on the

surface of materials, DDNPs were successfully constructed in

a mixture containing PBS and two peptides at room tempera-

ture. The DDNPs appeared black, and they had relatively

homogeneous sizes and good dispersion (Figure 3A). TEM

revealed that the internal morphology of all the NPs was

basically the same; that is, India ink was wrapped in the

core, and the lipophilic iron oxide particles were relatively

uniformly distributed in the shell. However, compared with

the surface of the PLGA-DNPs (Figure 3C and E), the surface

of the DDNPs had translucent pDA film deposits (Figure 3B),

appeared smooth and had few holes (Figure 3D). LSCM

(Figure 3F) showed that most of the red fluorescent DDNPs

(DiI-labeled) emitted blue (AMCA-labeled GA-EWVDV

peptide) and green (FITC-labeled cRGD peptide) fluores-

cence, which intuitively demonstrated the successful grafting

of dual ligands. At the same time, each fluorescently labeled

peptide could show its unique color after being stimulated by a

laser, which indirectly indicates that these materials did not

interfere with each other. Because these two kinds of fluores-

cence are not in the same peptide and the pDAmethod did not

involve complex chemical reactions, or pre-activation of func-

tional groups, A flow cytometry scatter plot (Figure 3G) shows

that the peptide-grafting rate on DDNPs was up to 99.36%, of

which 50.85% was due to NPs with dual ligands at the same

time. The average particle size of the DDNPs was 371.27

±1.12 nm, and the surface potential was −18.87±0.64 mV

(Table 1). One-way ANOVA showed that there were
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significant differences among the groups, indicating that the

existence of the pDA film and peptides had an impact on the

particle size and surface potential of the NPs. Some research-

ers found that the pDA film thickness was a function of the

immersion time and reached a value of up to 50 nm after

24 h.27 Although large particles have the advantage of carrying

high payloads when used as targeted vascular carriers, target-

ing specificity decreases with enlargement,28,29 and these large

particles are likely to be rapidly recognized and cleared by

phagocytes. However, the size of NPs could be easily

controlled by tuning the molar ratio or reaction time of

dopamine.23 On the other hand, with the decrease of size, the

surface area and energy of the NPs increases and they easily

agglomerate. The agglomeration of NPs can cause the embo-

lism of capillaries and even small blood vessels, leading to

animal death. If the absolute value of Zeta potential (positive

or negative) is higher, the NPs are more stable due to repul-

sion. In addition, Shao et al30 have found that NPs with

positive surface charges were more toxic than those with

negative surface charges and NPs with larger similar charges
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Figure 3 Characteristics of the nanoparticles (NPs).

Notes: (A) OM image of DDNPs. (B) and (C) TEM images of DDNPs and PLGA-DNPs. (D) and (E) SEM images of DDNPs and PLGA-DNPs. (F) LSCM image of DDNPs.

(G) Flow cytometry scatter plot of DDNPs. NPs with pDA film have a smooth surface and high ligand-grafting rate.

Abbreviations: OM, optical microscope; AMCA, aminomethylcoumarin acetate; FITC, fluorescein isothiocyanate; DiI, 1,1ʹ-dioctadecyl-3,3,3ʹ3ʹ-tetramethylindocarbocya-

nine perchlorate; DDNPs, dual-modality and dual-ligand nanoparticles.

Table 1 Characteristics of different nanoparticles

Groups Size (nm) Zeta potential (mV) Carrier rate of Fe3O4 (%)

PLGA-DNPs 243.57±4.32 −13.33±0.06 /

PLGA-pDA 310.83±4.51 −17.37±0.15 73.40±3.43

RDNPs 331.87±0.45 −17.90±0.40 64.98±0.75

EDNPs 341.07±9.86 −17.37±0.57 65.26±0.54

DDNPs 371.27±1.12 −18.87±0.64 65.11±1.22

Notes: DDNPs not only are larger than PLGA-DNPs and PLGA-pDA but also have a lower zeta potential than do PLGA-DNPs. The carrier rate of Fe3O4 of DDNPs was

lower than that of PLGA-pDA.

Abbreviations: PLGA, poly(lactic-co-glycolic acid); DNPs, dual-modality nanoparticles; PLGA-pDA, polydopamine-coated PLGA-DNPs; RDNPs, PLGA-pDA modified by

the cRGD peptide; EDNPs, PLGA-pDA modified by the GA-EWVDV peptide; DDNPs, dual-modality and dual-ligand nanoparticles.
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were thereforemore toxic to the cells. The Zeta potential of the

DDNPs is close to −19 mV, and the dispersion is acceptable.

However, it is better to use ultrasonic oscillation in a suspen-

sion configuration to avoid agglomeration of the NPs as long

as possible. The carrier rate of Fe3O4was 65.11±1.22%,which

was lower than that of the non-targeting group, but there was

no significant difference among the targeting groups. This

result may be due to the loss of NPs with the increase in the

number of preparation steps. By repeating the preparation

process and testing the general properties, we found that the

properties of the DDNPs constructed by double emulsification

and pDA method were stable and reproducible.

To determine the dual-modality imaging properties of the

NPs, we chose India ink and iron oxide NP as the PA and MR

contrast agents, respectively. India ink, an optical absorber, has

been widely used in the clinic and research because of its good

PA imaging and photothermal conversion capability, stable

physical and chemical properties, ease of accessibility, inex-

pensiveness, and nontoxicity.31–33 Iron oxide NPs, a negative

contrast agent forMRI, is also a PAmaterial that can synergize

with Indian ink.9,34,35 Due to the presence of ink and Fe, all

five NPs at the best imaging concentration of 5 mg/mL under

the optimum excitationwavelength of 790 nm have PA signals

in vitro (Figure 4A). In addition, through the PAmeasurement

and one-way ANOVA among groups (Figure 4B), we found

that there was no significant difference among the other four

groups except for PLGA-DNPs. The results showed that the

presence of a pDA film could also enhance the PA signal, but

the existence of polypeptides had little effect on the PA signal.

All iron-containing NPs exhibited T2 low signal under the

same background on a 1.5 T MR scanner in vitro, except for

the dopamine solution, whose signal is close to the water

signal (Figure 5A). One-way ANOVA showed that there was

no difference in the average signal intensity among the five

NPs (Figure 5B). Therefore, we can conclude that the poly-

peptides and dopamine did not affect the MR signal. The T2

signal of the DDNPs decreased with increasing concentra-

tion, but R2* increased significantly (Figure 5C and D). This

phenomenon is because the iron oxide NPs embedded in the

shell are MR negative contrast agents, which will shorten the

T2 time and lead to an increase in R2*.

Targeting specificity and binding stability

of NPs in vitro
In humans, most thrombotic diseases are caused not only

by red thrombus but also by white and mixed thrombus.

The location, size, composition and age of the thrombus in

different patients are also different and complex, which

will inevitably affect the choice of treatment methods and

the thrombolytic effect. Therefore, taking the types and

factors of thrombosis into consideration in the design of

the thrombosis model is necessary to make it as close as

possible to the human pathophysiological situation.

However, in the current models, only red and white throm-

bosis can be simulated in vitro at present.20,36 The former

is induced in tubes with coagulant promoters, and the latter

is mainly prepared by PRP coagulation. Due to the com-

plexity of the formation mechanism, there are no reports

on the construction of mixed thrombosis in vitro.

Therefore we plan to construct red and white thrombi in

vitro to study the targeting specificity and binding stability

of DDNPs.

From the images of the receptor-specific binding

(Figure 6A and C) and blocking studies (Figure 6B

and D) in white and red thrombi and the quantitative

data (Figure 6E), we can see that the cRGD and GA-

EWVDV peptides can specifically bind to their respec-

tive receptors in activated platelets. However, the bind-

ing rate decreased significantly in the blocking test,

suggesting that the pre-incubation of DDNPs will

occupy most of these receptors and prevent their binding

to fluorescent peptides. In addition, without pre-incuba-

tion, the fluorescence intensity in the white thrombus
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Figure 4 PA properties of the nanoparticles (NPs) in vitro.

Notes: (A) PA images of five NPs at the same concentration irradiated by a laser at

790 nm wavelength. (B) Quantitative analysis of the PA intensity of the five NPs.

(**P<0.01) The results confirmed that the presence of the pDA film could enhance the

PA signal.
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dual-modality nanoparticles; PLGA-pDA, polydopamine-coated PLGA-DNPs;
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was higher than that in the red thrombus, indicating that

the number of activated platelets in the white thrombus

was higher than that in the red thrombus. However, after

pre-incubation, the opposite result was found, which

confirmed that DDNPs were more likely to bind white

thrombus than to bind red thrombus.

The representative fluorescence microscopy images

during circulation (Figure 7A and B) and the statistical

analysis of the fluorescence intensity after grouping based

on the types of thrombi or NPs (Figure 7C) show that the

DDNPs can bind to activated platelets in either a red or

white thrombus and remain on them in a dynamic flow
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NPs in the same water background. (D) Validation curves of the R2* values of the DDNPs at different concentrations. The results show that iron NPs can shorten the T2
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environment. Additionally, the DNNP binding level

increased significantly over time compared with that of

PLGA-pDA or even single-targeted NPs (RDNPs and

EDNPs). This phenomenon confirms our theory that the

dual ligands will enhance the targeting effect on activated

platelets and will be essentially more beneficial to the

specific and stable combination of NPs to thrombus

under high blood flow shear stress. Furthermore, after
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Figure 7 Representative fluorescence microscopy images and quantitative data from the targeting test in a simulated circulation device in vitro.

Notes: (A) White thrombus. (B) Red thrombus. (C) Quantitative analysis of the fluorescence intensity. In a dynamic environment, DDNPs are capable of binding and remain on

white/red thrombus at significantly enhanced levels over time compared to non-targeted (PLGA-pDA) and even singly targeted NPs (RDNPs and EDNPs). (Scale bar: 100 μm).

Abbreviations: PLGA-pDA, polydopamine-coated poly(lactic-co-glycolic acid) dual-modality nanoparticles; RDNPs, PLGA-pDA modified by the cRGD peptide; EDNPs,

PLGA-pDA modified by the GA-EWVDV peptide; DDNPs, dual-modality and dual-ligand nanoparticles.
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circulation with the same targeted NPs for 5 min, the

fluorescence intensity in the white thrombus was signifi-

cantly higher than that in the red thrombus, also suggesting

that the NPs are more likely to bind to white thrombus.

However, the difference among the targeting groups in the

red thrombus is not as obvious as that in the white throm-

bus, which may be related to the structure of the thrombus

itself. Red thrombus is prone to rupture during a long

cycle, resulting in NPs embedded in the gaps, which is

difficult to rinse off at the low flow rate.

In dynamic conditions in vitro, according to the

results of the pathological sections (Figure 8A and B),

white thrombi retract more and have a more compact

structure than red thrombi, which may reduce the bulk

flow permeability of NPs through the clot. As a result,

the NPs (black) are distributed on the surface of the

thrombi. This finding is consistent with other research-

ers’ studies, in which cross-linked fibrin and platelet

agglomerates impede diffusion into clots for even smal-

ler nanocarriers (<20 nm).8,37–39 Furthermore, the

structure of red thrombi is relatively looser, and the

surface will crack after a long time of flushing, which

results in passive retention of NPs in the cracks, not just

specific binding. Therefore, NPs can be distributed on

the surface and inside the thrombi and can aggregate to

the area where activated platelets are mainly distributed.

However, for both red and white thrombi, the number of

NPs in the dual-targeted group was significantly higher

than that in the single or non-targeted groups, and the

same type of NPs was more likely to target white

thrombi. These findings were consistent with our pre-

vious fluorescence microscopy images and quantitative

analysis results.

Under static conditions in vitro, quantitative analysis of

the binding of activated platelets to fluorescent NPs by flow

cytometry showed the same results; that is, the binding rate

of the dual-targeted group was greater than those of the

single-targeted and non-targeted groups, but the difference

was not as obvious as that under dynamic conditions

(Figure 9). This finding shows that the advantage of dual
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Figure 8 H&E staining images of thrombus sections.

Notes: (A) White thrombus. (B) Red thrombus. (C) Mixed thrombus. Under optical microscope, the continuity of the inner wall of the blood vessel was interrupted (red

arrow). In the targeting groups, black NPs were obviously distributed on the surface or inside of the thrombus, especially in the dual-targeted group; in the non-targeted

group, only a small number of NPs were distributed (black square). (Scale bar: 50 μm).

Abbreviations: PLGA-pDA, polydopamine-coated poly(lactic-co-glycolic acid) dual-modality nanoparticles; RDNPs, PLGA-pDA modified by the cRGD peptide; EDNPs,

PLGA-pDA modified by the GA-EWVDV peptide; DDNPs, dual-modality and dual-ligand nanoparticles.
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ligands is that they can make the combination faster and

more stable in dynamic conditions than in static conditions.

Overall, the targeting effect of the DDNPs is better than

that of the single or non-targeted groups. In addition, the

targeting effect of NPs depends not only on the number and

distribution of activated platelets but also on the structure and

type of thrombus. Unfortunately, because of the long time and

the high flow rate in circulation, the thrombus on the slide will

disintegrate or even partly curl and fall off. Therefore, our in

vitro experiment did not cycle for a longer time to obtainmore

information, and we did not study how NPs bind to thrombus

under different shear stresses. Another limitation is that we

did not use red and white clots at different stages for circula-

tion in vitro. Whether the NPs have targeting differences in

different stages of the thrombus remains to be further verified.

Targeting effect and dual-modality imaging

performance of NPs in vivo
Thrombosis models in vivo are mainly divided into red throm-

bosis andmixed thrombosis. The former is induced by slowing

down the blood flow resulting in red clots with a large propor-

tion of closely packed erythrocytes,40 and the latter is formed

by mechanical, chemical and other methods of injuring the

intima of blood vessels in vivo.9,22,41,42 Considering that

mixed thrombosis is more in line with the human pathophy-

siological mechanism, we selected mixed thrombosis models

in vivo. To prove that DDNPs also have higher targeting

specificity and binding stability than do single or non-targeted

NPs in vivo and can significantly improve the imaging effect

of mixed thrombus under high shear force in vivo, it is

necessary to select a suitable imaging modality for visualiza-

tion research. In addition, the visualization of the delivery and

distribution of NPs could play a guiding role in disease

therapy.43–45 However, one of the greatest conundrums of

selection is that modalities with the highest sensitivity have

relatively poor resolution, while those with high resolution

have relatively poor sensitivity.46 Hence, combining different

imaging modalities, such as CT/optical imaging,47 positron

emission tomography (PET)/MRI,48 and MR/optical

imaging,49–51 to achieve complementary advantages has

attracted wide attention. Combining the advantages of optical

imaging and ultrasonic imaging, laser-induced PA imaging

achieves a great penetration depth and excellent spatial resolu-

tion due to the low scattering of acoustics and has developed

rapidly as an important molecular imaging technology.52 In

addition to our previous study, many studies have confirmed

that a combination of PA and MR in the diagnosis and treat-

ment of diseases can achieve satisfactory results.9,53–55

Therefore, PA/MR dual-modality imaging combined with

pathological observation were used in this study.

The mural thrombus induced by the FeCl3 method

was confirmed by pathology to be a mixed thrombus, in

which the continuity of the inner wall was interrupted,

and a large number of platelet trabeculae were formed.

When the abdominal aortic mural thrombus model was

established, vascular wall thickening, echo enhancement

and lumen stenosis could be observed in all groups

under the B-ultrasound mode, and no PA signal was

detected in the thrombus itself before injection in the

PA mode. The measurement of the PA value (Figure

10B) shows that the PA signal of the thrombus itself is

very weak and its influence on the experimental results

can be neglected. However, after injection via the tail

vein, the non-targeted group had only a small amount of

PA signal, while the targeted groups, especially the

dual-targeted group, had an obvious amount (Figure

10A). Statistical analysis of the PA signal values

(Figure 10B) confirmed that there was a significant

difference after injection with dual-targeted NPs com-

pared with non-targeted and single-targeted NPs, which

proved that the presence of the dual ligand can signifi-

cantly enhance the binding rate of NPs to thrombus,

leading to the enhancement in the PA signals. There

are also differences between the EDNPs and RDNPs,

suggesting that the former are more likely to bind stably
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Figure 9 Flow cytometry analysis of the binding of nanoparticles (NPs) to activated

platelets under static conditions.

Notes: The binding rate of fluorescently labeled NPs to activated platelets in the

targeted groups was higher than that in the non-targeted group, and the binding

rate of the dual-targeted group was the highest.

Abbreviations: PLGA-pDA, polydopamine-coated poly(lactic-co-glycolic acid)

dual-modality nanoparticles; RDNPs, PLGA-pDA modified by the cRGD peptide;

EDNPs, PLGA-pDA modified by the GA-EWVDV peptide; DDNPs, dual-modality

and dual-ligand nanoparticles.
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to thrombus under high shear stress in vivo. This finding

is consistent with the literature.14,18 That is to say, in the

middle and late stages of thrombosis, the continuous

high expression of P-selectin and the decrease of the

platelet rolling speed are more conducive to the combi-

nation of NPs and thrombus.

The abdominal aortic mural thrombus of each rat showed

high signal intensity on the T2-weighted sequence, which was

in sharp contrast with that of the negative iron-loaded NPs we

constructed and provided a theoretical basis for the follow-up

work. After injection via the tail vein, the high signal area of

the mural thrombus in the non-targeted group (PLGA-pDA)

was not significantly decreased compared with that before

injection, but the thrombus area in the targeted groups,

especially in the dual-targeted group, was significantly

decreased (Figure 11A), and the maximum area change rate

was 80.00% (RDNPs: 48.48%. EDNPs: 57.50%). The

decrease of the high signal area of the thrombus further proves

that the thrombus binds to more negative contrast agents, and

the binding effect is still DDNP > EDNP > RDNP. Statistical

analysis (Figure 11B) confirmed that there were differences in

the area measurements before and after injection as well as in

the area reduction among groups.

The sections of abdominal aorta and H&E staining

after the dual-modality imaging studies also showed the

same results. Significant aggregation of black NPs was

observed on the thrombus in the targeting groups, espe-

cially in the dual-targeted group, while only a small

amount of NPs was observed in the black square area of

the non-targeted group (Figure 8C).

The results showed that DDNPs could improve the

targeting effect both in vivo and in vitro and could sig-

nificantly enhance the imaging ability of mixed thrombi in

vivo, which can provide a strong backing for further

targeted thrombolysis research in the future. However,

whether there are differences in the targeting of NPs at

different time points (representing different stages of

thrombosis) and different parts (representing different

shear stresses) after injection during PA/MR imaging still

requires further study.

Safety evaluation
No death or significant changes in body weight were

observed in the SD rats during the 7-day study. The

hematology as well as liver and kidney function data

showed that the WBC increased slightly 7 days after

injection with the DDNPs, while the alamine aminotrans-

ferase (ALT) and aspartate aminotransferase (AST)

decreased slightly, but there were no significant differ-

ences among the other indices (Figure 12A). H&E staining

of the heart, liver, spleen, lung and kidney showed no

signs of inflammation, necrosis or abnormal cell morphol-

ogy compared with that of the control group (Figure 12B).

The toxicity test of NPs is an important means to

evaluate their clinical safety. However, there is no author-

itative reference value for hematological, serum biochem-

istry and other indicators of experimental animals, and few

reagents are specifically used for animal detection. In

addition, the differences in animal strain, age, sex and so

on make the data between laboratories difficult to com-

pare, so we can only synthesize various indicators to carry
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Figure 10 PA molecular imaging.

Notes: (A) PAI of mixed thrombus in the abdominal aorta of SD rats before and

after intravenous administration of different NPs. (B) Quantitative analysis of PA

values of the ROI. The PA signals after injection were obvious in the targeted

groups, especially in the dual-targeted group. The PA signal of EDNPs is more
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PLGA-pDA modified by the cRGD peptide; EDNPs, PLGA-pDA modified by the
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Figure 11 Magnetic resonance molecular imaging.

Notes: (A) MRI of mixed thrombus in the abdominal aorta of SD rats before and after intravenous administration of different NPs. Red circles show the abdominal aorta with mixed

thrombus. (B) Quantitative analysis of the change in the hyperintensity areas of the thrombus. The high signal area of the thrombus was significantly decreased after injection in the

targeting groups, especially in the dual-targeted group. (*P<0.05, **P<0.01).
Abbreviations: PLGA-pDA, polydopamine-coated poly(lactic-co-glycolic acid) dual-modality nanoparticles; RDNPs, PLGA-pDA modified by the cRGD peptide; EDNPs,

PLGA-pDA modified by the GA-EWVDV peptide; DDNPs, dual-modality and dual-ligand nanoparticles.
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out the toxicity test. We concluded that the constructed

DDNPs have certain biological safety.

Conclusion
PA/MR dual-modality NPs with dual ligands were suc-

cessfully constructed using the double-emulsion method

and the pDA method, and the peptide-grafting rate on

DDNPs was up to 99.36%, of which 50.85% were dual-

peptides. The targeting specificity and binding stability to

red and white thrombus in vitro improved, and the target-

ing effect depended not only on the number and distribu-

tion of activated platelets but also on the structure and type

of thrombus. The NPs enhanced the targeting effect of

mixed thrombus under high shear stress in vivo.

Additionally, no matter what type of thrombus, the target-

ing effect of NPs is DDNP > EDNP > RDNP > PLGA-

pDA. However, additional work is needed to evaluate the

combination of NPs and thrombus, for instance, whether

there are differences in targeting at different time points

and under different shear stresses in vitro and in vivo.

Further detailed supervision of both fresh and old thrombi

at different stages is needed, which will affect the expres-

sion of targets in thrombosis.

As highly effective and targeted PA/MR dual-mod-

ality thrombus imaging agents, these NPs will help to

improve the in vivo targeting ability, especially in

arteries. On the other hand, these NPs have the potential

ability to encapsulate thrombolytic drugs at the same

time, and thus, such efficient targeted NPs can be used

as a multi-functional platform to guide thrombolytic

therapy under MR/PA dual-modality imaging in the

future, and they provide a new method for the integra-

tion of diagnosis and treatment.
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Figure 12 Safety evaluation of DDNPs.

Notes: (A) Changes in blood and biochemical indices before and after injection with DDNPs. Although the ALT, AST and WBC were different after injection with DDNPs,

the overall condition of the rats was good. (B) Pathological H&E staining. No abnormal cell morphologies appeared in the H&E-stained sections of the heart, liver, spleen,

lung, or kidney 7 days after injection with DDNPs. (Scale bar: 50 μm) (*P<0.05, **P<0.01).
Abbreviations: ALT, alamine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; BUN, blood urea nitrogen; CRE, creatinine; WBC, white blood cell;

Plt, platelet; Hb, hemoglobin; DDNPs, dual-modality and dual-ligand nanoparticles.
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