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Abstract: This paper discusses the classification of Chilean wines by geographical origin 

based only on aroma information. The varieties of Cabernet Sauvignon, Merlot, and Carménère 

analyzed here are produced in four different valleys in the central part of Chile (Colchagua, 

Maipo, Maule, and Rapel). Aroma information was obtained with a zNoseTM (fast gas 

chromatograph) and the data was analyzed by applying wavelet transform for feature extraction 

followed by an analysis with support vector machines for classification. Two evaluations of 

the classification technique were performed; the average percentage of correct classification 

performed on the validation set was obtained by means of cross-validation against the percent-

age of correct classification obtained on the test set. This developed technique obtained results 

on classification rates over 94% in both cases. The geographical origin of a Chilean wine can 

be resolved rapidly with fast gas chromatography and data processing.

Keywords: geographical origin, origin denomination, wine classification, pattern recognition, 

support vector machines, wavelet analysis, feature extraction

Introduction
Origin denomination (OD) is generally understood as ascribing specific characteristics 

of an agriculture product to a geographical region. Those region-specific characteristics 

mean each product differs from similar products grown in other regions. In wine, the 

region-specific characteristics are produced by variations in soil and climate. This 

differentiation is applied to many products such as cattle,1 potatoes,2 honey,3,4 olives 

oil,5 onions,6 etc, but the most well known are related to wine. European countries 

stand out from other wine-producing countries with many different wine-producing 

regions assigned different ODs. Prof. Leighton attempted to provide a rigorous defini-

tion for OD by defining the concept of “terroir” as the relationship between wine and 

its growing environment, which includes Andreas Smolle’s7 suggestion to consider 

soil geology (chemical composition, drain, and structure). France has used this proce-

dure to determine the borders of different wine-growing regions for the “Appellation 

d’Origine Contrôlée” printed on wine labels.

Knowledge of how soil composition affects wine quality is mainly based on 

the experience of individual winegrowers. However, Leneuf and Rat8 formulated a 

hypothesis to explain how chemical elements such as potassium, manganese, and 

magnesium influence the growth of grapes and the yield of each vineyard. Nevertheless, 

this work was not able to conclude definitively on how those chemical elements affect 

the taste or aroma of wines.
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Climate factors such as temperature, sunlight, and 

humidity also determine the characteristics of the terroir 

since they affect grape growth. Soil, climate, and each 

winery’s individual wine-making methods are the main 

elements affecting OD.

Several techniques have been proposed to determine the 

OD of wine. They range from genetic analysis of grapes to 

well known techniques used in chemistry or physics studies 

to determine compounds or elements in a wine sample.

Determination of isotopic ratios by mass spectroscopy 

and nuclear magnetic resonance (NMR) is probably the most 

efficient technique available today to detect the geographical 

origin of a component in a vegetable sample. The measure-

ment of the relationship between a deuteron and hydrogen 

in ethanol molecules produced by sugar fermentation can be 

used in some products to determine their geographic origin. 

This technique works because it is physically impossible to 

change sugar isotopic ratios to camouflage additives. This 

was the main reason why the European Union (EU) officially 

recognized this technique for wine analysis in 1990.

NMR has been used to analyze properties of different 

materials in polymers or biomedicine. For wine analysis, it is 

used to compare the deuteron content in a wine sample with 

another sample from the same region to produce a region-

specific pattern and define an OD.9

Inductively coupled plasma-mass spectrometry has 

been used by different researchers to determine the 

geographic origin of wine based on inorganic component 

concentrations.10,11 The isotopic ratio for strontium 87 and 

86 (87Sr/86Sr) for wines from five Portuguese regions and 

one from France have been determined. Sample pretreatment 

was carried out to avoid the influence of rubidium (Rb) on 

the measurement. According to the researchers, the results 

are promising for the determination of OD. Similar results 

are reported for wines produced in the Canary Islands.12 

The study was carried out on 153 samples of white, rosé, 

and red wines from eight different regions on four islands, 

and differences in the concentrations of 20 elements was 

observed.

Another technique used for OD was the identification of 

amino acids by high-performance liquid chromatography 

(HPLC).13 Twenty amino acids were analyzed in Spanish 

wines from the La Mancha OD, which resulted in a greater 

concentration of arginine and proline.

This short review on the techniques used to determine 

OD shows that all require sophisticated equipment to be used 

for a few hours on each sample analysis and longer times for 

a set of samples to reach a conclusion. On the other hand, 

researchers normally use basic pattern recognition techniques 

such as principal component analysis (PCA) and linear 

discriminant analysis (LDA).

Another group of techniques extensively used for 

identifying wine variety is based on electronic noses. 

Interesting work is being done by Lozano and colleagues14–18 

on Spanish wine discrimination using electronic noses. 

Lozano and colleagues14 used two different sampling 

methods for the electronic nose (purge and trap, and solid 

phase microextraction) which were analyzed and compared. 

Multivariate analyses such as PCA and artificial neural 

networks (ANN) were applied to five different wines and 

good results were obtained.

García and colleagues15 used an electronic nose based on 

metal oxide semiconductor thin-film sensors to character-

ize and classify four types of red wines of the same grape 

variety. Data analysis was performed by two pattern recog-

nition techniques: PCA and probabilistic neuronal network 

(PNN). The results showed that the electronic nose was able 

to identify wines.

Lozano and colleagues16 used an electronic nose to 

recognize and detect wine aging. The same wine was aged 

in different types of oak barrel (French and American 

oak). PCA and PNN were used as pattern recognition tech-

niques. Classification rates of 97% and 84% were achieved, 

respectively.

A portable electronic nose using two different micro-

machined resistive-type sensor arrays was developed 

by Aleixandre and colleagues.17 One used a polysilicon 

integrated heater and the other used a platinum film. The 

nose was tested with four different wines from the Madrid 

region. PCA and PNN were employed as discrimination 

tools. Correct classification rates of 100% and 88% were 

reported, respectively.

An electronic nose using an array of surface acoustic 

wave (SAW) sensors was reported by Fernández and 

colleagues,18 which used piezoelectric zinc oxide deposited 

by sputtering over silicon substrates to detect low concentra-

tions of different volatile compounds such as octane, toluene, 

and methylethylketone. The dual configuration array is com-

posed by seven sensors spray coated with diverse polymer 

thin films and one reference sensor is left uncoated. PCA, 

PNN, and partial least squares (PLS) were used to classify 

samples and predicted gas concentrations reasonably well. 

It is important to note that the sensor used by Fernández and 

colleagues18 is of the same type that Beltrán and colleagues19 

used to successfully perform variety classifications of 

Chilean wines.
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Motivation
This review is motivated by the need to have an objective 

technique that quickly delivers reliable results of the variety 

and/or the OD claimed by the winegrower. This intelligent 

system certainly assists wine trading and provides importers 

with a reliable method of checking the received product and 

a quality control tool for exporters. The system developed 

by Beltrán and colleagues19 fulfills those requirements by 

accomplishing the task of classifying wine varieties in a short 

time after sample measurement. The results presented in this 

paper are an extension of this work to identify geographic 

origin minutes after testing a sample.

In this paper, our data is obtained by a zNoseTM, which 

is essentially a fast gas chromatograph. The manufacturer20 

describes the system as consisting of two sections: a one-

meter column (capillary tubing) where helium gas flows 

constantly through and impinges onto the surface of an 

uncoated SAW detector which is temperature-controlled. 

The capillary column tubing is made from stainless steel 

with a polysiloxane coating on the inner surface. A closed-

loop microprocessor controls direct column heating, which 

allows linear ramping of the column temperature at rates from 

10 °C/s to 20 °C/s. The second section of the system is used 

to sample the head space for volatile organic compounds 

(VOCs) of the wine by pumping the gaseous components 

through a heated inlet. Linking both sections is a trap (3-cm 

length of heated resistive metal capillary tubing), which is 

essentially a preconcentrator.

Obtaining a wine chromatogram with this system follows 

a sequential process involving both sections. First, VOCs are 

sampled and preconcentrated on the trap and then switched 

into the helium section. By rapidly heating the trap to 

250 °C, the absorbed VOCs are released and each compound 

undergoes an absorption interaction as they pass through 

the capillary column. Linear ramping of the column tem-

perature releases different absorbed compounds according 

to their characteristic retention times. The compounds exit 

the column onto the surface of the SAW detector. Physically 

absorbed organic compounds on the crystal surface change 

the frequency of the resonator by slowing down the mechani-

cal surface waves. The change in frequency is proportional 

to the absorbed mass on the crystal surface. Once the mea-

surement is completed, reversing the SAW detector desorbs 

condensed compounds, which allows a new measurement 

to be carried out. A block diagram of the system is shown 

in Figure 1.

Methodology
The information provided by the zNoseTM20 is a 20 s time 

signal, which is taken at a 0.01 s rate (sampling period) and 

generates a 2,000-point profile. As an example, Figure 2 

shows a representative chromatogram from a wine sample 

(Cabernet Sauvignon) produced in the Colchagua valley. 

As seen in Figure 2, information content is mainly present 

in the interval 0–12 s. Thus, the segment from 12 to 20 s 

was neglected (chopped), generating a 1,200-point profile 

sampled at a 0.01 s period.

In order to decrease even more data dimension without 

losing information contained in the chromatograms, organic 

volatile compound profiles were re-sampled at twice the 

original sampling period (0.02 s). According to the basic 

signal theorem, known as the Shannon theorem,21 there is 

no loss of information when re-sampling the signal at twice 

the greatest frequency available (the Nyquist frequency).22 

In this case, after a frequency content analysis of all profiles 

performed by Fourier analysis, it was determined that the 

Nyquist frequency was 50 Hz. Thus, the original profile can 

be re-sampled using a 0.02 s sampling period without losing 

information contained in the signals. As a consequence of 

this procedure, the number of profile points to be processed 

decreases from 1,200 to 600 points in our case.

To normalize data amplitude, a scale factor was applied. 

This factor was related to the standard deviation of the 

profile.19 By this procedure, the amplitude of each one of 

He Column Saw
detector

Heat

Chromatograph

Figure 1 Block diagram of the measurement system (zNoseTM).
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the 339 patterns of the data base was scaled according to the 

scale factor given in equation (1).

	
x

x
normalized

not normalized

xnot normalized

=
σ �

(1)

For each wine sample, 10 chromatograms were obtained 

from the electronic nose by repeating the experiment 10 times 

to avoid systematic instrumental errors. The average of 

these 10 profiles was considered as representative for each 

sample. The experiments were performed under temperature-

controlled conditions of 22 °C.

Database
To build our database, 339 commercial Chilean wines 

produced between 1992 and 2005 were tested. Wines of 

the varieties Cabernet Sauvignon, Merlot, and Carménère 

produced in Colchagua, Maipo, Maule, and Rapel valleys 

were characterized by analyzing the headspace of the samples 

with a zNoseTM FAST GC Analyzer 7100 manufactured by 

Electronic Sensor Technology (Newbury Park, CA, USA).20 

Sample wine distribution according to geographical origin 

and the number of wine samples for each variety and region 

are presented in Table 1.

The total database was divided in two sets. The first 

contained 80% of the samples chosen randomly and was 

used for training–validation purposes. The remaining 20% 

of the samples constituted the test set. Thus, samples used for 

testing the classification system were not known in advance 

by the system. Sample distribution of these two sets was as 

follows:

•	 Training–validation set: 270 patterns corresponding to 

87 from Colchagua valley, 87 Maipo valley, 39 from 

Maule valley, and 57 from Rapel valley.

•	 Test set: 69 patterns corresponding to 22 from Colchagua 

valley, 22 from Maipo valley, 11 from Maule valley, and 

14 from Rapel valley.
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Figure 2 Characteristic profile provided by the zNoseTM from a Cabernet Sauvignon wine belonging to Colchagua valley.

Table 1 Wine distribution in database

Varieties   Total

   Cabernet  
Sauvignon

Merlot Carménère 

Geographical origin 
(Valley)

Colchagua 47 33 29 109 (32%)

Maipo 61 30 18 109 (32%)

Maule 18 19 13 50 (15%)

Rapel 30 19 22 71 (21%)

 TOTAL 156 101 82 339
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The characteristic profiles of Cabernet Sauvignon 

wine samples produced in Colchagua, Maipo, Maule, and 

Rapel valleys are shown in Figure 3 after the chopping and 

re-sampling process. The profiles are plotted separately to 

observe possible differences in Figure 3(a).

In comparing the chromatograms shown in Figure 3(b), 

where all have been plotted in the same plot, significant 

differences were not clearly observed to perform a simple 

profile analysis. This fact means that classifying different 

classes from these data becomes an interesting and 

challenging problem, which clearly requires the use of 

advanced pattern recognition techniques.

After re-sampling each of the profiles, a wavelet trans-

form is applied for characteristic feature extraction and 
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Figure 3 Representative profiles of a Cabernet Sauvignon sample produced in different valleys (after chopping and re-sampling).
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followed by classification with support vector machines 

(SVM) using a multiclass method.

The steps carried out in this work to obtain the 

classification of Chilean wines are illustrated in the block 

diagram shown in Figure 4.

Feature extraction technique
Feature extraction (FE) is a procedure aimed to reduce the 

dimension of feature vectors. Several FE techniques have 

been extensively used in artificial intelligence (AI). The most 

commons are Fourier transform (FT),23 Fisher transform,24 

PCA,25 and wavelet transform.26,27 In this study, we have 

chosen the FE technique of wavelet transform analysis based 

on the successful results obtained in varietal classification 

of Chilean wines.19,28

Wavelet transform26,27 is an interesting alternative to 

the widely used FT when analyzing nonstationary signals. 

Wavelet transform uses windows of variable size ie, small 

windows (detail window) for a fine analysis of high frequency 

signals and large windows (approximation windows) 

for a course analysis of low frequency signals.

Formally, a time signal f (t) of square integral can be 

expressed in terms of certain functions ψ
j,k

(t) and φ
k
(t) accord-

ing to the following decomposition:

	
f t c t d t j kk k j k j k

kjk

( ) ( ) ( ), ,, ,= + ∈
=-∞

∞

=

∞

=-∞

∞

∑∑∑ φ ψ Z
0

� (2)

where {φ
k
(t)}, {ψ

j,k
(t)} are sets of orthonormal functions 

called wavelets. Coefficients c
k
 and d

jk
 correspond to 

the approximation and detail coefficients, respectively, of 

the discrete wavelet transform of f(t) and they are com-

puted as:

	
d f t t dtj k j k, ,( ) ( )= ∗

-∞

∞

∫ ψ � (3)

	
c f t t dtk k= ∗

-∞

∞

∫ ( ) ( )φ � (4)

where f *(t) is the conjugate of f(t).

Amongst the simplest coefficients there exist a set 

of orthonormal wavelet basis called Haar wavelets, 

defined as:29

	 ψj,k(t) = 2 j/2ψ(2jt – k),  with  j, k ∈ Z� (5)

Unknown sample

Fast gas
chromatography

Re-sampling

Classification

Valley

Wavelet transform

10

100 200 300 400 500 600
−10
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−10
0

0

0 5 10 15 20 25 35 3830

Figure 4 Steps of the method followed in this work to determine geographical origin of a Chilean wine sample.
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	 ϕk(t) = φ (t - k)� (6)

where function ψ(t) is called mother wavelet and function 

φ(t) is the scale function. They are defined as:

	 ψ (t) = φ (2t) - φ (2t - 1)� (7)

	
φ( )t

for t

otherwise
=





1 10
0

 
� (8)

where subindex j defines the decomposition level and the 

subindex k is the shift time.

In practice, the effect of wavelet transform is to filter the 

original signal using a set of low-pass and high-pass filters 

and is later re-sampled in a process called down-sampling, 

reducing the number of points of the original signal from 

n to n/2 after each filtering processing. The number of times 

that this procedure is repeated corresponds to the wavelet 

decomposition level of signal S. The high-pass filters give 

the detail coefficients and the low-pass filters the approxima-

tion coefficients.

Pattern recognition technique used
The SVM introduced by Vapnik30 is a powerful classifi-

cation and regression method widely used in machine-

learning and data-mining.31 SVM minimizes the empirical 

risk (defined as the error in the training set) and minimizes 

the generalization error.31 The advantage of SVM applied 

to classification models is that supplies a classifier with 

a minimum Vapnik–Chervonenkis dimension,30 which 

implies a small probability of error in the generalization. 

Another characteristic is that SVM allows the classification 

of nonlinearly separate data, since it performs a mapping 

of the input space onto the characteristic space of a higher 

dimension, where the data is indeed linearly separable by 

a hyperplane. This introduces the concept of an optimal 

hyperplane.

Given a set of training data with their respective out-

come (x
i
, y

i
), i = 1, …, n, where x

i
 ∈ ℜ   m and y ∈ {1, -1}n, 

SVM requires the solution of the following optimization 

problem:

	 min , ,w b
T

i
i

n

w w Cξ ξ1
2 1

+
=
∑ � (9)

constrained to y
i
 (wT φ (x

i
) + b)  1 – ξ

i

	 ξi  0� (10)

Training data x
i
 are mapped onto a feature space of  higher 

dimension by mean of function φ(⋅). The solution implies the 

definition of the kernel function K(x
i
, x

j
) = φ (x

i
)Tφ (x

j
) and 

C  0 corresponds to the penalization error parameter. Some 

typical kernel functions commonly used are:

•	 Linear: K x x x xi j i
T

j( , ) =
•	 Polynomial: K x x x x r ri j i

T
j

d( , ) ( ) , ,= + >γ γ 0
•	 R a d i a l  b a s i s  f u n c t i o n  ( R B F ) :  K x xi j( , ) =  

exp( ),- - >1 02 2
σ σx xi j

•	 Sigmoid: K x x x x r ri j i
T

j( , ) tan h( ), ,= + >γ γ 0
where γ, σ, r, and d are parameters of kernel functions.

SVM multiclass
Since we are dealing with a multiclass problem (number of 

classes higher than two) and SVM can only discriminate 

between two classes, the strategy proposed by Angulo was 

applied.32 Basically a stage is added to the normal application 

of SVM in order to carry out the classification for a number 

of classes higher than two.

We briefly describe here some of the techniques used 

to transform a two-class problem in a multiclass problem 

(decomposition methods). Furthermore, we present a recon-

struction method that allows the fusion of the predictions of 

several classifiers to end up with a final answer.

The most commonly used decomposition methods to 

use a two-class classification technique as a multiclass one 

are one-versus-rest, one- versus-one, and error correcting 

output codes (ECOC).

The classifier, one-versus-rest, separates one class from 

the remaining C - 1 classes by using the binary classifier. The 

standard method is to build C binary classifiers in parallel. 

When SVM is used, the proposed architecture by Vapnik 

is applied.30

The decomposition method associated to one-versus-one 

consists in building C(C – 1)/2 binary classifiers all in 

parallel of one-versus-one types. Each node is trained by two 

different types of the C classes involved in the classification 

process.33

The ECOC technique34 generates a codification for 

each class that allows the classification errors to be easily 

identified. For instance, in the case of four classes we can 

generate the following codes:

	 Class	 Code

	 a	 1111111

	 b	 0000111

	 c	 0011001

	 d	 0101010

The first classifier predicts 1 if the class is a and 0 if it is 

b, c, or d. The second predicts 1 if the class is a or d and 0 

if it is b or c, and so on. Instead of building four classifiers, 

one for each class, seven classifiers are generated.
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In the case of k classes, each code will have 2k–1 – 1 bits. 

The first class is built with bits that have value 1. The second 

class is built with 2k–2 zeroes followed by 2k–2 – 1 ones. The 

third, 2k–3 zeroes, followed by 2k–3 ones, and 2k–3 zeroes, 

followed by 2k–3 – 1 ones, and so on.

Allwein and colleagues suggest an extension of the 

ECOC method that allows unifying the three decomposition 

schemes already mentioned.35 Let us define the decomposi-

tion matrix:

	 M ∈ {–1,0, + 1}C×l� (11)
For all s with s = 1, …, l we provide the learning algo-

rithm with labeled information (supervised learning) of 

the form (x
i
, M(y

i
, s)) for all the examples i in the training 

set, but avoid all the examples for which M(y
i
, s) = 0. The 

learning algorithm uses these data to generate a hypothesis 

of f
s
:χ → ℜ.

For one-versus-rest, M is a C × C matrix with all diagonal 

elements +1 and the reminder set to –1. For instance in the 

case of four classes, C = 4, we have:

	

M v r1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

- - =

+ - - -
- + - -
- - + -
- - - +



















�

(12)

In the case of one-versus-one, M is a C C×( )2  matrix 

where each column corresponds to a different pair of classes. 

Let us consider two different classes r
1
, r

2
: this column of 

M has +1 on row r
1
, -1 on row r

2
, and zero on the rest of 

the rows. For example, in the cases of four classes, C = 4, 

we get:

	

M v1 1

1 1 1 0 0 0
1 0 0 1 1 0

0 1 0 1 0 1
0 0 1 0 1 1

- - =

+ + +
- + +

- - +
- - -



















�

(13)

A reconstruction method is proposed by Allwein and 

colleagues, which allows a final decision based on the binary 

classifiers.35 For notation purposes M(r) denotes the row r of 

M and f    (x) is the prediction vector for one example x with:

	 f  (x) = (     f1(x), …, fl  (x))� (14)

Given predictions f Ss
'  for a pattern of the test set, let 

us say x, which of the C labels should be assigned to the 

pattern?

There exist numerous reconstruction methods to combine 

the f Ss
' , but here we will focus on only two which are 

rather simple to apply. The basic idea in both methods is 

to assign the label r whose row M(r) is the closest to the 

predictions f   (x). In other words, to assign the label r that 

minimizes d(M(r), f    (x)) for measure d. This formulation 

requires to measure the distance between both vectors.

One way to measure the distance is to count the number 

of places in s in which the sign of the prediction f
s
 differs 

from the matrix input M(r, s). Formally this means that the 

distance measure is:

	
d M r f x

M r s f x
H

s

s

l

( ( ), ( ))
( ( , ) ( ))

=
-



=

∑ 1
21

sign

�
(15)

where sign(z) is +1 if z  0, -1 if z  0, and 0 if z = 0. This 

is the computation of the Hamming distance between rows 

M(r) and the signs of the f
s
'. For a given pattern x and a matrix 

M, the label to be assigned is:

	 ˆ argmin ( ( ), ( ))H
r

y d M r f x= � (16)

This reconstruction method is called Hamming 

decoding.35 One disadvantage of this method is that it 

completely ignores the magnitude of the predictions that 

in some cases could be considered as a measure of the 

prediction’s confidence.

There exists a second method that makes use of this 

information as well as the loss function “L”. The idea is to 

choose the label r which is more coherent with predictions 

f
s
(x) in the sense that if a pattern x was labeled as r, the total 

loss over a pattern (x, r) should be minimized by choosing 

r ∈ Y. Formally this means that our distance measure is the 

total loss over (x, r):

	
d M r f x L M r s f xL s

s

l

( ( ), ( )) ( ( , ) ( ))=
=

∑
1 �

(17)

Similarly to Hamming decoding, the label assigned 
ˆ {1, ..., }y k∈  is

	 ˆ argmin ( ( ), ( ))L
r

y d M r f x= � (18)

This reconstruction method is called loss-based decoding.35

Some of the loss functions that can be considered are:

	 L(z) = (1 – z)+

	 L(z) = e–z

	 L(z) = (1 – z)2

	 L(z) = log(1 + e–2z)

In summary, to implement a multiclass classifier based 

on SVM, a kernel function and its parameters have to be 

defined, with coefficient C for (9) and the loss function 

L (17) to be used in the reconstruction method.

In this paper, the loss-based decoding reconstruction method 

was used since it takes into account the information on the 

prediction magnitude delivered by the binary classifier (SVM).
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Results
The results obtained in this study by the methodology 

described above were compiled into a database.

As mentioned in the Methodology section, we used the 

Haar wavelet as a FE technique in this study.27 As a pattern 

recognition technique, we used SVM30 with a radial basis 

function kernel. The SVM technique is then characterized 

by parameters C (penalization error parameter) and σ. Since 

it is being used in a multiclass problem, loss function L also 

has to be defined. We used L(z) = (1 – z) in our study due 

to its simplicity and good results obtained in preliminary 

simulations. The best values for C and σ were determined by 

means of cross-validation using the training–validation set.

The obtained results are summarized in Figures 5 and 6. 

Best classification results for the four valleys under study 

using the complete database (ie, not separated by the grape 

varieties of Cabernet Sauvignon, Merlot, and Carménère) 

are shown in Figure 5 for different wavelet decomposition 

levels (0, 1, …, 5). For each decomposition level, the best 

values of C and σ are different in general. It is interesting 

to note that the best averages of correct classification are 

over 94% in the training–validation set (for the case where 

no wavelet extraction is used) and over 95% for the test set 

(for a wavelet decomposition level of 5).

In Table 2, the confusion matrix for the best case of the 

test set (level 5) is shown. The results are shown in terms of 

the number of samples as well as a percentage with respect 

to the total number of samples in the test set. Percentages on 

the diagonal represent the percentages of patterns correctly 

classified. Off-diagonal terms indicate the patterns are 

wrongly classified.

Table 2 shows that all samples from Colchagua and 

Rapel valleys are correctly classified. The greatest confusion 

occurs in the Maule valley where 18.18% of the samples are 

classified as Maipo provenance. This is due in part since the 

training–validation set has a larger number of samples from 

Colchagua and Maipo valleys.

To geometrically illustrate the obtained results, a “cluster” 

plot is shown in Figure 6. This plot corresponds to the Fisher 

transform where each pattern vector of dimension 600 has 

been projected onto a three-dimensional space (number of 

classes minus one) using the Fisher criterion. From this plot 

it is seen that patterns belonging to different classes (valleys) 

are not separated, nevertheless the classification process is 

able to separate the patterns into four classes with a 94% 

success rate.

Discussion and conclusions
From the results obtained in this paper, it can be observed that 

although Chile is a country with new soils from a geological 

point of view (the concept of terroir has not been yet defined 

by the regulation authority in Chile), organic volatile 

compounds taken by a zNoseTM give enough information 

to determine the geographical origin of the product with 

advanced classification techniques.

Another interesting point arises from analyzing confu-

sion matrixes computed during the classification procedure. 

This analysis revealed that wines labeled as produced in 

Rapel valley presented distinct characteristics from those 

wines labeled as produced in Colchagua valley, although 

Colchagua valley is geographically close to Rapel valley. 

Chilean authorities consider Colchagua valley as a subset of 

%   Correct
classification

%  Correct classification in validation

%  Correct classification in test
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Figure 5 Best classification results for different decomposition levels of wavelet transform.
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Figure 6 Projection of patterns onto the Fisher space.

Table 2 Confusion matrix for best results on the test set (Level 5, 
C = 1 and σ = 1)

Valley Colchagua Maipo Maule Rapel

Colchagua 22 (100%) 1 (4.54%) 0 (0%) 0 (0%)

Maipo 0 (0%) 21 (95.45%) 2 (18.18%) 0 (0%)

Maule 0 (0%) 0 (0%) 9 (81.81%) 0 (0%)

Rapel 0 (0%) 0 (0%) 0 (0%) 13 (100%)

Rapel valley for OD purposes. After an exhaustive analysis 

of the data, it was observed that those wines labeled as Rapel 

valley were produced with grapes that are grown in the north 

and towards the mountain end of the valley, whereas those 

labeled as Colchagua valley were produced with grapes 

grown in vineyards located towards the coastal end of the 

valley (about 80 km away from the mountain end of the Rapel 

valley). This is an interesting observation, which reveals that 

our method is sensitive enough to differentiate geographical 

location within a same region.

Finally, it should be pointed out that the classification 

system presented here for Chilean wines was designed using 

a database containing samples of Chilean wines from four 

valleys of the central part of the country. However, the system 

is general enough to classify wines from any geographical 

region of the world provided that reliable samples from that 

region are collected and processed. The only constraint for 

getting reliable results is to build a sufficiently populated 

database.
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