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Background:Amphotericin B (AmB) as a liposomal formulation of AmBisome is the first line

of treatment for the disease, visceral leishmaniasis, caused by the parasite Leishmania donovani.

However, nephrotoxicity is very common due to poor water solubility and aggregation of AmB.

This study aimed to develop a water-soluble covalent conjugate of gold nanoparticle (GNP) with

AmB for improved antileishmanial efficacy and reduced cytotoxicity.

Methods: Citrate-reduced GNPs (~39 nm) were functionalized with lipoic acid (LA), and the

product GNP-LA (GL ~46 nm) was covalently conjugated with AmB using carboxyl-to-amine

coupling chemistry to produce GNP-LA-AmB (GL-AmB ~48 nm). The nanoparticles were

characterized by dynamic light scattering, transmission electronmicroscopy (TEM), and spectro-

scopic (ultraviolet–visible and infrared) methods. Experiments on AmB uptake of macrophages,

ergosterol depletion of drug-treated parasites, cytokine ELISA, fluorescence anisotropy, flow

cytometry, and gene expression studies established efficacy of GL-AmB over standard AmB.

Results: Infrared spectroscopy confirmed the presence of a covalent amide bond in the

conjugate. TEM images showed uniform size with smooth surfaces of GL-AmB nanoparticles.

Efficiency of AmB conjugation was ~78%. Incubation in serum for 72 h showed <7% AmB

release, indicating high stability of conjugate GL-AmB. GL-AmB with AmB equivalents

showed ~5-fold enhanced antileishmanial activity compared with AmB against parasite-

infected macrophages ex vivo. Macrophages treated with GL-AmB showed increased immu-

nostimulatory Th1 (IL-12 and interferon-γ) response compared with standard AmB. In parallel,

AmB uptake was ~5.5 and ~3.7-fold higher for GL-AmB-treated (P<0.001) macrophages

within 1 and 2 h of treatment, respectively. The ergosterol content in GL-AmB-treated

parasites was ~2-fold reduced compared with AmB-treated parasites. Moreover, GL-AmB

was significantly less cytotoxic and hemolytic than AmB (P<0.01).

Conclusion: GNP-based delivery of AmB can be a better, cheaper, and safer alternative

than available AmB formulations.

Keywords: gold nanoparticle, amphotericin B, antileishmanial, macrophage uptake,

ergosterol, immunostimulator

Introduction
Metallic nanoparticles (NPs) and their compounds synthesized by chemical or biolo-

gical methods have been used for treatment and detection of diseases since ancient

times.1 Green synthesis of silver nanoparticles (AgNPs) and gold nanoparticle (GNPs)

is most common due to their reduced cytotoxicity.2 AgNPs synthesized by green

Correspondence: Debabrata Mandal
Department of Biotechnology, NIPER,
Export Promotions Industrial Park (EPIP)-
Hajipur, Vaishali 844102, Bihar, India
Tel +91 833 599 6348
Fax +916 224 27 7225
Email debabrataman@gmail.com

International Journal of Nanomedicine Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com International Journal of Nanomedicine 2019:14 6073–6101 6073
DovePress © 2019 Kumar et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.

php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the
work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

http://doi.org/10.2147/IJN.S196421

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


chemistry3 or conjugated with antibiotics4,5 have shown

enhanced antimicrobial efficacy. Biosynthesized GNPs,

AgNPs, and Au–Ag bimetallic NPs were used for control

of biofilm.6,7 As antileishmanial agents, bothAgNPs and

GNPs have shown promising results.8 GNP-based delivery

of small molecules or drugs,9 peptides,10 nucleic acids,11 and

antimicrobial agents12 has shown improved efficacy due to

targeted delivery of the payload. GNP-based drug delivery is

popular due to ease of GNP functionalization with antimi-

crobial agents,13 biological or chemical methods of

synthesis,14 controlled drug delivery,15 and multiple targets

of bactericidal action with their ability to penetrate biological

membranes.16 Here, we report the synthesis, characteriza-

tion, and efficacy of GL-AmB, a covalent conjugate of GNP

with amphotericin B (AmB) against parasite Leishmania

donovani (LD).

AmB is a polyene antibiotic with poor water solubility

and high toxicity due to its self-aggregation.17 It was first

licensed in the 1950s.18 Since then, AmB has been exten-

sively used as a deoxycholate formulation (Fungizone) in

a micellar form to treat systemic fungal infections.19

However, due to severe nephrotoxicity, use of Fungizone

became limited20 against visceral leishmaniasis (VL),21

a disease caused by Leishmania parasite species22 that

becomes fatal if untreated. This prompted development

of several lipid-based complexes of AmB (AmBisome,

Abelcet, and Amphocil) with improved AmB delivery

and reduced cytotoxicity23 for the treatment of leishma-

niasis. However, lipid-based complexes of AmB bring

high cost in treatment for patients with leishmaniasis24

and systemic fungal diseases25 compared to standard

AmB or AmB-deoxycholate formulation. In parallel,

micelle-based26 and NP-based27,28 AmB delivery with

improved antileishmanial efficacy showed promise as an

alternative to costly liposomal formulations.

Novel NP-based AmB formulations combined with

polysaccharides,29 dendrimers,30 iron NPs,31 AgNPs,32,33

and carbon nanotubes34 were developed. AmB derivatives

with modified functional groups showed more enhanced

and specific binding toward fungal ergosterol than

cholesterol35 with increased ion channel and fungicidal

activity.36 Therefore, treatment with a combination of NPs

with AmB and/or AmB derivatives could be a very effec-

tive strategy for improving the efficacy of and reducing the

cytotoxicity of AmB. AmB nanoemulsions against experi-

mental VL37,38 and AmB coated with polymeric NPs had

shown efficacy in oral delivery of AmB in a mouse model

of VL.39 Photo-induced antileishmanial activity was

observed with AmB-AgNPs which were synthesized using

plant phytochemicals.40 Improved photodynamic therapy

was observed for GNP-conjugated nanorods over nano-

spheres, indicating the imporatance of NP shape in

efficacy.41 Although there are growing developments of

NPs as antileishmanial agents,8,28,42 there is no report yet

about covalent conjugation or functionalization of GNPs

with AmB or AmB derivatives for enhanced efficacy

against LD. Leishmaniasis, the second largest infectious

disease after malaria and one of the “most neglected” dis-

eases, is spread by 23 Leishmania species in more than 98

countries. Among all types, the VL caused by LD is life

threatening and is most difficult to control. As per WHO

report, a total of 0.7–1.0 million new leishmaniasis cases

are estimated with an alarming 26,000–65,000 death toll

every year.43

Herein, we present the synthesis of GL-AmB, where

the –COOH group present in the linker (lipoic acid (LA))

was used to conjugate with the –NH2 group present in the

mycosamine ring of AmB through amide linkage. The

mechanism of action of GL-AmB was evaluated, with

naked AmB as a comparative arm against LD.

Materials and methods
Materials
M-199, RPMI-1640, and yeast peptone dextrose medium,

HAuCl4•3H2O, Giemsa dye, Trypan blue, MTT, 2′,7′-

dichlorodihydrofluorescein diacetate dye, N-acetyl l-cysteine

(NAC), diphenyleneiodonium chloride, proteinase K, ergos-

terol (ERG), diphenyl hexatriene (DPH), RNase A, Griess

reagent, 2,4-dinitrophenylhydrazine, TRIZOL, nitro blue tet-

razolium, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

(EDC), lipoic acid, sulfo-N-hydroxy succinamide (NHS),

AmB as Fungizone, the Glutathione Colorimetric Assay

Kit, the lactate dehydrogenase (LDH) assay kit, the

Apoptosis Detection Kit, and all solvents were from Sigma-

Aldrich Co. (St Louis, MO, USA). Trisodium citrate was

fromMerck (USA). The QIAampDNAMini kit and RNeasy

Mini Kit were from Qiagen (NV, Venlo, the Netherlands).

The cDNA synthesis kit was from Hoffmann-La Roche

(Basel, Switzerland). The cytokine ELISA kit was obtained

from BD Biosciences (San Jose, CA, USA) for mouse inter-

feron (IFN)-γ, IL-12, and IL-10, respectively. The RAW

264.1 THP-1 cell line was obtained commercially from the

National Cell Repository, NCCS, Pune, India. For the hemo-

lysis assay, blood samples from healthy volunteers were

collected based on ethical approval from RMRIMS-Patna
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(Reference no. 21/RMRI/EC/2017) and the donor’s written

informed consent.

Methods
Synthesis and conjugation of GNP with

AmB
Reactions were done at room temperature unless men-

tioned. GNPs were synthesized according to the method

of Turkevich et al44 by reduction of HAuCl4•3H2

O solution (0.5 mM) in 0.05% trisodium citrate after

dilution with double-distilled water (DDW) and heating

at 75–80 °C for 5–10 min. Synthesis of red GNPs was

confirmed by measuring absorbance at 530 nm. The con-

centration and molar extinction coefficient of GNPs vary

with size during reduction of HAuCl4. Therefore, the

absolute amount of Au (μg/mL), rather than the molar

concentration, was used as a measure of GNP concentra-

tion. GNPs were functionalized with LA and then conju-

gated with AmB using EDC/NHS coupling chemistry45

with a few modifications. GNP solution (10 mL) was

mixed with 0.1 mL (0.35 M) of LA and incubated for 12

h at 4 °C with constant stirring. The mixture was centri-

fuged at 12000×g for 15 min, washed with phosphate

buffer (PB) (10 mM Na phosphate, pH 7.2), and a pellet

of GL was suspended in 5 mL of PB. GL (1.25 mL) was

mixed with 45 μM EDC and 40 μM NHS, and incubated

for 3 min. Then, 0.1 mL of 50 mg/mL of AmB (dissolved

in dimethylsulfoxide (DMSO)) and 0.35 mL of DDW

were added. The mixture (~1.75 mL) was kept at constant

stirring for 2 h to allow formation of a covalent amide

bond between GL and AmB.46 The reaction mixture was

centrifuged, washed 10 times with PB, and then stored in

a suspension of 1 mL of PB at 4 °C for further use. After

measuring the amount of unbound AmB by ultraviolet

(UV) spectroscopy, the ratio of GNP:AmB in the GL-

AmB conjugate was found to be 245 μg/mL:4.2 mg/mL

(4.55 mM AmB), indicating ~84% conjugation efficiency

of AmB in GL-AmB. Several batches of GL-AmB were

prepared similarly and stored in PB buffer.

Quantification of AmB in GL-AmB by

HPLC
Efficiency of conjugation of AmB in GL-AmB was mea-

sured by HPLC determination of AmB at 408 nm by UV

detector.47 GL-AmB (~4.2 mg/mL of AmB) was diluted

1:24 with DDW and 10 μL was injected into the HPLC

instrument (L-2000 series; Hitachi Ltd., Tokyo, Japan) and

separated by reverse-phase C18 columns (Zorbax 300SB,

dimension 4.6 mm×250 mm, particle size 5 μM; Agilent

Technologies, Santa Clara, CA, USA) with an isocratic

mobile phase of acetonitrile:water:acetic acid (60:35:5)

maintaining a flow rate of 1 mL/min. In parallel, 5 mg/

mL of AmB was diluted 1:24 in DDW and analyzed

similarly in HPLC. Concentrations of AmB (dissolved in

mobile phase) used for generation of standard curves were

6.25, 12.5, 25, 50, 100, and 200 μg/mL.

Characterization of GL-AmB NPs
NPs were analyzed by UV–visible spectrophotometer,

dynamic light scattering, Fourier transform infrared

spectroscopy (FT-IR), and TEM. The hydrodynamic dia-

meter, polydispersity index (PDI), and zeta potential

were determined on a Beckman Coulter (Brea, CA,

USA) Delsa nano submicron particle size and zeta

potential analyzer as per standard procedures. For FT-

IR analysis, purified NPs (GL and GL-AmB) and pow-

dered AmB were pelletized with KBr and scanned over

a range of 4000–400 cm−1 in a PerkinElmer Inc.

(Waltham, MA, USA) Spectrum 400 spectrometer. NPs

were processed and analyzed by TEM (JEOL-JEM 2010;

JEOL, Tokyo, Japan) analysis as described.48 Briefly,

NPs (100 µM) were diluted with DDW 1:1. Further, 20

µL of sample was loaded on carbon-coated copper grid

without gold coating and air dried for 10 min under

vacuum. The grid chamber was placed in the TEM

room and incubated in the dark at 10–20 °C for

2 h. Finally, the grid chamber was loaded on the TEM

stage for analysis and images were captured from differ-

ent zones with different resolution. The powder X-ray

diffraction (pXRD) analysis was carried out for GL-

AmB in a Rigaku TTRX-III diffractometer using

Cu-Kα (λ=1.54 Å) as the X-ray radiation source and

a scan range of 10–80°.

Stability studies of GL-AmB conjugate
Stability of GL-AmB (100 μM) was measured by measuring

the release of free AmB in PBS buffer (PB containing

150 mM NaCl) and in freshly isolated human plasma at pH

7.4.49 The incubation mixture of GL-AmB and human serum

or PBS with final AmB concentration of 100 μM was incu-

bated at 37 °C for 72 h. After 4, 8, 12, 24, 48, and 72 h, the

mixture was centrifuged at 15000×g for 10 min and absor-

bance of supernatant was taken at 360 nm. The percentage of

AmB release was estimated47 by considering the absorbance

of 100 μM standard AmB as 100%. GL-AmB present in PBS
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or plasmawas treatedwith proteinase K (1 μg/mL) for 1, 2, 4,

6, 8, and 12 h to accelerate cleavage of the amide bond in GL-

AmB when required.

In vitro assay against promastigotes
LD (MHOM/IN/1983/AG83) promastigotes were cultured

as described.50 Log phase cells (1×106 cells/ml) were treated

with GNP/GL (0.5, 1, 2.5, 5, and 10 μg/mL) and AmB/GL-

AmB (0.5, 1, 5, 20, 50, and 100 nM) for 3–4 days and cell

viability measured by Trypan blue exclusion andMTT reduc-

tion method after every 24 h using standard procedures. After

48 h, the drug concentration showing 50% killing of the

parasite was considered the IC50 for that drug. Drug-treated

cells were preincubated with 1 mM NAC when required.51

Assay against intracellular amastigotes in

macrophages
RAW 264.1 cells were maintained in RPMI-1640 medium

and infected with promastigotes as described.33 Parasite-

infected macrophages, grown for another 24 h, were trea-

ted with different concentrations of GNP/GL (0.5, 1, 2.5.

5, and 10 μg/mL) and AmB/GL-AmB (20, 50, 100, 250,

500, and 1000 nM) for 48 h. Chamber slides were washed

and supplemented with fresh medium and kept in a CO2

incubator for another 12 h. Untreated parasite-infected

macrophages were used as control. Amastigotes from

100 macrophage nuclei per well were counted, at least,

under the oil immersion objective of a light microscope

(Eclipse TS100; Nikon Corporation, Tokyo, Japan) after

methanol fixation and Giemsa staining of the slides.

Cytotoxicity assays
Cytotoxicity was measured against human THP-1 cells by

MTT assay. Briefly, THP-1 cells were cultured with

RPMI-1640 medium in 6-well plates (2×106 cells/well)

and treated with GNP/GL (2.5, 5, 10, and 25 μg/mL) and

AmB/GL-AmB (2.7, 5.5, 11, 22, and 35 μM) for 48 h and

cell viability was measured as described.52

Hemolysis assay
Human erythrocytes were incubated (4×108 cells/mL in

PBS) in the presence of GNP/GL (2.5, 10, and 25 μg/mL)

and AmB/GL-AmB (1, 54, 80, and 108 μM) for 4 h at 37 °C.

The samples were centrifuged at 1500×g for 5 min and the

absorbance of supernatant was measured at 560 nm. Relative

hemolysis was measured52 by considering hemolysis of 100

μM AmB-treated erythrocytes as 100%.

Determination of ergosterol from

promastigotes by HPLC
Promastigotes (1×106 cells/mL) were treated with GNP

(10 µg/mL) and AmB/GL-AmB (0.2 µM) for 6 h. Pellets

of treated and untreated cells (1×107 cells) were homoge-

nized in 0.5 mL of 2:1 chloroform/methanol mixture for

30 min and then ERG was extracted for HPLC analysis.53

The isocratic mobile phase of methanol:water (95:5) with

a flow rate of 1 mL/min was used for separation. Peak

ERG was determined at 282 nm using a UV-detector.

Concentrations of ERG (dissolved in mobile phase) used

for generation of standard curves were 6.25, 12.5, 25, 50,

100, and 200 μg/mL.

Determination of AmB uptake of

macrophages by HPLC
RAW 264.1 (1×106 cells/ml) cells were treated with 300

µM of AmB and GL-AmB for 1,2, 4, 6, 12 and 24 h. Cells

were harvested, washed five times in PBS, and the cell

pellet lysed with 0.5 mL of 1% Triton-X-100 (in PBS) for

20 min at 37 °C. Supernatant (0.2 mL) obtained after

centrifugation was mixed with 0.2 mL DMSO, mixed by

shaking, and then the top layer (0.2 mL) was taken after

centrifugation for HPLC analysis.54,55 Samples (10 μL)
were analyzed by HPLC as described earlier.

Measurement of intracellular thiol
Promastigotes (2×106 cells/well) were treated with GNP

(10 μg/mL) and AmB/GL-AmB (0.5 μM) for 1, 2, 4, 6,

and 12 h. The trotal reduced glutathione (GSH) content

was measured56 by the Glutathione Colorimetric Assay Kit

according to the manufacturer’s instructions.

Measurement of membrane fluidity by

fluorescence anisotropy
Decreased fluorescence anisotropy (FA), measured by

DPH fluorescence, indicates an increase in membrane

fluidity. Promastigotes (2×106 cells/mL) were treated

with GNP (2.5 and 10 μg/mL) and AmB/GL-AmB (0.1

and 0.5 μM) for 6 and 12 h. Washed cells were suspended

in PBS and incubated with DPH (2 μM) for 1 h at 37 °C.

The membrane-bound DPH probe was excited at 365 nm

and the intensity of emission was recorded at 430 nm in

a spectrofluorometer (LS 55; PerkinElmer Inc.). The FA

value was calculated using the equation: FA=[(III–I⊥)/(III
+2I⊥)], where III and I⊥ are the fluorescent intensities
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oriented, respectively, parallel and perpendicular to the

direction of polarization of the excited light.57

LDH assay for determination of

membrane leakage
Intracellular LDH release is correlated with cell membrane

damage and necrosis.58 Promastigotes (5×106 cells/mL in

PBS buffer) were treated with GNP (2.5, 10, and 2.5 μg/
mL) and AmB/GL-AmB (0.05, 0.2, and 0.5 μM) for 6 and

12 h. Untreated and H2O2-treated cells (0.5 and 1 mM, for

4 h) were used as negative and apoptotic controls, respec-

tively. LDH assay was done according to the manufac-

turer’s instructions using the LDH assay kit. LDH released

by 1% Triton-X-100-treated cells was considered 100%.

Cytokine measurement assay
Parasite-infected macrophages (1×106 cells/well) were

kept in 6-well plates and treated with GNP (10 µg/mL)

and AmB/GL-AmB (0.2 µM) for 6 h. Cytokines (IFN-γ,
IL-12, and IL-10) released in culture supernatant (200 μL
in each assay) at different time points (12, 24, 36, 48, and

72 h) were measured by the cytokine ELISA kit according

to the manufacturer’s protocol.

DNA fragmentation assay
Parasites (1×106 cells/mL) were incubated with GNP (7.5

μg/mL) and AmB/GL-AmB (0.05 and 0.15 μM) for 6

h. Untreated and H2O2-treated (2 and 4 mM) parasites59

were taken as negative and positive controls, respectively.

Cells (1×107 cells) were suspended in 200 µL of PBS

followed by sequential addition of 200 μL lysis buffer

from the QIAamp DNA Mini kit, proteinase K (200 μg/
mL), and RNase A (40 μg/mL). The mixture was incu-

bated for 3 h at 37 °C followed by phenol/isopropanol/

chloroform extraction. Genomic DNA was precipitated by

addition of sodium acetate (pH 5.0) and ice-cold ethanol.

Pellet was centrifuged at 15000×g for 15 min, washed,

dried, and then dissolved in 30 μL of TE (10 mM Tris–

HCl pH 7.5, 1 mM EDTA) buffer. DNA aliquots (10 μL)
were electrophoresed on 1.5% agarose gel and visualized

under UV illumination after ethidium bromide staining.

Flow cytometry of Annexin-V–FITC/
propidium iodide-bound promastigotes
Annexin V-FITC (AV)/propidium iodide (PI) binding of

parasites was assessed using the AV Apoptosis Detection

Kit. Briefly, promastigotes (1×106 cells/mL) were treated

with GNP (5 and 10 μg/mL) and AmB/GL-AmB (0.1 and

0.25 μM) for 6 h. Untreated and H2O2-treated (0.1 and

0.2 mM) cells were taken as negative and apoptotic con-

trols, respectively. Cells were harvested, washed, and dis-

solved in 1 mL PBS followed by mixing with sequential

addition of 5 μL PI, 20 μL of binding buffer, and 5 μL of

AV. After 15-min incubation, cells were analyzed by

a FACS Calibur flow cytometer (Becton Dickinson,

CA, USA).

In vitro activity against Candida albicans
Candida albicans (ATCC-10231) were grown in yeast

peptone dextrose (YPD) medium at 30°C for 24 h. Cell

number were adjusted to 1×106 cells/ml and cultured in

RPMI medium supplemented with (2%) glucose. Cells

were further treated with GNP (1, 2.5, 5, 10, 20 and 40

μg/ml) and AmB /GL-AmB (1, 2, 4, 8, 16 and 40 μM) for

48 h and IC50 was determined by MTT assay as

described.60

Measurement of protein carbonylation by

spectrophotometric assay
AmB-mediated stress causes oxidative modification of the

amino acids of proteins to carbonyl groups which were

derivatized with 2,4-dinitrophenylhydrazine (DNPH) and

then measured by spectrophotometric assay.61 Briefly, pro-

mastigotes (1×107 cells/ml) were treated with GNP (2.5

and 10 μg/ml), AmB/GL-AmB (0.05 and 0.2 μM) for 6

and 12 h. Cells were then harvested, lysed and protein

carbonylation content was measured as described.62

Lipid peroxidation assay
Parasites (5×106 cells/well) were taken in 24 wells plate

and treated with different concentrations of GNP (2.5, 10

and 25 µg/ml), AmB/GL-AmB (0.05-0.35 µM) for 12 h. In

parallel, treated cells were also incubated with ROS inhi-

bitor, NAC (1mM). Untreated cells were taken as negative

control. Lipid peroxidation products were measured as

described.51

Statistical analysis
The statistical analysis was done by one-way and two-way

ANOVA using Graphpad Prism software (version 5.00;

GraphPad Software Inc., La Jolla, CA, USA). The results

were measured as mean±SD of at least three independent

experiments. The results were shown as approximate mean

values. Differences between group data (specially between
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AmB and GL-AmB) were considered statistically significant

and highly significant when P<0.05 and P<0.001,

respectively.

Results
Synthesis and characterization of

GL-AmB conjugate
By HPLC measurement, the amount of AmB detected in

GL-AmB was ~3.9 mg/mL (~4.23 mM, AmB input was

5 mg/mL) which is equivalent to ~78% conjugation effi-

ciency (compare Figure S1A and B) based on the AmB

standard curve (Figure S1C). This data correlated well with

the measured ~84% conjugation efficiency by UV spectro-

scopy (data not shown). Therefore, there is conjugation of

~16 μg of AmB per microgram of Au, indicating multi-

molecular association of AmB with a single molecule of Au

NP (Figure 1A). For schematic presentation, 16 molecules

of AmB in conjugation with 1 GNP are shown in Figure

1A, although the exact molar ratio of AmB:GNP in GL-

AmB is unknown. The UV absorption spectrum of mono-

meric AmB is characterized by four bands with peaks

around 344–350 (peak I), 363–368, 383–388, and

406–412 nm (peak IV). The ratio between the absorbance

intensities of peak I and peak IV was used to measure the

degree of aggregation of AmB.63 The higher the ratio of

peak I/IV, the higher the degree of aggregation. UV spectra

of GL-AmB showed peaks for both AmB (340–410 nm)

and GNP (~530 nm), but the intensity of peak I was greatly

reduced and the intensity for peak IV was increased. In fact,

the AmB-specific peaks of GL-AmB were very similar to

AmB dissolved in DMSO, a monomeric disaggregated form

of AmB (Figure 1B). Hence, in GL-AmB, AmB becomes

aggregation free and water soluble. Further, TEM images

confirmed the monomeric and spherical size of GL-AmB

(Figure 1C, i and ii) and the visible presence of an AmB

layer on GL-AmB (indicated by double arrow in Figure 1C,

ii). The selected area electron diffraction pattern confirmed

the presence of GNP in GL-AmB (Figure 1C, iii). An

increase in hydrodynamic radii of the GNP was observed

after its capping with LA to form GL (~46 nm, Figure 2A).

However, further conjugation of GL with AmB did not

change the hydrodynamic radii appreciably (GL-AmB ~48

nm). Interestingly, the PDI decreased after functionalization
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of GL with AmB, indicating a narrower size distribution

due to further stabilization of NPs by AmB (Figure S2B).

Increased negative zeta potential of GL-AmB (−21.16 mV,

Figure S2A) compared to GNP (−13.94 mV) indicated the

formation of a stable entity with less chance of agglomera-

tion. Conjugation of AmB with GL was further confirmed

by FT-IR analysis (Figure 2B). In GL-AmB, IR peaks at

1642 cm−1 for C=O stretching (amide I) and at 1565 cm−1

for N–H bending (amide II), along with the presence of

other characteristic peaks of AmB, confirmed successful

amide bond formation between the –COOH group of GL

and the –NH2 group of AmB. GL-AmB was also examined

through pXRD measurement (Figure S3). This revealed

Bragg’s diffraction at 38.2°, 47.7°, 65.3°, and 77.1° which

were attributed to (111), (200), (220), and (311) sets of

lattice planes reflecting the face centered cubic structure of

metallic gold.48 The pXRD pattern thus unveiled the crys-

talline nature of GNP in GL-AmB.

Stability of GL-AmB conjugates
AmB forms a single amide bond with LA in GL to give

GL-AmB. Therefore, the stability of GL-AmB is depen-

dent on the stability of this amide bond. We measured

stability of GL-AmB by AmB release assay in PBS/plasma

after measuring UV spectra at 360 nm since AmB gives the

strongest peak at 360 nm. A similar kind of release assay

was done earlier for polyethylene glycol-AmB

conjugate.49 This is possible because the molar extinction

coefficient of AmB is very high64 and, therefore, gives

high sensitivity in detection. We tested the stability of GL-

AmB by AmB release in the presence and absence of

proteinase K, known for its high protease activity with

a specificity for cleaving peptide bonds, in PBS and in

blood plasma at pH 7.4. In the absence of proteinase K,

after 72 h of incubation <7% AmB was detected in plasma

(Figure 3A) and <1% AmB was detected in PBS.

Interestingly, treatment of GL-AmB with proteinase

K released >20% and >60% AmB within 1 and 4 h,

respectively, indicating, further, the presence of a stable

amide bond in GL-AmB (Figure 3B). However, no signif-

icant increase in AmB release was found after 6 h.

Antileishmanial activity against promastigote

and amastigote forms of L. donovani
The IC50 for GNP and GL after 48 h was ~2.5 μg/mL against

promastigotes (Figure 4A) and ~5 μg/mL against amastigotes

(Figure 4B). GL-AmB (IC50~20 nM) showed increased antil-

eishmanial efficacy compared with AmB (IC50~50 nM)

against promastigotes at all indicated doses (Figure 4A and

B). The IC50 after 48 h for GL-AmB (~100 nM)was five times

lower than for AmB (~500 nM, Figure 4C and D) against

amastigotes. Therefore, conjugate GL-AmB is more potent

than AmB and the presence of linker in the GNP has no effect

Figure 2 Characterization of nanoparticles by dynamic light scattering (A). Fourier transform infrared spectrscopy analysis of GNP, AmB, and GL-AmB (B).
Abbreviations: AmB, amphotericin B; GL, GNP-lipoic acid product; GNP, gold nanoparticle.
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on improved efficacy. Mere addition of GNP (0.53 pg/mL)

and AmB (20 nM) (equivalent to the amount present in 20 nM

GL-AmB) in the promastigote assay showed an effect similar

to naked AmB in antileishmanial efficacy (data not shown).

So, efficacy of GL-AmB against LD is due to the presence of

multimolecular AmB conjugated with GNP. The IC50 for GL-

AmB against promastigotes after 72 and 96 hwas ~18 and ~17

µM, respectively. For AmB, IC50 after 72 and 96 h was ~50
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and ~53 µM, respectively, at similar time points. With 20 and

50 nM doses of AmB, survival of promastigotes after 72

h (61% and 50%, Figure S4C) and 96 h (63% and 54%,

Figure S5C) shows no significant change with killing efficacy

compared to 48 h (71% and 51%, Figure 4B). For GL-AmB

with similar doses, survival of promastigotes after 72 h (44%

and 27%) and 96 h (41% and 29%) shows, also, insignificant

change in killing efficacy compared to 48 h (50% and 27%).

However, at every time point, GL-AmB is more efficacious

than AmB. For amastigotes, very similar patterns were

observed. Therefore, antileishmanial activity data for promas-

tigotes/amastigotes after 72 h and 96 h showed no significant

change in killing efficacy with increasing dose (Figure S4 and

S5). This is likely because AmB is only stable for 3 days in cell

culture medium, as suggested by different manufacturers.

Cytotoxicity and hemolytic studies
For GNP and GL, the concentration showing 50% killing of

macrophages compared to untreated control after 48

h (CC50 value) was ~10 μg/mL. For AmB and GL-AmB, the

CC50 values were ~8 and ~35 μM, respectively. At an 11

μM dose (~22 times IC50 of AmB on amastigotes), AmB

and GL-AmB showed ~28% and ~70% survival of THP-1

cells (P<0.001, Figure 5A and B). When THP-1 cells were

treated with 22 µM of AmB and GL-AmB, survival was

~18% and ~63%, respectively. After 72 h with a 35 µM

dose, THP-1 survival was ~2% for AmB-treated cells but

~44% for GL-AmB-treated cells (Figure S6). Therefore,

GL-AmB is significantly less cytotoxic than AmB

(P<0.001) and this was due to conjugation of AmB over

GNPs and not due to the presence of linker in GNPs.

Both, GNPs and GL showed very similar and high

hemolytic activity. At 2.5 μg/mL, >40% hemolysis is

observed with GNP/GL. At a 1 μM dose, AmB showed

~32% hemolysis but GL-AmB showed only ~5% hemolysis

(P<0.001, Figure 5C and D). Hemolysis was ~63% and

~83% at 54 µM and 80 µM doses of AmB. Under similar

conditions, hemolysis for GL-AmB-treated erythrocytes was

~17% and ~33% (Figure 5D, P<0.001). At the highest tested

dose (108 μM), GL-AmB showed significantly reduced

hemolysis compared to AmB (48% vs 112%). Therefore,

hemolytic activity of both GNPs and AmB was significantly

reduced due to conjugation of AmB with GNP.
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AmBand ergosterol determination byHPLC
Macrophages were treated with a high dose of AmB/GL-AmB

(300 μg/mL/106 macrophages) for 1–24 h to see the difference

in AmB uptake, if any, between AmB and GL-AmB. After 1,

2, and 4 h, AmBuptake was significantly higher for GL-AmB-

treated cells than for AmB-treated cells as measured by HPLC

(represented as nanograms of AmB/milligrams of protein,

Figure 6A). AmB uptake was ~5.5-fold (~560 vs ~95),

~3.7-fold (~780 vs ~209), and ~2.9-fold (~875 vs ~311) higher

for GL-AmB-treated cells compared to AmB-treated cells

after 1, 2, and 4 h of treatment, respectively (P<0.001,

Figure 6A). AmB uptake was reduced to ~1.3-fold after 6

h (~612 vs 472 for GL-AmB andAmB, respectively), possibly

due to high AmB-mediated toxicity leading to reduced macro-

phage uptake. Consequently, the difference in AmB uptake

was less significant between GL-AmB and AmB-treated cells

after 12 and 24 h of treatment.

AmB binds ERG with higher efficacy than cholesterol35

and AmB-resistant LD parasites are associated with changes

in gene expression or mutation in genes involved in the ERG

biosynthesis pathway.65,66 The ERG content of samples were

measured based on the ERG standard curve with a retention

time (RT) of 7.31 min in HPLC (Figure 6B). The ERG

content was ~1.9-fold lower in GL-AmB-treated cells com-

pared to AmB-treated cells (34.2 μg/mL vs 65.1 μg/mL,

Figure 6D and E) and ~3.4-fold lower compared to untreated

cells (116.4 μg/mL, Figure 6C). The peak with RT of 2.66

min (Figure 6D) was possibly due to sterol, cholesta-5,7,24-

triene-3β-ol, which was the major sterol in the AmB-resistant

LD strain due to inhibition of enzyme SCMT (S-adenosyl-

l-methionine:C-24-Δ-sterol methyltransferase) and conse-

quent lack of C-24 transmethylation of C-27 sterols.66

Determination of thiol content
After 2, 4, and 6 h, the GSH content in GL-AmB-treated

(0.5 μM) parasites was ~1.7, ~5 and ~3-fold lower

(P<0.001) compared to AmB-treated parasites, respec-

tively (Figure 7A). However, the reduction in GSH content

becomes insignificant after 12 h.

Fluorescence anisotropy by DPH assay
The FAvalue of GL-AmB-treated (0.5 μM) parasites was ~1.3

(P<0.01) and ~1.8 times (P<0.001) lower (Figure 7B) than that

of AmB-treated parasites after 6 and 12 h, respectively. The
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membrane of GL-AmB-treated cells was, therefore, more flui-

dic than that of AmB-treated cells.

Measurement of membrane leakage by

LDH assay
Increased membrane damage, leading to necrosis, is asso-

ciated with extracellular release of LDH. At 0.5 μM con-

centration, LDH release was ~71% and ~38% after 6 h for

GL-AmB and AmB-treated cells, respectively (Figure 7C,

P<0.001). Interestingly, after 12 h under similar treatment

conditions, the difference in LDH release is insignificant

(78% and 87% for AmB and GL-AmB, respectively,

Figure 7D). GNP at 25 μg/mL concentration showed

~37% LDH release. Upon treatment with H2O2, which

causes apoptosis, the amount of LDH release was <4%.

So, GL-AmB is more necrotic than AmB against LD.

FACS analysis and DNA fragmentation assay
A necrotic or apoptotic mode of cell death was observed in

LD after treatment with AmB and AmB formulations.51,67 In

FACS analysis, the percentage of PI+ and AV+ promastigotes

was taken as necrotic and apoptotic cells, respectively.

Therefore, the increase in the ratio of percentage of PI+/AV+

cells was an indicator of increased necrosis. The ratio was

~61 for GL-AmB and ~7 for AmB (Figure 8C, P<0.001)

when parasites were treated with 0.5 µM of AmB/GL-AmB.

At the 0.25 µM treatment condition, the ratio was ~40 and ~6

for GL-AmB and AmB, respectively. Hence, GL-AmB-

mediated parasite death is more necrotic than apoptotic

(Figure 8A). Further, no significant DNA laddering were

observed in AmB and GL-AmB-treated samples (0.05 and

0.15 μM), confirming the absence of apoptosis under these

conditions where H2O2-treated cells, used as apoptotic

control,59 showed significant DNA laddering as expected

(Figure 8B).

In vitro activity against C. albicans
Against C. albicans, IC50 of GL-AmB and AmB was ~2 μM
and ~8 μM, respectively indicating ~4-fold improvement in

antifungal efficacy (Figure S7). The IC50 of citrate-reduced

GNPwas found to be ~40 μg/ml. Therefore, GL-AmB is more

efficacious than AmB against, both, parasites and fungus.
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Protein carbonylation assay
Protein carbonylation, which is a measure of oxidative stress-

mediated damage caused by AmB, was higher in GL-AmB-

treated cells after 6 h but almost similar after 12 h (Figure S5B)

compared to AmB-treated cells. After 6 h of treatment, protein

carbonylation was ~1.7 fold more for GL-AmB than AmB-

treated parasites (Figure S5A). The amount of protein carbo-

nylation caused by GL-AmB was almost comparable to 100

μM H2O2-treated cells after 6 h.

Lipid peroxidation measurements
High levels of free radicals or ROS can inflict direct

damage to lipids specially to polyunsaturated fatty

acids. It generates high levels of lipid peroxyl radicals

and hydroperoxides which causes cell death by apop-

totic or necrotic mode.62 Lipid peroxidation products

were higher in GL-AmB-treated cells than AmB-trea-

ted cells at all indicated doses (P < 0.05, Figure S5C).

Cytokine analysis by ELISA and

semiquantitative PCR
Stimulation of Th1-cell-associated immune responses,

mediated by IL-12 and IFN-γ, enhanced the antileishmanial

effect of AmB in LD-infected animals.30,68 Significant up-

regulation in the levels of Th1 (IL-12 and INF-γ) and down-

regulation of Th2 (IL-10) cytokines were observed after GNP,
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AmB, and GL-AmB treatment in LD-infected macrophages

compared to untreated control. After 12 and 24 h, GL-AmB

showed ~2.7 and ~3.4-fold elevation of the IFN-γ level

(P<0.001) compared to untreated control (Figure 9A). Under

similar conditions, AmB-treated macrophages showed ~2.2

and ~2.5-fold increase in IFN-γ level. However, elevation of

the IFN-γ level reduced to ~2 and ~1.6-fold after 48 and 72 h,

respectively, for GL-AmB-treated cells compared to untreated

control. The level of IL-12 was ~3.4 and ~3.7-fold increased

for GL-AmB whereas for AmB the elevation was ~2.1 and

~1.6-fold after 12 and 24 h, respectively, compared to

untreated control (Figure 9B). IL-12 release was significantly

higher for GL-AmB-treated cells compared to untreated con-

trol even after 36 h (~3.1-fold) and 48 h (~3.5-fold). Under

similar conditions, the level of IL-12 release was ~1.25 and

~1.4-fold for AmB-treated cells compared to untreated con-

trol. Further, the decrease in IL-10 cytokine level was more

significant for GL-AmB-treated than for AmB-treated

macrophages after 12 h (~3.9 vs ~2.3-fold), 24 h (~1.9 vs

~3.1-fold), 36 h (~2.6 vs 1.5-fold), and 48 h (~2.4 vs 1.5-fold)

(Figure 9C). Therefore, GL-AmB causedmore immunostimu-

latory effect than AmB by increasing the Th1 and decreasing

the Th2 cytokine levels significantly. Interestingly, citrate-

reduced GNP also significantly increased the level of Th1

(~2.0 and ~2.5-fold higher IFN-γ after 12 and 24 h, respec-

tively) and decreased the level of Th2 cytokine (~2.0 and

~2.2-fold reduced IL-10 after 12 and 24 h, respectively) com-

pared to untreated control. The change in macrophage cyto-

kine level after GL-AmB/AmB treatment was also confirmed

by semiquantitative PCR of genes specific for Th1 and Th2

cytokines. The IFN-γ level was ~3.2 and ~1.9-fold up-

regulated in GL-AmB and AmB-treated cells, respectively,

compared to untreated control (Figure 9D, Table 1). For IL-

12, the up-regulation was ~2.5 and ~2.0-fold under the same

conditions. For IL-10, the mRNA level was down-regulated

by ~2.3 and ~1.7-fold in GL-AmB and AmB-treated cells,
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respectively, compared to untreated control. Therefore,

mRNA expression levels of Th1 and Th2 cytokines showed

patterns similar to cytokine ELISA of GL-AmB and AmB-

treated macrophages. For GNP, we found ~2.4-fold up-

regulation of IFN-γ but no significant change in IL-12

mRNA level compared to untreated control (Figure 9D).

Discussion
Discovery of new liposomal AmB formulations23 reduces

the cytotoxicity of AmB but comes with limitations of

a narrow therapeutic index or high cost for lipid

formulations.69 AmBisome contains a liposomal mem-

brane consisting of hydrogenated soy phosphatidylcholine,

cholesterol, and distearoylphosphatidylglycerol along with

other ingredients. Due to the presence of these costly lipid

molecules, the cost of AmBisome formulation becomes

very high and, therefore, a main barrier to widespread

use in the pharmacotherapy of leishmaniasis in developing

countries.24,70 In fact, to check the feasibility of cost

reduction in VL treatment, a single-dose liposomal AmB

was compared with 15 alternate-day infusions of ampho-

tericin B deoxycholate in a clinical trial.71 Therefore,

water-stable and well-dispersed aqueous solutions of

AmB with low toxicity and reduced manufacturing costs

remain a priority. New derivatives of AmB for improved

water solubility, antifungal efficacy, and reduced cytotoxi-

city were synthesized.52,72–74 In general, the single amine

and single carboxylic group of AmB were preferred for

chemical modification75,76 where modification of the AmB

amine group was found to be more effective in reducing

the cytotoxicity77 without compromising efficacy52 against

fungus.

GNP was functionalized with a linker LA to chemically

conjugate the amine group of AmB with the carboxylic

group of LA to produce GL-AmB (Figure 1A). The con-

jugate became water soluble (~5 mg/mL). UV spectroscopy

of GL-AmB is very similar to a DMSO-soluble nonaggre-

gated form of AmB (Figure 1B), indicating the mono-

disperse nature of GL-AmB further confirmed by TEM

analysis (Figure 1C) and observed higher negative zeta

potential values (Figure S2) of GL-AmB compared to

AmB. The IC50 for GL-AmBcompared to AmB was

~5-fold reduced (~100 nM vs ~500 nM) against amastigotes

(Figure 4D). Apart from its efficacy against LD (~2.5-fold

reduction in IC50 against promastigotes, Figure 4C), GL-

AmB was, also, found to be more potent than AmB against

fungus Candida albicans (~4-fold reduction in IC50, Figure

S7) in vitro. However, there is no significant change in

killing efficacy for promastigotes or amastigotes after 48

h with increasing doses, possibly due to instability of AmB

in cell culture medium after 72 h. HPLC analysis showed

increased macrophage uptake for GL-AmB (>5, >3.5, and

>2.5-fold after 1, 2, and 4 h, respectively, Figure 6A) com-

pared to standard AmB. Macrophage uptake of AmB/AmB

formulation up to 24 h was also done earlier with human

monocyte cells THP-155 and human macrophages J774,72

where uptake of different AmB formulations was clearly

shown with significant differences. Macrophage uptake cor-

relates well with the TEM image of polyphenol-

functionalized GNPs' fast uptake in macrophages,48 indicat-

ing a possible advantage of GNP-based drug delivery in VL,

a disease where the parasite primarily infects the macro-

phages of the liver and spleen. The RT of AmB and GL-

AmB was 3.41 and 3.52 min, respectively, in HPLC (Figure

S1A and B) and, therefore, the peak of AmB obtained

(RT=3.44 min) during macrophage uptake studies for GL-

AmB could be due to a mixture of free AmB (released after

cleavage of amide bond by macrophage peptidases78) and

AmB present in intact GL-AmB. For GNP, the CC50 against

THP-1 cells was ~10 μg/mL, which was just 2 times its IC50

on amastigotes. This explains, possibly, why citrate-reduced

GNPs are not reported as effective antileishmanial agents

although green-synthesized GNPs show promise for the

same.48,79,80 Observed cytotoxicity of GNPs depends on

the size, surface chemistry, and type of cell where it was

used.81 The mechanism of cytotoxicity arising for citrate-

reduced GNPs is not yet established but studies have shown

that increased sodium citrate on the surface of GNPs was

more cytotoxic for alveolar epithelial cell lines.82 Oxidative

stress-mediated toxicity was reported for citrate-reduced

GNP-induced release of nitric oxide into serum.83 GNPs

coated with citrate have shown increased internalization in

macrophages with decreased glutathione level.84 So, it is

likely that change in redox homeostasis and binding of

serum proteins85 causes cytotoxicity of citrate-reduced

GNPs against macrophages.

Reduced GSH, a potent antioxidant which controls

cellular redox status, was significantly lower in GL-AmB-

treated cells after 4 and 6 h (~5 and ~3-fold lower, respec-

tively) compared to AmB-treated cells (P<0.001, Figure

7A). However, this reduction was nonsignificant after 12

h (~1.6-fold) of treatment, indicating, again, higher early

uptake of AmB in promastigotes after GL-AmB treatment
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(Figure 7A). This observation was also consistent with the

measured difference in protein carbonylation which is

a measure of oxidative stress-mediated damage caused

by AmB.50 Protein carbonylation was higher in GL-AmB-

treated cells after 6 h (~1.6-fold) but almost similar after

12 h (<1.2-fold) compared to AmB-treated cells (Figure

S9A and B). Similarly, the increase in ROS (Figure S8A)

and lipid peroxidation products (Figure S9C), which can

be abrogated by pretreatment with ROS scavenger NAC,

were significantly higher in GL-AmB-treated than AmB-

treated cells after 6 h. Due to high similarity in observed

results of GL-treated and GNP-treated samples, in most

cases, the results for GL-treated samples were omitted.

Trypanathione reductase (TryR) is involved in bio-

synthesis of trypanathione (major thiol of Leishmania

along with glutathione) and maintaining the reduced

status of LD under oxidative stress. The relative

mRNA level of TryR and superoxide dismutase (SOD)

were significantly lower (Figure S10A) and SOD

enzyme activity was also reduced in GL-AmB-treated

cells compared to AmB-treated cells (Figure S10B). We

found ~3.1 and ~2.1-fold reduction in the TryR mRNA

level for GL-AmB and AmB-treated promastigotes,

respectively. Treatment of GNPs also showed ~1.8-fold

reduction in TryR expression which is consistent with

the observation that the amount of ROS produced by

GNPs and AmB-treated cells is comparable (Figure

S8A). Interestingly, selected gold complexes have ear-

lier shown potential as antileishmanial agents by target-

ing trypanathione reductase.86 For SOD, the reduction in

mRNA level for GL-AmB and AmB-treated cells was

~2.63 and ~1.8-fold, respectively (Figure S10B).

Consistent with observed higher reactive nitrogen spe-

cies in GL-AmB-treated cells (Figure S8B), inducible

nitric oxide synthase expression was also ~2.85 and

~1.75-fold up-regulated (Figure S10C) in GL-AmB and

AmB-treated amastigotes, respectively. Expression of

ascorbate peroxidase (APX) in AmB-resistant LD

strain87 and expression of heat shock protein (HSP-70)

in human epithelial cells after AmB-conjugated NP

treatment88 were found to be elevated. However, no

significant changes were observed for APX and HSP-

70 mRNA expression level after GL-AmB/AmB treat-

ments compared to untreated control. The expression

level of lanosterol-14-α-demethylase (Ldem) mRNA

was ~2.1 and ~1.6-fold reduced in GL-AmB and AmB-

treated cells, respectively. However, the expression level

of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA,

which is related to mevalonate biosynthesis and not

directly related to ERG biosynthesis, was unchanged

under similar treatment conditions (Figure S10A). The

expression level of arginase 1, involved in the polyamine

biosynthesis pathway, does not show any change after GL-

AmB/AmB treatment compared to untreated control. In

short, the difference between the level of ROS, oxidized

protein carbonyl, and reduced glutathione content in GL-

AmB and AmB-treated cells correlated well with observed

changes in mRNA expression for genes involved in the

oxidative stress response and ERG biosynthesis pathway

of LD (Figure S10A). This shows that GL-AmB and AmB

kills parasites through a common mechanism of action

involving oxidative stress and the ERG biosynthesis

pathway.

There was a marked increase in LDH release (Figure

7C) consistent with increased membrane fluidity (Figure

7B) in GL-AmB-treated parasites. This is a pattern simi-

lar to necrosis. Similarly, an increase in PI+ cells with

a concomitant decrease in AV+ cells (higher PI+/AV+

ratio in Figure 8C) and lack of fragmented DNA

(Figure 8B) indicated an enhanced necrotic mode of

death of LD after GL-AmB treatment compared to

AmB treatment. Interestingly, the ratio of PI+/AV+

cells was very similar for GNP and AmB-treated cells,

indicating a possible necrotic mode of death induced by

citrate-reduced GNPs as well.

VL is known to be associated with a mixed Th1–Th2

cytokine response. AmB-treated patients corresponded

with an elevation in Th1 and down-regulation of Th2

cytokines.89 GL-AmB, compared to AmB, significantly

increased the level of Th1 (IL-12, IFN-γ) and significantly

reduced the level of Th2 (IL-10) cytokines as measured by

cytokine ELISA (Figure 9A–C) or by semiquantitative

PCR for cytokine mRNAs (Figure 9D). Importantly, the

change in released Th1 and Th2 level for GL-AmB-treated

cells compared to AmB-treated cells is more significant at

earlier time points (ie, 12, 24, and 48 h) and became

insignificant after 72 h. Genes specific for Th1 (IFN-γ,
IL-12) and Th2 (Il-10) cytokines showed significant

changes in expression level between untreated and treated

cells. The IFN-γ level was ~3.2 and ~1.9-fold up-regulated

in GL-AmB and AmB-treated cells, respectively, com-

pared to untreated control. For IL-12, the up-regulation

was ~2.5 and ~2.0-fold under the same conditions. For IL-

10, the mRNA level was down-regulated by ~2.3 and

~1.7-fold in GL-AmB and AmB-treated cells, respectively,

compared to untreated control. For GNP, we found
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~2.4-fold up-regulation of IFN-γ but no significant change

in IL-12 mRNA level compared to untreated control.

Therefore, semiquantitative PCR data (Figure 9D) corre-

late well with the cytokine ELISA data (Figure 9A–C).

Conclusion
Earlier, our coworkers showed a GNP-based detection

method for measuring LD RNA in amastigote-infected

macrophages.90 They identified a drug-resistant LD

strain based on GNP-based detection of single nucleo-

tide polymorphism associated with resistance.91 In par-

allel, hemoglobin-guided92 and macrophage membrane-

derived93 nanovesicles for AmB delivery were devel-

oped for improved antileishmanial efficacy. In this

study, efficacy of a synthesized gold nanoparticle–lipoic

acid–amphotericin B (GL-AmB) covalent conjugate was

evaluated compared to standard AmB against LD pro-

mastigote and amastigote forms. GL-AmB showed

enhanced AmB uptake inside macrophages leading to

higher production of reactive nitrogen species and an

increased immunostimulatory effect measured by ele-

vated Th1 and decreased Th2 cytokine levels. GL-AmB

caused severe membrane damage leading to necrosis,

increased extracellular release of LDH through porous

membranes, marked depletion in ergosterol, and reduced

thiol content. This is paralleled with higher production

of ROS, lipid peroxides, and oxidized protein carbonyls

in GL-AmB-treated parasites compared to AmB-treated

parasites. In conclusion, the mechanism of action of GL-

AmB and AmB are very similar (Figure 10). However,

GNP-based formulation of AmB is advantageous due to

its enhanced antileishmanial activity, reduced toxicity,

high macrophage uptake, increased immunostimulatory

effect, and marked depletion in ERG content of parasite

membranes leading to increased fluidity. In addition, we

have found a possible mechanism of action of citrate-

reduced GNP against LD. The high toxicity and hemo-

lytic activity of both citrate-reduced GNP and AmB

were significantly reduced following conjugation of

AmB with GNP. Therefore, GNP-based formulation of

AmB may replace available formulations of AmB in

future, and synthesis of new GNP-based conjugates

with other antileishmanial or antifungal agents may

give us new insights into GNP-based drug delivery.

Abbreviation list
GNP, gold nanoparticle; AmB, amphotericin B; LA, lipoic

acid; PDI, polydispersity index; TEM, transmission
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Figure 10 Schematic presentation showing mechanism of action with improved efficacy of GL-AmB over AmB in Leishmania donovani.
Abbreviations: AmB, amphotericin B; ERG, ergosterol; GL, GNP-lipoic acid product; GNP, gold nanoparticle; GSH, reduced glutathione; IFN-γ, interferon-γ; LDH, lactate

dehydrogenase.
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electron microscopy; SAED, selected area electron diffrac-

tion; FT-IR, Fourier transform infrared spectroscopy;

EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide;

NHS, sulfo-N-hydroxysuccinamide; VL, visceral leishma-

niasis; LD, Leishmania donovani; ERG, ergosterol; SOD,

superoxide dismutase; NAC, N-acetyl l-cysteine; LDH,

lactate dehydrogenase; IFN-γ, interferon-γ; RT, retention
time.
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Supplementary materials

Methods
Determination of reactive oxygen species

(ROS) in promastigotes by fluorescent

dye H2DCFDA
Promastigotes (5×106 cells/ml) were treated with GNP (2.5, 5

and 10 µg/ml), AmB/GL-AmB (0.05-0.2 µM) for 6 and 12 h.

Amount of ROS accumulated in promastigotes weremeasured

by fluorescent dye H2DCFDA as described.1

Determination of nitrites from

amastigotes by Griess reagent
Reactive nitrogen species (RNS) and nitrites were mea-

sured by Griess reagent-based colorimetric assay at 540

nm from amastigote-infected macrophages.2

Reverse Transcription Polymerase Chain

Reaction (RT-PCR)
Reverse transcription was performed using 1 μg of total RNA
by cDNA synthesis kit (Roche, USA) according to the man-

ufacturer's instruction. The synthesized cDNAs (from RNA of

promastigotes) were amplified by PCR for specific genes viz.

trypanothione reductase (TryR), superoxide dismutase (SOD),

ascorbate peroxidase (APX), heat shock protein-70 (HSP-70),

arginase-1, lanosterol-14-demethylase (Ldem), S-adenosyl-L-

methionine:C-24-Δ-sterol methyltransferase (SCMT), 3-

hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-

CoA-R) and α-tubulin. The synthesized cDNAs (from RNA

of amasitogote infected macrophages) were amplified by PCR

for specific genes viz. inducible nitric oxide synthase (iNOS),

IL-12, IL-10, IFN-γ and GAPDH. LD α-tubulin and macro-

phage GAPDH were used as loading control for promastigote

and macrophage models, respectively. The PCR mixture (25

μl) contains 0.6 μM of forward and reverse primer, 0.5 mM of

each dNTP, 2 mMMgCl2, 0.5 μg of synthesized cDNA and 1

μl Taq polymerase. The sequence of PCR primers, annealing

temperature and size of PCR products were shown in Table 1.

The PCR was done for 28 cycles where each cycle had

denaturation at 95°C for 30 sec, annealing (ranging from 55-

62°C) for 30 sec and extension at 72°C for 45 sec. Samples

were preheated at 95°C for 3 min before PCR. The products

were run on 1.5% agarose gel, stained with ethidium bromide

(0.5 μg/ml), and finally documented and quantified using the

gel documentation system and associated Gene-tool software

(Syngene, USA).

Isolation of total RNA from

promastigotes and amastigote-infected

macrophages
Parasites (5×106 cells/well) were treated with GNP (5 μg/
ml), AmB/GL-AmB (0.1 μM) for 6 h. Treated cells were

centrifuged at 4200g for 10 min, washed thrice with PBS

and then total RNA was isolated by addition of TRIZOL

solution (Thermo Scientific, USA) as described. Pellet of

RNAwas air-dried, re-suspended in 100 µL of RNase-free

water and treated with DNase I (1U/μl) at 37°C for 30

min. Digested RNA was loaded on RNeasy Mini Kit

(Qiagen, USA) columns and RNA was eluted in 30 μl of
RNase-free water. RNA quality was checked by gel elec-

trophoresis and quantified by Nanodrop spectrophotometer

(Thermo scientific, Nanodrop 2000, USA).

For isolation of RNA from macrophage-infected para-

sites, RAW 264.1 cells (1×106/well) were grown in a 6

well plate and infected with 1×107 parasites for 12 h. Non-

phagocytic cells were washed out, fresh medium was

added and then incubated further for 12 h. Parasite-

infected macrophages were treated with GNP (10 μg/ml),

AmB and GL-AmB (1 μM) for 6 h and then RNA was

isolated from the cell pellet as described above.

Superoxide dismutase (SOD) activity

assay
Promastigotes (5×106 cells/ml) were treated with GNP (10

μg/ml), AmB/GL-AmB (0.2 μM) for 6 h and then har-

vested. Cells were lysed and SOD enzyme activity assay

was performed as described.3 The enzyme activity was

calculated as the percentage of inhibition in the reduction

of nitro blue tetrazolium (NBT) measured at 560 nm.

Reduction of untreated cells were considered 100%.

Results
Determination of ROS in promastigotes

Amount of ROS produced by GL-AmB was ~2.4, ~2.1 and

~1.6 fold higher than AmB at 0.05, 0.1 and 0.2 μM doses,

respectively (P < 0.001, Figure S4A). Interestingly, at IC50

dose for both GNP (2.5 μg/ml) and AmB (0.05 μM) amount of

ROS produced was ~2 fold higher for GNP than AmB.

Therefore, generation of oxidative stress by citrate-reduced

GNPs is one of the possible reason for its antileishmanial

efficacy. Amount of ROS produced by GNP, AmB and GL-

AmB in promastigotes can be reduced to the basal level by

pre-incubating the reaction with 1mMNAC. Although a wide

range of concentrations of AmB and GL-AmB were used in
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most experiments, results were shown only for those concen-

trations which had shown significant differences between

AmB and GL-AmB-treated samples.

Determination of RNS in promastigotes

Amount of RNS produced in macrophages was also higher

(~1.5 fold) for GL-AmB-treated cells than AmB-treated

cells at all indicated doses (Figure S4B). Also, RNS pro-

duced by GNP and AmB is almost comparable. Therefore,

production of higher oxidative stress is one of the possible

mechanism of increased antileishmanial efficacy of GL-

AmB compared to AmB.

SOD Assay

Activity of SOD was ~1.9 fold reduced in lysates which

were prepared from 0.2 μM of GL-AmB-treated cells in

comparison to AmB-treated cells after 6 h.
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based on HPLC determination (C).

Abbreviation: AmB, amphotericin B.

Dovepress Kumar et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
6095

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


A

B

GL

GNP

GL-AmB Mobility distribution

Mobility distribution

Mobility distribution

GNP

Nanoparti
cle

Average
diameter

(nm)

PDI Zeta
potential

(mV)

GL
GL-AmB

38.8
46.5
47.8

0.333
0.343
0.303

–13.94
–12.43
–21.16

Zeta potential (mV)

In
te

ns
ity

Figure S2 Zeta potential diagram of GNP, GL and GL-AmB (A). Tabular representation of measured average diameter and PDI of NPs by DLS (B).
Abbreviations: AmB, amphotericin B; GL, GNP-lipoic acid product; GNP, gold nanoparticle; PDI, polydispersity index.

Kumar et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:146096

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


10

0

200In
te

ns
ity 400

600

800

1000 (111)

(200) (220)

(311)

20 30 40
2 θ (degree)

50 60 70 80

Figure S3 X-ray diffraction (XRD) of crystalline GL-AmB characterized by the presence of four peaks corresponding to standard Bragg reflections. The diffraction peak of

38.2° relates to (111), 47.7° relates to (200), 65.3° relates to (220), and 77.1° relates to (311) facets of the face centre cubic (FCC) crystal.
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Figure S4 Activity of NPs and AmB after 72 h treatment against LD promastigotes in vitro (A) and against intracellular amastigotes ex vivo (C). Comparative efficacy for AmB

and GL-AmB against promastigote (C) and amastigotes (D).

Note: *P<0.05; ***0.01<P<0.001.
Abbreviations: AmB, amphotericin B; GL, GNP-lipoic acid product; GNP, gold nanoparticle.
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Note: *P<0.05; **0.05<P<0.01; ***0.01<P<0.001.
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Figure S7 In vitro activity of AmB and NPs after 48 h treatment against C. albicans (A). Comparative efficacy of AmB and GL-AmB against C. albicans (B).
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Figure S8 Measurement of ROS produced by promastigotes after treatment with NPs and AmB for 6 h with or without 1 mM NAC (A). Measurement of RNS produced by

amastigotes after measuring absorbance of Griess reagent at 540 nm under similar treatment conditions for NPs and AmB with or without 0.1 mM DPI (B).
Note: *P<0.05; **0.05<P<0.01; ***0.01<P<0.001.
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Figure S9 Protein carbonyl content was determined by DNPH-based spectrophotometric method from parasites treated with NPs and AmB after 6 h (A) and 12 h (B).
Lipid peroxidation assay for promastigotes after treatment with NPs and AmB for 6 h with or without 1 mM NAC (C).

Note: *P<0.05; **0.05<P<0.01.
Abbreviations: AmB, amphotericin B; GL, GNP-lipoic acid product; GNP, gold nanoparticle; NS, not significant.

Kumar et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:146100

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


International Journal of Nanomedicine Dovepress
Publish your work in this journal
The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology in
diagnostics, therapeutics, and drug delivery systems throughout the
biomedical field. This journal is indexed on PubMed Central,
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine,

Journal Citation Reports/Science Edition, EMBase, Scopus and the
Elsevier Bibliographic databases. The manuscript management system
is completely online and includes a very quick and fair peer-review
system, which is all easy to use. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/international-journal-of-nanomedicine-journal

0

Arginase-1

α-Tubilin

HMG-CoA-R

SCMT

Ldem

HSP70

APX

TryR

SOD

iNOS

GAPDH

Contro
l

Con
tro

l

AmB

GNP

GL-A
mB

Con
tro

l

AmB

GNP

GL-A
mB

AmB (0
.2μM)

GL-AmB (0
.2μM)

GNP (1
0μg/m

l)

20

**

%
 S

O
D

 a
ct

iv
ity

40

80

100

A B

C

60

Figure S10 Semi-quantitative PCR for LD specific genes after treatment of parasites with AmB and NPs for 6 h (A) where -tubulin was used as loading control. SOD

activity assay with LD cell lysates after treatment with AmB and NPs for 6 h (B) where activity of untreated cells were considered 100%. Semi-quantitative PCR for
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