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Background: Fabrication of a smart drug delivery system that could dramatically increase the

efficiency of chemotherapeutic drugs and reduce the side effects is still a challenge for

pharmaceutical researchers. By the emergence of nanotechnology, a huge window was opened

towards this goal, and a wide type of nanocarriers were introduced for delivering the che-

motherapeutic to the cancer cells, among them are cyclodextrins with the ability to host

different types of hydrophobic bioactive molecules through inclusion complexation process.

Aim: The aim of this study is to design and fabricate a pH-responsive theranostic nanocap-

sule based on cyclodextrin supramolecular nano-structure.

Materials and methods: This nanostructure contains iron oxide nanoparticles in the core

surrounded with three polymeric layers including polymeric β-cyclodextrin, polyacrylic

acid conjugated to sulfadiazine, and polyethylenimine functionalized with β-cyclodextrin.

Sulfadiazine is a pH-responsive hydrophobic component capable of making inclusion

complex with β-cyclodextrin available in the first and third layers. Doxorubicin, as an

anti-cancer drug model, was chosen and the drug loading and release pattern were

determined at normal and acidic pH. Moreover, the biocompatibility of the nanocapsule

(with/without drug component) was examined using different techniques such as MTT

assay, complement activation, coagulation assay, and hemolysis.

Results: The results revealed the successful preparation of a spherical nanocapsule with

mean size 43±1.5 nm and negatively charge of −43 mV that show 160% loading efficacy.

Moreover, the nanocapsule has an on/off switching release pattern in response to pH that

leads to drug released in low acidic pH. The results of the biocompatibility tests indicated

that this nano drug delivery system had no effect on blood and immune components while

it could affect cancer cells even at very low concentrations (0.3 μg mL−1).

Conclusion: The obtained results suggest that this is a “switchable” theranostic nanocapsule

with potential application as an ideal delivery system for simultaneous cancer diagnosis and

therapy.

Keywords: nanocapsule, host-guest interaction, on/off switching, pH-responsive, smart

nanocarrier

Introduction
Finding an effective method for the treatment of cancer, as an incurable, progres-

sive illness, has attracted lots of attention. Conventional chemotherapy, as one of

the most frequently used methods for cancer treatment, is carried out based on non-

targeted drug delivery to cancer cells that in turn, is associated with undesirable
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side-effects on normal cells. In fact, the common anti-

cancer drugs have several drawbacks, including poor

water solubility, immune system activation, and fast elim-

ination from the body, leading to insufficient delivery to

the tumors and suboptimal therapeutic activity. Therefore,

design and fabrication of a drug delivery system with

prominent properties for cancer therapy is the aim of

variety of researches.1–5

The emergence of nanoscience and nanotechnology

created many hopes for the treatment of various diseases

through the introduction of novel strategies. One of the

most interesting fields of nanotechnology in medicine and

pharmacology is the fabrication of nanocarriers for speci-

fic delivery of drugs to the target site. These nanocarriers

are classified in certain categories and can act as a mask

for the drugs leading to an increase in the bioavailability of

the drugs by protecting them from blood clearance through

immune system factors.6–9

Using stimuli triggers introduce a new class of carriers

entitled smart nano-systems, which could release their

cargo in response to a specific physiological feature, at

the appropriate time, right site and suitable dose. These

stimuli trigger are categorized into three main classes:

chemical (pH, ionic strength), physical (light, magnetic,

and temperature) and biological (enzymes, and receptor)

stimulation. The unique property of smart delivery systems

in releasing their drug cargo in the presence of a specific

condition could increase the therapeutic efficiency along

with decrease in the side effects of the drugs.10–13

Integrating therapeutic properties of these types of

nano-systems with diagnosis features could lead to pro-

duce multifunctional nanocarriers recognized as smart

nano-theranostics. Nano-theranostics are a class of nano-

systems with the ability of simultaneous diagnosis and

therapy, in which the diagnostic material emerges as the

therapeutic agent itself or in combination with a therapeu-

tic species. So far, several types of nanomaterials have

been introduced with the ability to enhance the quality of

imaging techniques like magnetic nanoparticles in mag-

netic resonance imaging (MRI), gold nanoparticles in

computed tomography (CT), and graphene oxide nano-

sheets and quantum dots in fluorescence diagnosis.14–17

Among different types of nanocarriers, hollow nano-

capsules are one of the most important classes, which

consist of a hole surrounded by one or more polymeric

shells in the size of nanometers (10–1000 nm), that have

the ability of drug entrapment in their internal space. There

are several methods for the preparation of nanocapsules

including nano-precipitation, emulsion–diffusion, tem-

plate-based method, double emulsification, emulsion-coa-

cervation, polymer-coating, and layer-by-layer (LbL).18–23

LbL, which was proposed by Sukhorukov and his co-

worker in 1998, is known as one of the most promising

techniques for nanocarrier formation. This method is based

on assembling multilayers, usually with the opposite

charges, on the surface of an organic or inorganic template

which will be removed by the use of etching procedures to

produce hollow capsules with multilayer shells.24,25

Recently, application of cyclodextrin (CD) and its deri-

vatives for the preparation of different types of nano-

systems has attracted lots of attention. β-cyclodextrins
(βCDs) are cyclic oligosaccharides consisting of α-(1–4)
inked- glucopyranose units that has a symmetrical form

resembling a truncated cone. The specific structure of βCD
with hydrophobic inner cavity and hydrophilic surface

makes it a promising candidate for drug delivery systems.

In fact, the inclusion complex formed between hydropho-

bic drugs as guests and the cavity of CD as the host is

widely used for drug delivery purposes. This feature not

only could be used for formulating hydrophobic drugs, but

could also be applied for production of supramolecular

structures like nanosponge and nanocapsules.26–28

Sulfadiazine (SDN) is a type of sulfonamide family, a

group of anti-bacterial and anti-fungal drugs with the

ability of infection treatment. SDN has a similar structure

with para-aminobenzoic acid, which is necessary for bac-

terial folic acid synthesis pathway and thus could stop the

synthesis procedure by inhibition of dihydropteroate activ-

ity. The low water solubility and chemical structure of this

drug make it a good candidate for interaction with the

hydrophobic cavity of βCDs. Moreover, due to its mole-

cular features, it can show a pH-responsive behavior.29–31

Based on the data mentioned above, in this research, it

is intended to fabricate a new pH-responsive polymeric

nanocapsule through the LbL method. For this purpose,

Fe2O3 nanoparticles were synthesized and covered with

Au nano-shell through Lyon’s method.32 Then, this core-

shell nanoparticle was used as a template for loading three

polymeric layers on its surface, which was done through

exploiting the inclusion complex formation between βCD
available in the first and the third layers and partially

hydrophobic SDN existed in the second layer. The first

layer consisted of thiolated βCD attached on the surface of

Au through self-assembly method. Polyacrylic acid (PAA)

conjugated with the SDN, as a pH-responsive agent, was

used as the second layer constituent forming inclusion
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complexes with βCDs of the first layer. In the third layer,

βCD functionalized polyethylenimine was used to make

inclusion complex with remaining SDNs. The presence of

polymeric structure in the second and the third layer is

critical since they can maintain the structural sustainability

of the nanocapsule. At the final step, of nanocapsule fab-

rication, the Au shell was removed to prepare the whole

structure of the nanocapsule. Different types of character-

istic analysis (FTIR, UV-Visible spectroscopy, FE-SEM,

EDX, NMR, XRD, and Zeta potential) were conducted to

evaluate the successful synthesis of the nanocapsule. Then,

doxorubicin (DOX) as a hydrophilic, anti-cancer drug was

loaded into the nanocapsule and the drug loading and

release pattern of nanocapsule were assessed in response

to pH (7.4 and 6.6). At the end, the biocompatibility of the

nanocapsules (with and without drug) was evaluated by

cytotoxicity and hemocompatibility (coagulation, comple-

ment activation, and hemolysis) tests.

Materials and methods
Materials
FeCl2.4H2O and FeCl3.6H2O were purchased from Merck,

Germany. HAuCl4.3H2O, tetramethylammonium hydro-

xide (TMAOH), sulfadiazine, PAA (Mw=1800 g mol-1,

R & D application), (1-Ethyl-3-(3-dimethylaminopropyl)

carbodiimide hydrochloride (EDC), polyethylenimine

(PEI), Iodine, and potassium iodide were received from

Sigma, USA. 4-Dimethylaminopyridine (DMAP), sodium

borohydride, epichlorohydrin, sodium citrate, cystamine

dihydrochloride, hydroxylamine hydrochloride, dimethyl

sulfoxide (DMSO) and dimethylformamide (DMF) were

obtained from Merck, Germany. MCF-7 and L-929 cell

lines were purchased from Pasteur Institute of Iran,

Tehran, Iran.

Methods
Preparation of nanocapsule

Iron oxide synthesis

Fe3O4 nanoparticles were synthesized using the co-preci-

pitation method.33 Briefly, FeCl2.4H2O and FeCl3.6H2O

were dissolved in degassed HCl (0.4 M) and were then

rapidly added to 375 mL of ammonia solution (0.7 M).

The reaction solution should be mechanically stirred under

N2 atmosphere for about 30 mins at 45 °C by adjusting the

pH around 10. Then, the synthesized nanoparticles were

collected using neodymium magnet, washed several times

with deionized water (DI-water) and ethanol and dried

with freeze-dryer (VaCo5, Zirbus, Germany).

Maghemite nanoparticles were then synthesized by

oxidation of Fe3O4 nanoparticles. For this purpose,

Fe3O4 nanoparticles were sonicated in a solution of

HNO3 (0.4 M) for about 30 mins and then were refluxed

in HNO3 (0.04 M) at about 300 °C for 2 hrs. At the end,

the reddish-brown nanoparticles were collected by the

magnet, washed several times with DI-water and dried

by using freeze-dryer.32

Fabrication of Fe2O3@Au core-shell nanoparticles

Fe2O3@Au nanoparticles were synthesized based on Lyon’s

iteration method with little modifications.34 It should be

noted that Au has very low tendency to attach to the surface

of Fe; therefore iron oxide nanoparticles need a pre-treat-

ment step to be prepared for coating with Au shell. For this,

the nanoparticles were dissolved in a solution of TMAOH

(0.1 M) for at least one night in a concentration of about

36 mM. Then, a diluted solution of nanoparticles (1.1 mM)

was mixed with the same amount of sodium citrate (0.1 M)

for about 20 mins. After that, this solution was diluted 20

fold with the addition of DI-water and TMAOH and then

different amounts of NH2OH·HCl, 0.2 M (750, 250, 250,

250, 250 μl) and HAuCl4, 1% (625, 500, 500, 500, 500 μl)
were added to this solution during five consecutive itera-

tions with 30 mins interval times.

Synthesis of the first polymeric layer (L1)

The first polymeric layer was consisted of a specific amount

of thiolated-βCD (βCDSH) polymerized on the surface of

Fe2O3@Au nanoparticles. The βCDSH was produced in a

two-step mechanism; at first, βCDs were tosylated using

para-toluenesulfonyl chloride to achieve mono-6-tosyl-β-
cyclodextrin. In detail, 2 gr of βCDs were dispersed in

28 mL DI-water, then 6 mL of NaOH solution was added

drop-wise to dissolve the βCD. The tosylation reaction was

occurred during a 5 h interaction between the above solu-

tion and para-toluenesulfonyl chloride (500 mg). The final

solution was filtered to remove non-reacted tosyl reagents,

and tosylated-βCDs (Tos-βCDs) were separated by the addi-
tion of cationic resins in ice-bath.35

At the next step, Tos-βCDs were reacted with cysta-

mine dihydrochloride in a mixed solution of water: DMSO

(1:1), at 70 °C for 72 h. The results of this reaction were

exposed to 1ml of sodium borohydride (2.6 mmol) that

reduced the disulfide bond of the cystamine and produced

βCDSH (Scheme 1).36,37
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The monomeric βCDSH species were then attached to

Fe2O3@Au nanoparticles through a self-assembling reac-

tion during 24 h at room temperature. Then, the polymer-

ization reaction was conducted on the surface of

nanoparticles using epichlorohydrin as the cross-linker.

The final product was separated by the magnet, washed

with DI-water and dried by freeze-dryer.

Synthesis of the second polymeric layer (L2)

The second polymeric layer contained a pH-responsive

reagent which could form host-guest interactions with βCD.
It was prepared through a mediation reaction between SDN

and PAA with the aim of EDC/DMAP as coupling agents.

Briefly, 1 mmol of PAAwas dissolved in 40 mL DMF. After

10 min, SDN (8 mmol) was added to the mentioned solution,

DMAP (1.5 mmol) and EDC (3 mmol) were then added with

about 15 mins interval time, respectively. The final solution

was stirred for about 48 h at room temperature, precipitated

in water and dried after washing several times with DI-water.

Synthesis of the third polymeric layer (L3)

In the third layer, the linear form of polyethylenimine (L-PEI)

was used as a backbone for the attachment of βCDs. For this, 4
gr of Tos-βCD was reacted with the amine groups of polymer

L-PEI (500 mg) in 36 mL DMSO for seven days. The final

product was precipitated in the presence of excess amounts of

acetone and dialyzed against water for another seven days to

remove non-reacted components.37

Fabrication of self-assemble nano-system

To prepare the nano-system, an aqueous solution of

Fe2O3@Au/PβCD nanoparticles was added dropwise to the

solution of L2 in DMSO, and the final reaction mixture was

magnetically stirred for 2 days. Then, the nanoparticles were

collected by a magnet, washed with DI-water to remove

unreacted materials, and after 2 h keeping in −20 °C, dried

with freeze-drier to tight the reaction of βCDs and SDNs. In
the next step, an aqueous solution of Fe2O3@Au/PβCD/
PAA-SDN was added to the aqueous solution of PEI-βCD,
dropwise, stirred for 48 h and dried the same as described for

the previous step.38

Au layer removal

Finally, the nanocapsule was prepared through the Au

layer removal using a solution of potassium iodide and

extra amounts of iodine in water.39 Using excess amounts

of iodine prevented the decomposition of unstable gold

iodide. The Au depleted nanocapsules were then separated

by a magnet, washed several times with DI-water to

remove excess iodine and dried with freeze-dryer.

Characterization

Different types of physicochemical analysis were used to

characterize the nanocapsule in the different fabrication

steps. FTIR spectroscopy (400–4000 cm−1) was chosen to

evaluate the surface characteristics of each layer and also

inclusion complex formation (JASCO 6300 spectroscope,

Scheme 1 Two step production of βCDSH.
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Japan, transmission mode). The crystalline structure of nano-

particles and host-guest interaction were evaluated by XRD

(Bruker diffractometer with Cu Kα radiation, Germany). To

assess the effect of each Au addition iterations on shell forma-

tion, UV-Visible spectroscopy (V670, Japan) was utilized.

Size, morphology, and elemental composition of the nanocap-

sules were determined by FE-SEM/EDX (MIRA3 TESCAN,

Czech Republic). In addition, H-NMR (Bruker Ultrasheet-

400 MHz Spectrometer, Germany) was selected to confirm

the production of polymeric layers. The charge of the nano-

system after the addition of each layer was also assessed by

Zeta potential (HORIBA, scientific SZ100, Japan).

Drug loading determination

DOX is a typical hydrophilic drug that is widely used for the

treatment of various types of cancers. It can affect the cancer

cells by intercalating the nucleus DNA through blocking

gene replication and transcription. The rapid elimination of

the drug from the body, as well as its nonreversible side

effects, shed light on the importance of using nanocarrier

for its delivering to the targeted site.40,41

DOX loading was done in three different mass ratios of

drug (D): nanocapsule (N) (2:1, 1:1 and 1:2) in phosphate

buffer saline (PBS) in two different pH (6.6 and 7.4). After

24 h of drug exposure with nanocarrier at room tempera-

ture, the loaded nanocarriers were collected with a magnet,

washed with PBS to remove unloaded drugs and dried

with freeze-dryer.

The amount of unloaded drug was determined by mea-

suring the absorbance of the supernatant at 490 nm using

UV-Visible spectrophotometer, then the percentage of

loading and entrapment efficiency of the drug were calcu-

lated based on Equation (1) and (2), respectively:42

% Loading Efficiency LEð Þ ¼
Total DOX added wtð Þ � Unloaded DOX wtð Þ

Total nanocarrier wtð Þ (1)

%Entrapment Efficiency EEð Þ ¼
Total DOX added wtð Þ � Unloaded DOX wtð Þ

Total DOX added wtð Þ (2)

Ph-responsive drug release

The pH-responsive release profiles of selected drug-loaded

nanocapsules were assessed at 37 °C during 14 days. For

this purpose, specific amounts of drug-loaded nanocap-

sules were dispersed in 1.5 mL PBS with two different

pH of 7.4 and 6.6, which were selected based on the

normal pH of the body and pH of tumor tissues,

respectively.43 After an appropriate time, nanocapsules

were collected by a magnet, and the amounts of drug

released were determined by comparing the absorbance

of the supernatant with the standard curve.

Biocompatibility tests

MTT assay

The cytotoxicity of the nanocapsules (with/without drug

molecules) was evaluated by MTT assay. For this purpose,

MCF-7 and L929 cells were selected as cancerous and nor-

mal cell lines, respectively. Cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM) medium in 96 well plates

with the concentration of 10,000 cells per well and incubated

for 24 h in 4.5% CO2 atmosphere at 37 °C. After that,

different concentrations (0.1, 0.2, 0.3, 0.4 and 0.5 μg mL−1)

of drug-loaded nanocapsules in media were exposed to cells

for 24 and 48 h. Moreover, specific amounts of free drugs (as

positive control) and nanocapsule (without drug) were also

subjected to the cells. After 24 and 48 h, the medium of each

well was discarded, cells were washed with PBS and then

100 μl of fresh media with 10 μl MTTsolution (5 mgmL−1 in

PBS) was added to each well. After 4 h incubation at 37 °C,

the supernatant of each well was replaced with 100 μl DMSO

and cells were incubated for another 1 h. During this process,

the MTT salt was converted to an insoluble component,

formazan, via an enzymatic reaction done in the mitochon-

dria of the living cells. The produced formazan was then

solubilized by the addition of DMSO and the absorbance of

each well was determined at 493 nm using ELISA reader

(Bio-Rad, USA).

Hemolysis assay

To evaluate the hemolytic effect of nanocapsules (with/

without drug) on the red blood cells (RBCs), 3 mL of the

blood sample in EDTA-contained tube (from a volunteer

with ethical permissions) was centrifuged for 5 mins at

1600 RPM to separate the RBCs from other parts of the

blood. The precipitate RBCs of the blood sample were then

washed three times with PBS and centrifuged to remove

any hemolytic contaminant. Then, 200 μl of the sedimented

RBC was dispersed in 3.8 mL of PBS. After that, 200 μl of
this solution was added to 800 μl of nanocapsule solution

(with different concentrations). DI-water and PBS were

used as positive and negative controls, respectively. The

samples were kept at room temperature for about 3 h and

then were centrifuged at 1600 RPM for 5 mins. The absor-

bance of the supernatant was measured at 541 nm and the

amount of hemolysis was calculated using Equation 3:44
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% of Hemolysis ¼
Absorbance of sample� Absorbance of negative control

Absorbance of positive control� Absorbance of negative control

(3)

Complement activation

The complement system is a part of the immune system

contains at least 35 proteins that can be stimulated in response

to any foreign material that enters the body and eliminates it

through three main pathways: classical, alternative and lectin

route. Stimulation of each of these systems can limit the

foreign materials through the attachment of these proteins on

the surface of the material or/and by activating the opsonins of

the immune system.45 Two main components of this system

that are evaluated in blood tests are C3 and C4 proteins. Based

on this, in this research, different concentrations of nanocap-

sules (with/without drug) were exposed to blood plasma and

their effects on the activation of C3 and C4 proteins were

evaluated by using a commercial single radial immunodiffu-

sion (SRID) immunoassay kit.46

Coagulation assay

Coagulation is one of the other eliminating mechanisms of

the immune system for the foreign materials in which the

activation of a cascade of several factors through two main

intrinsic and extrinsic pathways will lead to cross-linked

fibrin clot formation. Based on this, here the effect of the

nanocapsules on the intrinsic and extrinsic pathways of the

coagulation system was evaluated by quantitative measure-

ment of the change in the prothrombin time (PT) and acti-

vated partial thromboplastin time (APTT). To this end,

specific amounts of platelet poor plasma were exposed to

different concentrations of nanocapsules (with/without drug)

and were incubated at 37 °C for about 30 mins. Then the

activation time was measured after addition of Innovin (as

the activator of extrinsic pathway), and actin and calcium

chloride (the activators of intrinsic pathways).47

Statistical analysis

SPSS software (version 21, parametric analysis of variance

[ANOVA (Tukey)]) was used for quantitative data analysis

and results are reported as mean values ±standard devia-

tion (SD) with significant value at P≤0.05.

Results
Fabrication of iron oxide nanoparticles
Monodispersed maghemite nanoparticles were synthesized

by oxidation of Fe3O4 nanoparticles. For this purpose, the

Fe3O4 nanoparticles were oxidized in the presence of diluted

nitric acid that led to the preparation of reddish-brown nano-

particles from the primary black ones. The fabrication of

magnetic nanoparticles was confirmed by using different

analytical tests. The FE-SEM result of γ-Fe2O3 is shown in

Figure 1. It is evident from the figure that the γ-Fe2O3

nanoparticles have monodispersed spherical shape with 19

±2 nm size. Moreover, the formation of γ-Fe2O3 nanoparti-

cles was also evaluated by using other techniques such as

FTIR and XRD, the result of which are reported in the

supporting information as Figures S2 and S3.

Synthesis of fe2o3@au core-shell

nanoparticles
For preparation of Au coated Fe2O3 nanoparticles, a solution

of 1.1 mM γ-Fe2O3 wasmixedwith sodium citrate for at least

20 mins. During this process, the activated surface of the iron

oxide nanoparticles was modified with citrate groups that act

as a thin layer coating on the surface of magnetic nanoparti-

cles to prepare them for Au reception, as well as, being a

critical reagent for the Au shell reduction process. After

dilution of the above solution, HAuCl4.3H2O in combination

with the reducing agent (NH2OH·HCl) was added in five

iterations resulting in the fabrication of a thick shell on the

surface of nanoparticles. By addition of the first iteration, the

color of the solution changed from light brown to dark purple

(Figure 2A) confirming the production of Au nanoparticles.

In the first iteration, the prepared Au nanoparticles were most

likely deposited on the surface of the nanoparticles in an

Figure 1 FE-SEM analysis of γ-Fe2O3.
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island pattern which was then converted to a complete shell

by proceeding of the next iterations. This feature was con-

firmed by the results of UV-Visible spectroscopy in which a

blue shift was observed after the addition of each iteration

(Figure 2B). In other words, the blue shift of the UV-Visible

spectrum revealed that the morphology of the coated nano-

particles was gradually changed to a uniform spherical shape

during each addition, a phenomenon that also could be

approved by a significant decrease in the broadening of the

peaks.48

The spherical shape of the core-shell nanoparticles was

also confirmed through the result of FE-SEM imaging. As it

is shown in Figure 3A, coating Au on the surface of nano-

particles turned to decrease the aggregation of the nanopar-

ticles and resulted in nanoparticles with mean size of 36

±4 nm. Moreover, the chemical composition of the template

was assessed by Energy Dispersive X-ray (EDX) spectro-

scopy. The presence of Au and Carbon atoms confirmed the

gold coating on the surface of iron oxide nanoparticles

(Figure 3B). The successful coating of magnetic nanoparti-

cles with Au shell was also revealed by the crystal structure

of the nanoparticles (XRD) (Figure 3C), in which peaks at

around 45°, 52°, 77° and 93.5° could be indexed to (111),

(200), (220) and (311) planes of gold cubic and weak peaks at

36°, 42°, 51° and 75° could be indexed to (200), (311), (002)

and (102) planes of γ-Fe2O3 (based on Joint Committee on

Powder Diffraction Standards, JCPDS 04–0784 and JCPDS

39–1346, respectively).49

Preparation of nanocapsule
As mentioned previously, the nanocapsules were con-

sisted of a template with three polymeric layers. In the

first layer, βCDSH components were attached on the

surface of the Au shell through self-assembly driving

force and then, they were polymerized using epichlor-

ohydrin. During the polymerization reaction, the chlor-

ine atom of the epichlorohydrin acts as a leaving group

and by the interaction with the activated hydroxyl group

of βCD, leads to the formation of a connection between

βCD and epichlorohydrin through the ether bond. In the

second step of this reaction, a ring-opening polymeriza-

tion reaction occurred between the other side of epi-

chlorohydrin and one another βCD component. The

cascade reaction happened between the available

Figure 2 (A) Changing the solution color before and after of Au addition, (B) UV-Visible spectroscopy of five Au iterations.
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βCD components and epichlorohydrin, leads to the pro-

duction of a polymeric chain around the γ-Fe2O3@Au

nanoparticles.50

The SDN functionalized PAA was selected as the sec-

ond layer that was prepared through an amidation reaction.

For this purpose, excess amounts of SDNs were exposed

to the carboxyl groups of PAA in the presence of EDC and

DMAP. Then, the inclusion complex between PAA-SDN

and βCDs of the Fe2O3@Au/PβCD was formed within

72 h using the freeze-drying method.51 In this process,

the amino-hexagonal ring and the NH group of the SDN

interact with the hydrophobic cavity of βCD (Scheme 2).

Changing the pH of the surrounded environment induced a

positive charge in this NH group leading to a partial

exclusion of SDN from the cavity.

For the third layer, L-PEI polymer functionalized with

βCDs was chosen. The attachment of PEI to Tos-βCDs

was performed with the aim of EDC and DMAP. The as-

prepared L3 layer was loaded on the γ-Fe2O3@Au/PβCD/

PAA-SDN by using the freeze-drying method. Finally, the

hollow nanocapsule was prepared by removing the Au

core of the nano-system in the presence of a solution of

KI and I2. The first significant change that revealed the Au

deletion was the color change of the samples from dark

purple to light brown (Figure 4).

Characterization
Several types of physicochemical analysis were used to

assess the fabrication of the nanocapsule and its compo-

nents. The results of characterization tests of the polymeric

layers can be found in supporting information (Figures

S1-S6).

FTIR

Figure 5A shows the FTIR result of βCD polymerized on

the surface of the γ-Fe2O3@Au template. The main differ-

ence between polymerized βCD and βCD alone is the

presence of two peaks in the range of 2800–2900 cm−1

Figure 3 (A) FE-SEM, (B) EDX and (C) XRD of γ-Fe2O3@Au core-shell nanoparticles.
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in the spectrum of polymerized βCD compared with one

peak in the spectrum of βCD alone. Moreover, distinctive

changes have occurred in the peaks mode of polymerized

βCD in the range of 1200–1300 cm,−1 which are asso-

ciated to the CH stretching and bending vibrations. The

other characteristic peaks in this curve are peaks at around

3400, 1040 and 580 cm−1 that are attributed to the OH and

C-O-C stretching vibrations of polymerized nanoparticles,

and Fe-O bond of γ-Fe2O3, respectively.
52 Moreover, the

characteristic peak of thiol group at around 2550 cm−1 is

also removed, which could confirm the successful attach-

ment of βCDs on the surface of Au through a self-

assembled monolayer bond.

By the addition of the second layer, the inclusion

complexes between βCDs of the first layer and SDNs of

L2 were formed that was confirmed by the results of FTIR.

For this, a comparison study was done between the curves

of γ-Fe2O3@Au/PβCD, γ-Fe2O3@Au/PβCD/PAA-SDN,

L2 and physical mixture of the L2, and γ-Fe2O3@Au/

PβCD (Figure 5B). The FTIR spectrum of γ-Fe2O3@Au/

PβCD/PAA-SDN has significant differences to that of

γ-Fe2O3@Au/PβCD. In other words, the peaks at around

1690, 1640, 1450, 1370 and 1240 cm−1 which emerged in

the spectrum of γ-Fe2O3@Au/PβCD/PAA-SDN, can be

attributed to the amide bond, benzene ring, methyl groups

and S=O groups of the L2 layer, respectively. The

appearance of Fe-O peak and also the redshift in

the spectrum of γ-Fe2O3@Au/PβCD/PAA-SDN are the

differences of this component with L2. Finally, in compar-

ison to the physical mixture, the intensity of the whole

peaks of the γ-Fe2O3@Au/PβCD/PAA-SDN is dramati-

cally decreased. Moreover, there are some peaks in the

spectrum of the physical mixture, which are attributed to

the βCD of the first layer and are disappeared in the γ-

Fe2O3@Au/PβCD/PAA-SDN spectrum. Another critical

point in the spectrum of γ-Fe2O3@Au/PβCD/PAA-SDN

is the reduction of CN, aromatic amine and S=O peaks

of SDN in comparison to the L2 and physical mixture that

can be attributed to the formation of inclusion complex.

As it was described previously, the interaction of the third

layer with γ-Fe2O3@Au/PβCD/PAA-SDN occurred through

inclusion complexation between βCDs of the third layer and

the remaining SDN. The FTIR results of γ-Fe2O3@Au/PβCD/

PAA-SDN/PEI-βCD, γ-Fe2O3@Au/PβCD/PAA-SDN, L3,

and physical mixture of γ-Fe2O3@Au/PβCD/PAA-SDN and

L3 are shown in Figure 5C. As can be seen in this figure, the

spectrum of γ-Fe2O3@Au/PβCD/PAA-SDN/PEI-βCD fol-

lows the pattern of PEI-βCD with some slight differences

that distinguish it from the spectrum of the L3 and physical

mixture. These differences include the presence of a Fe-O

peak at around 580 cm−1 in the γ-Fe2O3@Au/PβCD/PAA-

SDN/PEI-βCD curve and also a significant decrease in the

intensity of the peaks. Moreover, the existence of βCD peaks

at around 1250–1000 and 1650 cm−1 in the γ-Fe2O3@Au/

PβCD/PAA-SDN/PEI-βCD spectrum, differentiate it from γ-

Fe2O3@Au/PβCD/PAA-SDN spectrum. All these findings

confirmed the fabrication of γ-Fe2O3@Au/PβCD/PAA-SDN/

PEI-βCD from the interaction between L3 and γ-Fe2O3@Au/

PβCD/PAA-SDN.
Finally, by removing the Au core, a significant increase

occurs in the intensity of the whole curve. Moreover, by

the elimination of Au from the core of the nano-system,

the characteristic peaks of L2 and L3 layers and also Fe-O

Scheme 2 The formation of an inclusion complex between βCD and SDN.

Figure 4 Change in the color of nano-system before and after removing the Au.
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Figure 5 FTIR results of (A) γ-Fe2O3@Au/PβCD (B) γ-Fe2O3@Au/PβCD, γ-Fe2O3@Au/PβCD/PAA-SDN, physical mixture, PAA-SDN, (C) γ-Fe2O3@Au/PβCD/PAA-

SDN, γ-Fe2O3@Au/PβCD/PAA-SDN/PEI-βCD, physical mixture, PEI-βCD, and (D) nanocapsule.
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peaks of γ-Fe2O3 available in the core of nanocapsule are

prominently increased (Figure 5D).

XRD

The probable differences in the crystallographic structure

of nano-systems after the addition of each layer were

investigated using XRD. By comparing the XRD result

of γ-Fe2O3@Au/PβCD with that of γ-Fe2O3@Au, the

polymerization of CD on the surface of nanoparticles

was confirmed. In fact, a significant shift in the peaks of

Au and Fe to the lower angles occurred in the spectrum of

the γ-Fe2O3@Au/PβCD, so that the peaks which were

attributed to the index planes of (111), (200), (220), and

(311) of Au and (200), (311), and (102) of Fe showed a

shift of about 7° to the lower degree. Moreover, an appar-

ent reduction in the intensity of Fe and Au peaks, deletion

of some Fe peaks and also the appearance of a broad peak

in the range of 2θ=10–20°, which is appeared due to the

amorphous structure of polymeric layer, could confirm the

polymerization of βCD on the surface of nanoparticles

(Figure 6A).

The preparation of inclusion complex was evaluated by

comparing the XRD patterns of the γ-Fe2O3@Au/PβCD/
PAA-SDN with PAA-SDN, γ-Fe2O3@Au/PβCD, and their

physical mixture. The XRD pattern of PAA-SDN shows

amorphous peaks at around 2θ=10–20° and 2θ=25–35°.53

γ-Fe2O3@Au/PβCD/PAA-SDN has similar XRD pattern

with the pattern of γ-Fe2O3@Au/PβCD except that in the

spectrum of γ-Fe2O3@Au/PβCD/PAA-SDN the Fe index in

2θ=32° (200) is disappeared. This is an indicating difference
between this sample and γ-Fe2O3@Au/PβCD and physical

mixture, which suggests that this is due to the presence of

PAA-SDN peak in this reign. Moreover, the presence of Au

peaks in this spectrum in comparison to the PAA-SDN,

confirmed the correct reaction between γ-Fe2O3@Au/PβCD
and L2 layers (Figure 6B).

In Figure 6C, the XRD pattern of the nano-system after

the addition of the third layer is compared with γ-
Fe2O3@Au/PβCD/PAA-SDN, L3, and their physical mix-

ture. By the addition of the third layer to the nano-system,

the PAA polymeric peak at around 2θ=10–20° disap-

peared. Moreover, it could be seen that there are differ-

ences between the diffractograms of γ-Fe2O3@Au/PβCD/
PAA-SDN/PEI-βCD, L3 and γ-Fe2O3@Au/PβCD/PAA-
SDN, suggesting the attachment of L3 on γ-Fe2O3@Au/

PβCD/PAA-SDN. Existence of difference between the

curve of physical mixture and the third layer technically

could reveal the inclusion complex formation. It is

necessary to mention that the several peaks exist in the

spectrum of L3 and physical mixture is attributed to the

NaCl that was used in the purification step of the L3 layer.

However, these peaks disappeared in the spectrum of γ-
Fe2O3@Au/PβCD/PAA-SDN/PEI-βCD due to the multiple

washing steps before freeze-drying the sample.

Zeta potential analysis

The effect of each layer on the charge of the nano-systemwas

evaluated by Zeta potential measurements (Table 1). The

results revealed a positive charge for γ-Fe2O3 nanoparticles,

which is due to the presence of HNO groups that were used

for converting Fe3O4 to Fe2O3. Addition of Au shell changes

the positive charge of the nano-system to negative because of

the attendance of carboxylic acid groups of citrate. After

addition of the first layer, the charge is dramatically

decreased and reaches to about −39 mV, which could be

attributed to the several hydroxyl groups of βCD moieties.

By the addition of the second layer to the nano-system, the

charge of the samples gets more negative value. The inclu-

sion complex between βCD and SDN masks the nitrogen

groups of SDN, which in turn could show positive charge

before this complex; thus, the negative charges of the SO

groups of SDN lead to the nano-system charge change to

more negative charges. Finally, by addition of the third layer,

which has several βCD components with large amounts of

hydroxyl groups, the charge of nano-system gets more nega-

tive. These changes in charge of the nano-system after addi-

tion of different layers could be considered as evidence that

confirmed the successful preparation of nanocapsule.

FE-SEM analysis

Changes in the size and morphology of the nano-system

during the synthesis process were assessed using FE-SEM.

Based on the results of Figure 7, nanoparticles have a sphe-

rical shape with the mean size 35.5±0.2, 40±2, 44±1.5 and 43

±1.5 nm for γ-Fe2O3@Au/PβCD (Figure 7A), γ-Fe2O3@Au/

PβCD/PAA-SDN (Figure 7B), γ-Fe2O3@Au/PβCD/PAA-
SDN/PEI-βCD (Figure 7C), and hollow nanocapsules

(Figure 7D), respectively.

EDX

Changes in the chemical composition of nanocapsule dur-

ing the synthesis process were investigated by using EDX

spectroscopy. The advent of sulfur and nitrogen peaks in

the EDX diagram along with an increasing amount of

carbon and oxygen atoms confirms the attachment of

βCDSH on the surface of nanoparticles (Figure 8A). By

the addition of the second and third layers, the amount of
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sulfur and nitrogen are also increased, confirming the

presence of these layers in the sample (Figure 8B, C).

Preparation of the hollow nanocapsule is accompanied by

a significant reduction in the peaks of Au and also a

dramatic increase in the peaks of Fe (Figure 8D).

Determination of loading and entrapment

efficiency
Doxorubicin, as a widely used anti-cancer drug, was cho-

sen and the loading behavior of the nanocapsule in

response to changes to the pH of the surrounding

Figure 6 The XRD results of (A) γ-Fe2O3@Au/PβCD, (B) γ-Fe2O3@Au/PβCD, PAA-SDN, γ-Fe2O3@Au/PβCD/PAA-SDN, physical mixture of γ-Fe2O3@Au/PβCD and

PAA-SDN and (C) γ-Fe2O3@Au/PβCD/PAA-SDN/PEI-βCD, γ-Fe2O3@Au/PβCD/PAA-SDN, PEI-βCD and physical mixture.
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environment was assessed. For this purpose, three differ-

ent mass ratios of the drug to nanocapsule were dispersed

in PBS in two different pH (6.6 and 7.4). The results of

drug loading after 24 h are described in Table 2 confirming

the effect of pH on drug loading efficiency of the nano-

capsule. Based on the results, the amounts of drugs loaded

at normal pH are more than the acidic one. Moreover, by

increasing the mass ratio of drug to nanocapsule, the

loading efficiency is increased significantly so that in

sample 3 and normal pH, it reaches to about 160% reveal-

ing an extraordinary capacity of this nanocapsule for drug

loading of DOX.

The addition of drug molecules to the nanocapsule also

leads to a dramatic increase in charge of nanocapsule from

−42.8 to −28.9 (Figure 9) which is due to the positive

charge of the drugs.

pH-responsive drug release
The pH-responsive drug release behavior of the nanocap-

sule was investigated in PBS with two different pH (7.4

and 6.6) at 37°C in three different mass ratios. After

specific time intervals, the solution of each sample was

replaced with a fresh solution, and the absorbance of each

solution was read at 490 nm to determine the amount of

released drug. The results of drug release are shown in

Table 1 Charge variation of the nano-system by addition of

different layers

Nanomaterial Charge (mV)

Fe2O3 34.5

Fe2O3@Au −11.6

Fe2O3@Au/PβCD −38.9

Fe2O3@Au/PβCD/PAA-SDN −40.3

Fe2O3@Au/PβCD/PAA-SDN/PEI-βCD −42.3

Figure 7 FE-SEM result of (A) γ-Fe2O3@Au/PβCD, (B) γ-Fe2O3@Au/PβCD/PAA-SDN, (C) γ-Fe2O3@Au/PβCD/PAA-SDN/PEI-βCD and (D) nanocapsule.

Dovepress Zarepour et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
7029

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Figure 10 (A–C). It can be recognized that all three sam-

ples show a pH-responsive behavior in their releasing

pattern. Moreover, the release process follows a sustained

release pattern so that drug release could be accomplished

even after 14 days.

Based on the results, the most significant difference

pH-responsive behavior is attributed to the sample 1

(Figure 10A) with about 74% drug released in acidic pH

and about 33% in the normal condition during 14 days,

which can be due to the presence of the low amount of

drug molecules in this sample. In other words, the smaller

amount of drug molecules in this case, not only turns to

reduce the competition between the drug molecules, but

also they are distributed in a larger volume of nanocapsule,

and thus could be released in a more controllable state.

By increasing the amounts of entrapped drugs, the

competition between drug molecules is increased;

Figure 8 EDX analysis of (A) γ-Fe2O3@Au/PβCD, (B) γ-Fe2O3@Au/PβCD/PAA-SDN, (C) γ-Fe2O3@Au/PβCD/PAA-SDN/PEI-βCD and (D) Nanocapsule.

Table 2 Entrapment efficiency (EE) and the loading efficiency (LE) percentage of drug in nanocapsule at two pH with different mass

ratios

Nanocapsule to Drug (N:D) Sample 1 (N2:D1) Sample 2 (N1:D1) Sample 3 (N1:D2)

pH 6.6 %EE 74.31 85.55 76.67

%LE 37.48 85.55 153.33

7.4 %EE 85.50 90.91 79.40

%LE 42.75 90.91 158.80

Abbreviations: N, nanocapsule; D, drug.

Figure 9 Zeta potential curve of nanocapsule with drug.
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preventing the burst release of drugs, as well as increasing

the time of drug released (sample 2 (Figure 10B), and

sample 3(Figure 10C)). Although these two samples have

longer release time, the amounts of the released drug

during 14 days, are the same or even higher than that of

sample 1, which implies that they could show their toxicity

effect during a more extended period of the time.

The other important point about this nanocapsule is that it

shows an on/off switching behavior during the pH-respon-

sive drug release. In other words, by changing the pH of the

surrounding environment from normal to acidic, the SDNs

located inside the cavity of cyclodextrin components par-

tially exit, so the distance between three layers are increased,

leading to an increase in the released drug in this acidic pH.

Figure 10 In vitro release profile of doxorubicin from (A) Sample, 1, (B) Sample 2 and (C) Sample 3, in PBS in two different pH 7.4 and 6.6.
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Biocompatibility tests
Based on the results of drug release, sample 1 and sample

3 were selected to evaluate the biocompatibility of the

nano-system using different types of tests including MTT

assay as cell viability assessment and hemolysis, coagula-

tion and complement activation tests as hemocompatibility

discernment.

MTT assay

One of the most critical tests that should be done before an

in vivo application of a nano-system is the cell viability

test to determine the cytotoxicity effect of the system.

MTT assay, as one of the most common methods that is

used for this purpose, is based on converting the MTT salt

to an insoluble component, formazan, through a mitochon-

drial enzymatic reaction which is only carried out by

living cells.54

The results of MTT assay of different nanocapsule con-

centrations (with/without drug) on MCF7 and L929 cell

lines after 24 and 48 h are shown in Figure 11(A, B).

These results show that the drug-loaded nanocapsules

have no significant effect on normal cells, even after 48 h

(Figure 11A), while they show cytotoxicity against cancer

cells after 48 h at concentrations of 0.4 and 0.5 μg mL−1 of

sample 1 and concentrations above 0.2 μg mL−1 of sample 3

(Figure 11B). This is due to the changes that occurred in the

pH of the cancer cell media, which is originated from their

intrinsic property. In fact, cancer cells use the lactic acid

pathway for creating ATP molecules that lead to change in

the intracellular pH from normal to acidic form. These cells

preserve their normal pH by excluding H+ ions to the

extracellular environment through specific ion-exchange

channels that turn to the preparation of a low acidic micro-

environment around the cells which can provide the best

condition for the drug release from nanocapsule. It is neces-

sary to mention that the higher amounts of drug released

from sample 3 is the reason for the difference between the

effective concentration of this sample and sample 1.

The cytotoxicity of nanocapsule without the drug (in the

concentration of about 0.5 μg mL−1) was also tested and

Figure 11 Results of MTT assay on (A) L929 and (B) MCF-7 cell lines (*P≤0.05).
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showed no cytotoxicity effect on the cells, revealing the

cytocompatibility of the nanocapsule alone. Furthermore,

the cytotoxicity of drug-loaded nanocapsule was compared

with the free drug (with the same concentrations as the

lowest and the highest amount of drug-loaded in the nano-

capsule), and the results show the same cytotoxicity prop-

erty as the loaded one. The results of this test were

evaluated by statistical analysis (SPSS), and the significant

samples are determined by “*” in the figures.

Based on the results of this test, the pH-responsivity of

the nanocapsule could be confirmed by the appearance of

cytotoxicity in cancer cells. Moreover, a brief comparison

between the IC50 values of sample 1 and sample 3 (2 μM
and 3μM, respectively) with that of free drug (9.8 μM),

revealed that this nano-system shows an improvement in

the therapeutic drug efficacy of doxorubicin.55

Hemolysis assay

The hemolytic behavior of the nanocapsule was evaluated

by using hemolysis assay. For this purpose, different con-

centrations of sample 1 and 3 (0.1, 0.2, 0.3, 0.4 and 0.5)

were exposed to RBC for a specific time, and then the

percentage of hemolysis of each sample was determined

by UV-Vis spectrophotometer. Both of the samples show

the hemolytic activity of less than 1 percent (Figure 12),

revealing that they have no hemolytic effect on RBC and

thus it could be considered that they are hemocompatible

(according to the American Society for Testing and

Materials (ASTM F 756–00, 2000)).56,57

Complement activation

Evaluation of the complement activation, as part of the

immune system, is one of the most important analysis for

biomedical use of nano-systems. C3, C4, and C5 are the most

common components of this system that are usually assessed

for determining the effect of foreign materials on comple-

ment activation. Herein, the drug-loaded/non-loaded nano-

capsules were exposed with blood plasma and their effect on

the activation of C3 and C4 were assessed by using specific

kits. Results demonstrated that neither the drug-loaded nano-

capsules nor the nanocapsules alone show no significant

effect on the activation of complement components, which

could confirm their hemocompatibility (Figure 13(A, B)).

Statistical analysis also showed no significant differences

between these samples compared to the control (p≤0.05).

Coagulation assay

The body uses several approaches for limiting foreign

materials and removing them from the circulation system,

one of which is clot formation that could be stimulated by

activation of two main pathways; extrinsic and intrinsic.

The effect of nanocapsules on these pathways was deter-

mined by calculating the prothrombin and thromboplastin

activation time (PT and APTT) of platelet poor plasma.

Results of coagulation assay (Figure 14(A, B)) confirmed

that nanocapsules (with/without drug components) have no

effect on the activation time of coagulation pathways and

thus could be considered hemocompatible. The results of

statistical analysis show no significant differences between

the samples and the control (p≤0.05).

Discussion
Utilizing biological stimuli responsive manners have

become one of the most important approaches for fabrica-

tion of therapeutic nano-systems, in particular nanocarriers

for cancer drugs. These nanocarriers could deliver and

release drug molecules just in the tumor tissue using an

on/off switchable method. This means that they can selec-

tively “switch on” in targeted cells and “switch off” in

Figure 12 Hemolysis results of sample 1 and sample 3.
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other tissues, and thus eliminating the toxic effects of

drugs on healthy cells.58

Among different types of biological stimuli approach,

pH-responsiveness is one of the most commonly studied

functionalities for cancer therapy. In other words, the

apparent differences between pH of cancer tissues in com-

parison with healthy texture is potentially a suitable trigger

for the fabrication of proprietary drug delivery systems.59

Cancer cells are reprogramming uncontrolled cells that

use anaerobic metabolic pathway for the production of

ATP molecules even in the presence of oxygen. This

change in the energy production pathway is an intelligent

tactic employed by cancer cells to convert the glycolytic

intermediates through specific approaches into the various

types of biological macromolecules like nucleosides and

amino acids to facilitate the production of organelles and

macromolecules needs for the new cells. The anaerobic

metabolism often encountered in cancer cells is accompa-

nied by an increase in the amounts of lactic acid

concentration in the cells, ultimately leading to extracel-

lular tumor acidosis. It means that cancer cells maintain

their normal intracellular pH (7.4) by excreting the excess

protons to the extracellular matrix through the upregula-

tion of several proton extrusion mechanisms and thus the

extracellular microenvironment of the cancer cells is

slightly acidic (6.5–7).60,61

Based on this difference in pH of cancer and healthy

tissues, different types of pH-responsive nano-systems are

introduced which can respond to the pH change by using

cleavable linkers or through applying the charge conver-

sion components.62

Based on this feature of the cancer tissues, in this

research, a smart pH-responsive nano theranostic capsule

with a mean size of about 43 nmwas fabricated for delivering

anti-cancer drugs. This nanocapsule is constructed based on

the supramolecular structure of CD molecules that contains

three polymeric layers which are located around themagnetic

core of the nano-system. This magnetic core also donates a

Figure 13 Effect of different concentrations of nanocapsule on (A) C3, (B) C4.
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diagnostic feature to this nano-system. This is a new type of

supramolecular structure with a high capacity for drug load-

ing and also shows on/off switching drug release behavior

which is originated from the inclusion complex between

cyclodextrin components and SDNs. This nano-system

could show a hydrogel-like behavior, and release its cargos

in a swelling like manner in acidic pH without losing its

structural framework.

As it has been mentioned before, use of stimuli agents

in the structure of nano-platforms, induces on/off switch-

ing behavior, which implies that these types of drug deliv-

ery systems could release their component just in the

presence of a specific situation. The presence of the stimuli

situations, turns to a change in the structure of the nano-

system that leads to release the drugs entitled ”switch on”,

while by removing that situation no release occurs from

the nano-system, which is entitled “switch off”. These

nanocarriers are a class of smart nano-systems with the

ability to maintain their structure after stimulation.

According to this feature, several species of nano-systems

had been introduced by researchers in which extrinsic (UV

and magnetic) or intrinsic (pH, redox and temperature)

stimuli agents were used.39,63–65

The other advantage of this nanocarrier is its high

loading capacity which is near about 160% for doxorubi-

cin and also its sustain release behavior during 14 days. So

far, several types of nano-systems with different strategies

have been chosen for delivering doxorubicin to its targeted

site. For example in 2018, Li et al introduced a pH-

responsive supramolecular nano theranostics based on pil-

lararene that showed about 3.67% loading efficiency and

pH-dependent release pattern with about 20% drug release

in pH 6.5 and 70% in pH 4.66 Wallat et al applied a

fluorous polymeric micelle as a vehicle for DOX, in

which drugs were covalently conjugated to the micelles

via a pH-responsive hydrazone linkage and showed about

Figure 14 Effect of different concentrations of nanocapsules on (A) PT and (B) APTT.
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20% drug release during 50 h at pH 5.67 By comparing the

drug loading and releasing behavior of nanocapsule stu-

died in this research with other similar studies,68–70 it

could be concluded that this nanocarrier has much higher

loading efficiency and also could show better performance

in response to the acidic environment of cancer tissue for

releasing drugs.

As an intravenous injectable drug carrier, the effect of

nanocapsules on RBC, and blood immune system were

also evaluated using different tests that revealed the hemo-

compatibility of the nanocapsules even in the presence of

drug molecules. The cytotoxicity of the nanocapsules

(with/without drug components) was also assessed in nor-

mal and cancer cells. The results of cytotoxicity tests

indicated that drug-loaded nanocapsules do not affect nor-

mal cells while they show distinctive cytotoxicity on

MCF7 cancer cells after 48 h that can be considered as

an evidence for confirming the pH-responsive behavior of

the nanocapsules. Overall, according to these in vitro tests,

this nanocapsule could be introduced as a smart pH-

responsive drug nanocarrier with switchable controlled

release property which can be used for cancer treatment.

Finally, the attendance of Fe2O3 nanoparticles in the

core of nanocapsule turns to recommend it as a diagnostic

agent for magnetic resonance imaging of the targeted

region that can enhance the quality of the imaging by

affecting the T1 and T2 relaxation times.71

Conclusion
Application of smart nano-systems in pharmacy with the

aim of cancer treatment is the subject of many scientific

studies in the last decade. In this research, a new type of

pH-responsive nanocapsule was fabricated with the ability

of on/off switching drug release to be used as a nano

theranostic agent for cancer simultaneous diagnosis and

therapy. The nanocapsule was consisted of three polymeric

layers including polymeric beta-cyclodextrin, sulfadiazine

functionalized polyacrylic acid and beta-cyclodextrin

attached to the polyethylenimine, in which the inclusion

complex formed between cyclodextrin components and

sulfadiazine donate a pH-responsive property to the

nano-system. The physicochemical and in vitro biological

properties of the nanocapsule were confirmed by different

tests. Results revealed that this is a biocompatible nano-

capsule with about 43 nm size and −42 mV surface charge,

which show 50–160% drug loading capacity and also a

controllable sustained drug release behavior. Representing

the cytotoxicity effect against cancer cells at very low

concentrations along with the pH-responsive drug release

pattern and also an improvement in the therapeutic effi-

ciency of the drug, this nanocapsule is proposed as an

possible therapeutic agent that can eliminate the side

effects on normal cells, as well as, a significant reduction

in the dose of drug usage leading to prevention of drug

resistance behavior of cancer cells. Combination of the

therapeutic features of the nanocapsule with the diagnostic

property of the magnetic nanoparticles which are pre-

sented in the core of this nano-system, introduce this

new type of nanocarrier as a theranostic candidate for

simultaneous diagnosis and therapy of cancer.
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