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Objective: Icariin (IC) promotes osteogenic differentiation, and it may be a potential small

molecule drug for local application in bone regeneration. Icariin-loaded hydroxyapatite/

alginate (IC/HAA) porous composite scaffolds were designed in this study for the potential

application of the sustainable release of icariin and subsequent bone regeneration.

Methods: An icariin-loaded hydroxyapatite/alginate porous composite scaffold was pre-

pared and characterized by SEM and HPLC for morphology and release behavior, respec-

tively. The mechanical properties, degradation in PBS and cytotoxicity on BMSCs were also

evaluated by MTT assay, compression strength and calculation of weight remaining ratio,

respectively. Rabbit BMSCs were cocultured with IC/HAA scaffolds, and ALP activity and

Alizarin Red staining were performed to evaluate osteogenic differentiation induction. The

mRNA and protein expression level of an osteogenic gene was detected by RT-PCR and

Western blotting, respectively. In vivo animal models of critical bone defects in the radius of

rabbit were used. Four and 12 weeks after the implantation of IC/HAA scaffolds in the bone

defect, radiographic images of the radius were obtained and scored by using the Lane and

Sandhu X-ray scoring system. Tissue samples were also evaluated using H&E and Masson

staining, and an osteogenic gene and Wnt signaling pathway genes were detected.

Results: A hydroxyapatite/alginate (HAA) porous composite scaffold-loaded icariin was

fabricated using a freeze-drying method. Our data indicated that the icariin was loaded in

alginate scaffold without compromising the macro/microstructure or mechanical properties

of the scaffold. Notably, the IC/HAA promoted the proliferation of rBMSCs without exerting

cytotoxicity on rBMSCs. In vivo, rabbit radius bone defect experiments demonstrated that

the IC/HAA scaffold exhibited better capacity for bone regeneration than HAA, and IC/HAA

upregulated the relative expression levels of an osteogenic gene and the Wnt signaling

pathway genes. Most notably, the IC/HAA scaffold also inhibited osteoclast activity in vivo.

Conclusion: Our data suggests a promising application for the use of HAA scaffolds to load

icariin and promote bone regeneration in situ through mediation of the coupling processes of

osteogenesis induction and osteoclast activity inhibition.

Keywords: icariin, bone regeneration, osteogenesis, osteoclastic activity, drug delivery

Introduction
Bone defect treatment remains a significant clinical challenge for surgeons, parti-

cularly in regard to large segmental bone defects and the lack of vascular supply to

the tissue.1 Autografts and allografts remain the most common solutions in clinical

applications, but these techniques are limited by immunological reactions, limited

sources and risk of infection.2 Biomaterial scaffolds for bone regeneration have
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developed significantly over the last few decades.3 A large

amount of biomaterials including alginate, gelatin, col-

lagen, silk protein, polymer, hydroxyapatite and β-trical-
cium phosphate have been used for bone regeneration.4,5

These scaffolds exhibit great advantages in osteoconduc-

tive and osteoinductive abilities, delivery of drugs or

growth factors, and cell loading and revascularization.

Alginate is a biopolymer extracted from brown algae,

and it has been actively examined in the preparation of

scaffolds to facilitate bone regeneration with excellent

biocompatibility.6 Alginate scaffolds are frequently com-

bined with inorganic materials, such as hydroxyapatite

(HA), due to the lack of its mechanical strength in

mimicking bone function. Alginate scaffolds with HA

exhibited excellent applications in bone tissue engineering

and the delivery of drugs and cells.7 Hydroxyapatite

enhanced the strength of the scaffold and bone formation

through mimicking the native extracellular matrix of bone

and promoted the adhesion of cells to the scaffold.8,9

Local drug delivery systems are applied for inducing

and accelerating bone formation by releasing a variety of

osteoinductive molecules such small molecules, DNA,

RNA, proteins, etc.10 Nevertheless, most of these small

molecules are often easily degraded during the preparation

process in vitro or fail in translational trials because of the

unpredictable side effects.11 BMP-2 protein delivery

enhanced bone formation in bone defects, but some

adverse effects were also reported, including ectopic ossi-

fication, soft tissue swelling, immune responses and an

incidence of cancer.12 Therefore, local delivery scaffolds

should improve the availability and efficacy of osteogen-

esis, provide a continuous supply at the implant site,

increase vascularization and reduce the adverse effects

related to systemic administration.

Icariin (IC, C33H40O15, molecular weight: 676.67) is the

main active natural flavonoid glucoside isolated from the herb

Epimedium, and it is used because of its anti-osteoporosis and

bone healing-enhancing effects.13 Icariin exerts an effect on

bone not only through the promotion of osteoblastogenesis,

which leads to bone formation, but also through the suppres-

sion of osteoclastogenesis, which inhibits bone resorption.14

Icariin promoted osteogenic differentiation by increasing ALP

activity and upregulating the mRNA expression levels of

Runx2, which is an osteoblast marker gene, BMP-2 and

TGF-1.15 Song et al.16 reported that icariin increased

MC3T3-E1 cell differentiation andmineralization via estrogen

receptor-mediated ERK and JNK signal activation. As a

potential small molecule drug, icariin exhibited a long-term

effective controlled release using a natural scaffold of the

small intestine submucosa.17 And bone regeneration in a

mouse calvarial defect model was accelerated by transplanting

with icariin-calcium phosphate cement (CPC) tablets.18

The present study designed an icariin-loaded composite

scaffold of hydroxyapatite/alginate to provide a sustain-

able release of icariin. We evaluated its characteristics,

including pore size, morphology, mechanical properties,

and the release behavior of icariin in vitro. In vitro osteo-

genic differentiation and in vivo bone regeneration were

also investigated.

Materials and methods
Preparation of icariin-loaded

hydroxyapatite/alginate porous composite

scaffolds
Hydroxyapatite (HA, purity≥98.0%,<0.2 µm, CAS NO.

1306–06–5, medical grade, Aladdin, China) was added to

deionized water (2 g:100 mL) under continuous stirring (mag-

netic stirrer, MS-H280-Pro, DLAB Scientific, China) at 200

rpm for 30 min. Alginate (CAS NO. 9005–38–3, endotoxin

free, medical grade with a purity of 99%, Sigma-Aldrich,

USA) was added (2 g:100 mL) under continuous stirring at

300 rpm for 6 h. This mixture was defined as the HAA

solution. Icariin (CAS NO. 489–32–7, medical grade,

≥94.0%, Aladdin, China) was dissolved in anhydrous ethanol

(1 mol: 1 L) to obtain the IC solution. The IC solution was

slowly dissolved in the HAA solution at the ratio of 1 mL:

105 mL under continuous stirring for 6 h. CaCl2 (2 wt%) was

added to cross-link the mixed solution for 24 h to obtain the

IC/HAA hydrogel. The IC/HAA hydrogel was frozen in a

refrigerator at minus 20 °C for 2 h and was a microfuge

(Thermo, America) at −80 °C overnight. To obtain dry

IC/HAA scaffolds, the frozen IC/HAA hydrogel was imme-

diately placed in a vacuum freeze drier (Labconco, USA) at

minus 80 °C under vacuum. Three IC/HAA scaffolds with

different concentrations of icariin (10−5, 10−6, and 10−7 mol/L)

were made by adjusting the concentrations of icariin in the IC

solution. The empty HAA scaffold was prepared as mentioned

above without the addition of the IC solution. Co60 irradiation

(20Gy) was applied to sterilize the composites.

Characterization of composites
Morphological observations and porosity

measurement

The cross-sectional surface morphologies of the composites

were observed by scanning elec tron microscopy (SEM,

Xie et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:146020

http://www.dovepress.com
http://www.dovepress.com


TESCAN, Czech) after the samples were sputter-coated with

gold under vacuum. The average pore size of the sectional

composite surface was determined from the SEM photo-

graphs through an image analysis program that five selected

SEM images were elvaluated using the linear intercept

method. The porosity of samples was measured through

ethanol displacement method based on Archimedes’

Principle.19 The following procedure was used for ethanol

displacement: Wb0 represents the weight of a bottle filled

with ethanol. The sample was immersed in ethanol in the

bottle until it was saturated from absorbing the ethanol. The

samples were weighed and denoted as Ws0. The sample was

re-immersed in ethanol in the bottle until it was saturated

from absorbing the ethanol. The sample was removed, and

the bottle with the remaining ethanol and the ethanol satu-

rated sample were weighed and denoted as Wb1 and Ws1,

respectively. ρ is the ethanol density. The total volume of the

sample including pores was calculated as (Wb0- Wb1)/ρ, and
the pore volume in the sample was (Ws1- Ws0)/ρ. Each
experiment was repeated three times. The reported data are

the average of five samples. Therefore, the porosity of the

sample was determined as follows:

Porosity %ð Þ ¼ Ws1�Ws0ð Þ=ρ
Wb0�Wb1ð Þ=ρ� 100%

Degradation assay in PBS

In vitro degradation experiments were performed in PBS

at 37 °C. HAA, 10−7IC/HAA, 10−6IC/HAA and 10−5IC/

HAA composites were dipped in 15-mL centrifuge tubes

containing 10 mL PBS at 37 °C. The PBS was refreshed

every week. The composites were removed, dried and

weighed every week. Week 0 was defined as the baseline.

The ratio of weight remaining was calculated as follows:

Weight remaining ratio(%) =(Wt/W0)×100%, where Wt

and W0 are the weights of the composites at setting time

and baseline, respectively. Each experiment was repeated

three times.

Mechanical properties of composites

The mechanical properties of the composites were gen-

erally measured by the compression strength in an Instron

MicroTester (Instron, USA). The composites were com-

pressed at a speed of 1 mm/min. The shape of samples

for compression strength testing was 20 mm in length

and 10 mm in diameter. The calculation of the compres-

sion strength followed the formula of compression

strength= F/A, where F is the breakload and A the sec-

tion area of the specimen.

In vitro release experiments

The release behavior of icariin from HAA scaffolds was

measured by high-performance liquid chromatography

(HPLC). Briefly, samples of IC/HAA were immersed in

5 mL PBS (pH 7.0) at 37 °C under gentle vibrating at 10

rpm. At the time points of 1, 2, 3, 10, 20, 30, and 40 days,

the 5 mL PBS was collected and stored at 4 °C for HPLC

examination. All samples were centrifuged at 3,000 rpm

for 10 min, and 0.5 mL of the supernatants were isolated.

Then, 0.5 mL of acetonitrile was added, and the mixture

was recentrifuged at 6,000 rpm for 10 min. For analysis of

icariin concentrations, supernatants were isolated for

HPLC analysis. The column was a Waters SunFireTM

C18 (250 mm × 4.6 mm, 5 μm), and the solvent was

acetonitrile; the flow rate was 1 mL/min, and the column

temperature was 40 °C. The detection wavelength was

270 nm, and the loading volume was 20 μl. The data for

peak area integration were analyzed using Empower 2

software. Icariin release from the sample was calculated

according to a standard curve, and the percentage of icariin

released was calculated.

Cell culture and identification
The Animal Ethical Committee of Zhongnan Hospital of

Wuhan University approved all animal experiments.

BMSCs were obtained from 4-week-old rabbits as

described previously. Briefly, rabbit femur bones were

dissected from hind legs. Soft tissue and the periosteum

were removed, and rabbit bone marrow samples were

rinsed with PBS (pH 7.4) and centrifuged twice in PBS.

Mononuclear cells (MNCs) were collected and plated in α-
MEM medium supplemented with 10% FBS and 1% peni-

cillin and streptomycin and cultured for 48 h at 37 °C in a

humidified atmosphere of 5% CO2. Adherent cells were

collected as BMSCs and expanded in α-MEM medium for

further study. The growth medium was replaced every

other day, and all experiments were performed using

BMSCs within passage five. The medium extract was

prepared by soaking HAA (20 g) or IC/HAA (20 g) in

10 mL α-MEM for 4 weeks and filtered with a 100-μm
sterile strainer mesh.

Cytotoxicity assay
The cytotoxicity of the composites on BMSCs was

detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide (MTT) assay. Briefly, BMSCs were

seeded at 4000 cells per well in 100 μl cultured medium in
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96-well plates and cultured for 24 h. The cells were

exposed to α-MEM medium containing 10% (v/v) media

extracts of HAA and IC/HAA. IC was used as the control.

After 24 h, 48 h, 72 h, 96 h of incubation, 10 µL of MTT

solution at a concentration of 5 mg/mL was added to each

well, and the wells were incubated for an additional 4 h.

Then, 150 mL of DMSO was added to each well to

dissolve the formazan produced by intracellular mitochon-

drial dehydrogenases. The optical density of formazan salt

in the 96-well plates was measured at 490 nm using a

microplate reader (Thermo Scientific). Experiments were

performed in sextuplicate.

Osteogenic differentiation detection
Alkaline phosphatase (ALP) staining and ALP activity

assay

The osteogenic induction medium (OM) contained 10 nM

of dexamethasone, 50 mg/mL of ascorbic acid 2-phos-

phate, and 10 mM of β-glycerophosphate in α-MEM-E

medium containing 10% (v/v) media extracts of HAA

and IC/HAA. Cells were cultured in OM for 21 days,

and alkaline phosphatase (ALP) staining and ALP activity

assays were performed to evaluate osteogenic differentia-

tion. Briefly, cell samples were washed with PBS and fixed

with 4% paraformaldehyde for 15 min at room tempera-

ture. The samples were washed with PBS twice and

stained with 2-amino-2-methyl-1,3-propanediol aqueous

solution containing fast blue salt and naphthol AS-MX

phosphate for 15 min at room temperature. The samples

were washed with PBS twice to remove the residual ALP

staining solution and observed and photographed using an

optical microscope. ALP activity was determined using a

pNPP alkaline phosphatase assay kit (pNPP, Sigma-

Aldrich, USA) according a previous protocol.20 Briefly,

cell samples were digested with 0.25% trypsin. The super-

natant was collected and reacted with p-nitrophenylpho-

sphate to release p-nitrophenol. The samples were

collected and detected by microplate reader (Thermo

Scientific) at 405 nm. ALP activity is expressed as IU/μg
protein. Experiments were performed in triplicate.

Alizarin red staining

Cells were cultured in OM supplemented with 10% (v/v)

media extracts of composites for 21 days, washed twice

with PBS and fixed in 4% paraformaldehyde for 10 min.

Samples were washed with deionized water and incubated

with 1% Alizarin (pH 4.1) Red S solution for 10 min at

room temperature. The plates were photographed under an

optical microscope, and calcium deposits located in the

orange and red positions were identified and calculated in

each group. The deposited Alizarin Red S solution was

collected and reacted with 10% cetylpyridinium chloride

(Sigma-Aldrich) for 30 min. The mixture was placed in

96-well plates and detected by microplate reader at

620 nm for quantification of calcium deposition.

Experiments were performed in triplicate.

Reverse transcription-polymerase chain

reaction (RT-PCR) analysis
mRNA expression was analyzed by real-time PCR (RT-PCR).

Total RNAwere extracted from cells or tissue samples(radius

bone) by TRIzol extraction method. After identification purity

and concentration, RNA was reverse transcribed to cDNA

using Super-Script III reverse transcriptase (Invitrogen,

USA). Real-time PCR amplification was performed using a

7500 Real-Time PCR system (Applied Biosystems, USA).

ThemRNA expression level was normalized to the expression

level of the housekeeping gene GAPDH. Relative gene

expression levels were calculated using 2-△△Ct.21 Each

experiment was performed in triplicate. The following primers

were used: Runx2 forward, 5ʹ- GACTGTGGTTACCG

TCATGGC −3ʹ, reverse, 5ʹ- ACTTGGTTTTTCATAACA

GCGGA-3ʹ; ALP forward 5ʹ- TGGACCTCGTGGACAT

CTG −3ʹ, reverse, 5ʹ- CAGGAGTTCAGTGCGGTTC −3ʹ;
OCN forward 5ʹ- GAAGCCCAGCGGTGCA −3ʹ, reverse,
5ʹ- CACTACCTCGCTGCCCTCC −3ʹ;Wnt3a forward 5ʹ- CT

GCGCCAACACAGAAATTATTGTA −3ʹ, reverse, 5ʹ- TTC
ACTGGCATCTTCACTGATTCTT −3ʹ; GSK3β forward 5ʹ-

GCGTGAGGAGGGATAAGG −3ʹ, reverse, 5ʹ- CAGTTGG
TGGAAATAATAAAGG −3ʹ; β-catenin forward 5ʹ- GGAA

ATCGTGCGTGACATTA −3ʹ, reverse, 5ʹ- GGAGCAATGA
TCTTGATCTTC −3ʹ; and GAPDH forward 5ʹ- CCTCAAG

ATTGTCAGCAAT −3ʹ, reverse, 5ʹ- ACCACAGTCCAT

GCCATCAC −3ʹ

Western blotting assay
Cells and tissue(radius bone) were lysed by RIPA buffer

supplemented with a protease inhibitor cocktail for 30 min

on ice. The lysate was collected and centrifuged at 12,000 g for

15 min. Protein in supernatant was collected and measured

using the BCA assay for protein concentration detection. Each

protein lysate was mixed with loading buffer at a ratio of 1:5

and denatured in boiling water. Each sample containing 20 mg

protein lysate was loaded into the sample well of a polyacry-

lamide gel for SDS-PAGE electrophoresis. The proteins were
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transferred to polyvinylidene difluoride membranes (PVDF,

Millipore). The membranes were incubated with 5% skim

milk for 1 h to block nonspecific interactions. The membranes

were probed with specific primary antibodies against Runx2

(1:1,000), ALP (1:1,000), OCN (1:3,000), Wnt3a (1:2,000),

GSK3β (1:2,000), -β-catenin (1:1,000), andGAPDH (1:5,000)

overnight at 4 °C. Membranes were washed with a TBTS

solution (15 min) three times and incubated with HRP-con-

jugated secondary antibodies (1:8000) for 4 h at room tem-

perature. Bound antibodies were measured using an enhanced

chemiluminescence detection system. Each experiment was

performed in triplicate.

In vivo radius bone defects in rabbit
Animal model

All animal procedures were approved and performed fol-

lowing the Animal ethics committee of Wuhan University

guidelines and complied with the ARRIVE guidelines.

Twenty-four New Zealand rabbits (8 weeks) were ran-

domly divided into four groups(n=6 in each group). All

animals were anesthetized using 20 mg/kg pentobarbital

sodium (1%) intravenously. Once the rabbits had reached a

successful anesthesia, its right foreleg was shaved with an

electric razor to remove the fur. The leg was washed using

moist gauze and sterilized with 1% iodine solution. A

3.0 m full thickness skin incision was made longitudinally

above the middle segment of the radius. A 2.0 cm bone

defect in length was created in the middle segment of

radius using an electric saw. Bone fragments and blood

from the defect site were gently cleared with the aid of

suction. Cobalt-60-sterilized IC/HAA and HAA were

implanted using tweezers into the defect sites in IC/HAA

and HAA group, respectively. The size of sample

implanted in each group was 2×0.5×0.5 cm. Icariin was

intravenously injected in the IC group, and nothing was

implanted in the control group. Animals received intra-

muscular injections of penicillin G sodium (400,000 units

per day) postoperatively for three consecutive days to

prevent contamination of the operated site. Rabbits were

housed in clean animal rooms and given access to food

and water.

Radiographic imaging

To evaluate bone formation and union, plain radiographs

were obtained using an X-ray unit (Philips Healthcare,

Netherlands) and ultrahigh definition film; the parameters

were 70 kV and 50 mA, and images were taken 4 and

12 weeks after surgery. New bone formation at

postoperative timepoints of 4 and 12 weeks were scored

in accordance with the modified Lane and Sandhu X-ray

scoring system.22 Three experts in the department of sur-

gery, who were blind to the groups, performed the scoring.

Histological evaluations

The harvested implants were washed twice with normal

saline, fixed in 4% paraformaldehyde at room temperature

for 48 h and decalcified in EDTA for 4 weeks. The samples

were dehydrated in a graded series of ethanol solutions,

embedded in paraffin and sectioned to obtain cross-sections

with a thickness of 5 µm. Cross-sections for morphological

analyses were stained with Masson trichrome and hematox-

ylin & eosin (H&E, Japan). Cell nuclei were stained purple

by hematoxylin, and the extracellular matrix was stained

pink by eosin. Bone appeared as deep pink/red. Images of

stained cross-sections were observed, acquired and digitized

under a light microscope to evaluate the growth of normal

bone tissues, osteogenic capacity, and lesions in surrounding

tissues. The healing response in the H&E-stained samples

was quantified by single blinded histomorphometric ana-

lyses. New bone was quantified through measuring the area

of bone nucleation sites (BNS), and the bone defect margin

was identified.23 BNS was calculated in each section using

ImageJ software with an automated method of pixel satura-

tion quantification. Images were captured with an optical

microscope, and the level of bone tissue regeneration was

calculated according to Lane-Sandhu histological scoring

criteria.24 Each experiment was performed in triplicate.

Statistical analysis
All experiments were repeated a minimum of three times.

Experimental results are presented as the means ± the stan-

dard deviation (SD). Data were analyzed by a two-tailed

Student’s t-test as appropriate for the data set. A p-value

<0.05 was considered statistically significant.

Results
Characterization of IC/HAA composites
SEM was used to observe the surface morphology and

structure of the HAA and three IC/HAA scaffolds contain-

ing different concentrations icariin. The SEM micrographs

(Figure 1A) showed that the dimension of interconnected

pores was approximately 50–350 μm in the four types of

composites. Analysis of the pore sizes showed that the pore

sizes were 247.3±38.9, 252.9±36.8, 255.7±41.3, and 241.5

±35.1 μm. The porosities (%) of HAA, 10−7 IC/HAA, 10−6

IC/HAA, and 10−5 IC/HAA scaffolds were 87.36±0.38,
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88.99±0.44, 86.75±0.56, and 87.34±0.49%, respectively, as

listed in Table 1. No significant differences in porosity or

pore size were detected between the four groups. No sig-

nificant differences in the degradation rates in PBS were

H
A

A

A
10

-5
 IC

/H
A

A

× 20

100

0.20

0.15

0.10

0.05

0.00

HAA
10-7 IC/HAA
10-6 IC/HAA
10-5 IC/HAA

10-7 IC/HAA
10-6 IC/HAA
10-5 IC/HAA

HAA

10
-7  IC

/HAA

10
-6  IC

/HAA

10
-5  IC

/HAA

PBS degradation

80

W
ei

gh
t r

em
ai

ni
ng

 (%
)

C
om

pr
es

si
on

 s
tre

ng
th

 (M
P

a)

60

Time (day)

icariin

40

20

0
0 10 20

Time(d)
30 40

10

80

60

70

40

50

20

30

0
0 3 6 9 12

10

40

20

30

0.025

0.020

0.015

0.010

0.005

0.000

0.00 2.00 4.00 6.00 8.00

Time(min)

A
bs

or
ba

nc
e 

un
it

Th
e 

ra
te

 ic
ar

iin
 re

le
as

e(
%

)

10.00 12.00 14.00 16.00

1 7 14 21 28 35

× 200 × 500 × 8000

B C

D E

Figure 1 Characterization of IC/HAA composite. (A) SEM images of the IC/HAA scaffolds. Red arrow indicates the nanohydroxyapatite. Red circle indicates the icariin. (B)
Degradation assay in PBS. (C) Compression strength of the scaffolds. (D and E) HPLC detection of icariin release from IC/HAA composite scaffolds. (D) Representative

HPLC image of the 10−5 IC/HAA scaffold. (E) Statistical linear graph of the release rate(%) of icariin in each group.
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found among the four scaffolds (Figure 1B). After 28 days

of degradation assay in PBS, the ratio of weight remaining

in each group was near 40%. A mechanical compression

test was performed to detect the compression strength of the

scaffolds (Figure 1C). The compression strength of HAA,

10−7 IC/HAA, 10−6 IC/HAA, and 10−5 IC/HAA scaffolds

were 0.126±0.032, 0.124±0.042, 0.125±0.033, and 0.122

±0.029 Mpa, respectively. No significant differences in

compression strength were observed among the four

groups.

The loading amounts of icariin in the HAA, 10−7 IC/HAA,

10−6 IC/HAA, and 10−5 IC/HAA scaffolds were 0, 10−5, 10−6,

and 10−7 mol/L, respectively. The release of icariin was

observed using HPLC over a 40-day period (Figure 1D and

E). The absorption peak of HAA appeared at 2 min, and the

absorption peak of icariin appeared at 7.8 min (Figure 1D).

The cumulative release percentage of icariin from the IC/HAA

scaffolds was calculated based on the icariin loading amount,

and the icariin release percentage increasedwith the increasing

of icariin loading amount. When the release test was carried

out to 30 days, the icariin release percentage of three scaffolds

reached a plateau. After 40 days, the cumulative icariin release

percentages from 10−7 IC/HAA, 10−6 IC/HAA, and 10−5

IC/HAA scaffolds were 50.09±5.03%, 63.68±8.46%, and

69.07±8.16%, respectively (Figure 1E). The 10−5 IC/HAA

scaffold exhibited the highest release percentage of the three

scaffolds; therefore, the 10−5 IC/HAA may be considered the

optimal loading concentration for the IC/HAA scaffold.

In vitro bioactivity
Cytotoxicity assay

The 10−5 IC/HAA scaffolds were cultured with BMSCs for

24 h, 48 h, 72 h, and 96 h to determine cytotoxicity. TheMTT

assay showed that the optical density values at 570 nm at

24 h, 48 h, 72 h, and 96 h in the IC group and 10−5 IC/HAA

scaffold (IC/HAA) group were significantly higher than the

control group (Figure 2A). The optical density values of the

HAA scaffold without icariin were also higher than the

control group at 48 h, 72 h, and 96 h. The optical density

values in the IC/HAAgroup at 24 h, 48 h, 72 h, and 96 h were

significantly higher than the IC group. These results suggest

that IC/HAA, IC, and HAA promoted the proliferation of

BMSCs instead of inducing cytotoxicity.

Osteogenic differentiation detection

ALP activity detection showed that the staining intensity

in BMSCs cultured with IC/HAA was obviously stronger

than the IC, HAA and control groups (Figure 2B).

Similarly, Alizarin Red staining and ALP staining showed

that the staining intensity of IC/HAAwas obviously stron-

ger than the other three groups (Figure 2C). Slightly more

intense staining of ALP or Alizarin Red was observed in

the IC group compared to the HAA group. The results of

ALP activity detection (Figure 2B) and quantification of

mineralization (Figure 2D) corresponded well with the

ALP staining and Alizarin Red staining, respectively.

These results suggested that HAA scaffolds loaded with

icariin produced significant stimulation of the osteogenic

differentiation of rBMSCs.

The expression levels of osteogenic marker genes

(Runx2, ALP, and OCN) and the Wnt signaling pathway

genes (Wnt3a, GSK3β, β-catenin) in rBMSCs was ana-

lyzed by RT-PCR and Western blotting after a 21-day

culture with the scaffolds (Figure 3A–C). The relative

protein and mRNA expression levels of Runx2, ALP,

OCN, Wnt3a, GSK3β, and β-catenin were upregulated

by IC/HAA compared to the HAA, IC and control groups.

The relative protein and mRNA expression levels of

Runx2, ALP, OCN, Wnt3a, GSK3β, and β-catenin in the

IC group was higher than the HAA group. HAA also

upregulated the osteogenic marker genes compared to the

control group, but no significant differences were observed

in the relative protein and mRNA expression levels of

Wnt3a, GSK3β, or β-catenin between the HAA and con-

trol groups. These results indicated that the scaffolds con-

taining icariin exhibited better stimulatory effects on the

relative expression levels of osteogenic and Wnt signaling

pathway genes. HAA alone did not stimulate the relative

expression levels of the Wnt signaling pathway.

In vivo study results
Gross appearance and radiographic results

To determine the effect of icariin sustained release and osteo-

genic effects on bone regeneration, the HAA and IC/HAA

scaffold constructs were implanted into the bone defect sites

of a rabbit radius for 4 and 12 weeks. An equivalent con-

centration of icariin was intravenously injected in the IC

group, and nothing was implanted in the control group. The

Table 1 Porosity and pore size of HAA and IC/HAA

Sample Porosity (%) Pore size (μm)

HAA 87.36±0.38 247.3±38.9

10−7 IC/HAA 88.99±0.44 252.9±36.8

10−6 IC/HAA 86.75±0.56 255.7±41.3

10−5 IC/HAA 87.34±0.49 241.5±35.1
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gross appearance of the bone defect sites after 4 and

12 weeks are shown in Figure 4A. Photographs of X-rays

in each group are shown in Figure 4B. The radiographic

Lane-Sandhu scoring of bone defect sites in the IC/HAA,

HAA, and IC groups increased significantly compared to the

control group after 4 and 12 weeks (Figure 4C). The radio-

graphic Lane-Sandhu scoring of the IC/HAA group was

significantly higher than the HAA and IC groups.

Histological results

H&E and Masson staining showed that new bone formation

was observed in the three groups 4 weeks after

implantation, but this formation was not evident in the

control group (Figure 5A). The signs of new bone formation

in the IC/HAA implant group were more evident than the IC

injection group and HAA group. Plenty of fibrous tissue and

fatty tissue filled in the bone defect sites in IC injection

group and control group. The in-growth of new blood

vessels was more abundant in the IC/HAA group than the

other three groups. The histological scoring was signifi-

cantly highest in the IC/HAA group of the four groups.

Histological scoring was higher in the HAA and IC groups

than the control group at 4 and 12 weeks (Figure 5C).

Residual nondegraded HAA scaffolds were observed in
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the IC/HAA and HAA groups. New bone and vessel for-

mation became more obvious 12 week after implantation

compared to the 4-week implants, especially in the IC/HAA

group (Figure 5B). Figure 5D shows the TRAP staining of

tissue samples in each group. The numbers of osteoclasts in

the IC group and IC/HAA group were significantly lower

than the control group. These results indicated that icariin

suppressed osteoblastic activity.

Osteogenic marker and Wnt signaling pathway gene

expression levels

The mRNA and protein expression levels of the osteogenic

marker genes (Runx2, ALP, and OCN) and the Wnt signaling

pathway (Wnt3a, GSK3β, and β-catenin) in the bone regen-

eration area at 12 weeks were analyzed by RT-PCR and

Western blotting, respectively (Figure 6A–C). The relative

protein and mRNA expression levels of Runx2, ALP, OCN,

Wnt3a, GSK3β, and β-catenin were upregulated in the IC/

HAAgroup compared to theHAA, IC and control groups. The

relative protein and mRNA expression levels of Runx2, ALP,

and OCN in the IC and HAA groups were higher than the

control group, and the relative expression levels in the IC

group was lower than the HAA group. Notably, the relative

protein and mRNA expression levels of Wnt3a, GSK3β, and

β-catenin in the IC group were significantly higher than the
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Figure 3 The expression levels of osteogenic marker genes (Runx2, ALP, and OCN) and Wnt signaling pathway genes (Wnt3a, GSK3β, and β-catenin) in rBMSCs was
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control group, but no significant differences were observed

between the HAA and control groups. These results indicated

that local icariin injection, HAA and IC/HAA promoted the

expression of osteogenic marker genes, and IC/HAA pos-

sessed the strongest promotion observed in of the groups.

Icariin but not HAA upregulated the Wnt signaling pathway,

which facilitates bone formation.

Discussion
As a novel type of drug delivery scaffold for icariin, IC/HAA

exhibited the high porosity (87.34±0.49) and interconnected

pore structure (dimensions approximately 50–350 μm). Lin

et al.25 reported that the pore size of scaffolds at the midsec-

tion was approximately 178 μm at a −80 °C freezing tem-

perature, which is similar to our result. It has been reported
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that the requirement for pore size is similar to 100 μm due to

cell size, migration and transport. Therefore, the porous

structure of IC/HAA would provide a specific three-dimen-

sional microenvironment for cell adhesion, migration and

growth. The encapsulation of icariin in an HAA scaffold

did not affect the compressive strength of HAA. The com-

pressive strength of IC/HAA was greatly stronger than the

porous alginate scaffolds for cells culture. The ideal scaffold

for bone regeneration must exhibit a biodegradation rate that

corresponds to bone remodeling speed.26 The mechanical

properties of IC/HAA fully satisfy the requirements of regen-

eration for bone defects in nonweight bearing areas, where

adequate mechanical support is not necessary. IC/HAA

exhibited a controlled release of icariin for at least 30 days

in vitro. The duration of sustained icariin release beneficially

matches the time period of bone regeneration. The first
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4 weeks are the most important for the critical physiological

process of bone repair, including stem cell recruitment, callus

growth, osteogenic differentiation and calcification. Local

active factors are more beneficial for the critical physiologi-

cal processes than the bone remodeling process after the

initial 4 weeks. The MTT assay also confirmed that the IC/

HAA produced no cytotoxicity in the rabbit BMSCs.

Therefore, the IC/HAA may be a feasible bone repair

material.

The delivery of growth factors is a promising approach

for the repair of bone defects, but much improvement is

needed in the control of delivery mechanisms (sequence,

dose and timing) and kinetics.10,23 It is important to preserve

the bioactivity of the bone regeneration stimulator during the

procedure of scaffold fabrication.27 The in vivo and in vitro

experiments in the present study demonstrated the biological

activity of icariin in the scaffold. IC/HAA, HAA and icariin

accelerated the osteogenic differentiation of rabbit BMSCs,

but the effect of IC/HAA on osteogenic differentiation was

the strongest in vitro. The IC/HAA scaffold was implanted

into the bone defect in the radius of rabbits to evaluate the

osteogenic potential of the IC/HAA scaffold in vivo. X-ray

and histology analyses demonstrated that the loading of

icariin into the HAA scaffold facilitated bone defect

regeneration.

The dose of local administration was equal to the

scaffold material, and the efficacy of local icariin admin-

istration was of short duration because of the scavenging
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Figure 6 The mRNA and protein expression levels of the osteogenic marker genes (Runx2, ALP, and OCN) and Wnt signaling pathway genes (Wnt3a, GSK3β, and β-
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and metabolism of body fluids.28 The in vivo results of the

present study showed that IC/HAA was more effective

than IC alone, which confirmed that IC/HAA sustainably

released icariin. Icariin administered locally may be more

efficient for local bone regeneration than a systemic

administration because the gastrointestinal and cardiovas-

cular barriers may reduce the therapeutic efficacy of icariin

given systemically. The most common problem of growth

factor delivery is the appropriate release kinetics provided

by the suboptimal delivery systems. Numerous delivery

materials are far from ready for clinical use, but the

commercially and clinically available options, rather than

novel and experimental delivery systems, are potential

candidates as a delivery material. Hydroxyapatite and

alginic acid are widely used as scaffold materials,29,30

and the present study confirmed that icariin exhibited

good biological activity in these scaffolds in vivo and in

vitro.

Hydroxyapatite also induces osteogenesis, but the

knowledge of the mechanisms and pathways for induction

of osteogenesis and the role of inducing osteogenic differ-

entiation of BMSCs is limited.31 Hydroxyapatite is more

of a biological skeleton material.32 The results of gene

expression from the animal experimental specimens

showed that hydroxyapatite promoted the expression of

osteogenic marker genes, but it did not promote the

genes of the Wnt signaling pathway, and icariin explicitly

promoted both the osteogenic and Wnt signaling path-

ways. Therefore, icariin is indeed an excellent active com-

ponent for bone regeneration. Animal experimental

histology also showed that the biomaterials loaded with

icariin did not induce excessive inflammatory cells to

interfere with osteogenesis and promoted vascularizations.

Bioactive agents are critical for the effects of tissue

engineering techniques. Icariin stimulates the osteogenic

differentiation of BMSCs into osteoblasts through multiple

signaling pathways, including BMP (bone morphogenetic

protein),33 NO (nitric oxide),34 MAPK (mitogen-activated

protein kinase),35 and the canonical Wnt/β-catenin
pathways.36 Icariin treatment of preosteoblastic MC3T3-

E1 cells and mouse primary osteoblasts in vitro promotes

the expression of osteoblast marker genes, Runx2 (runt-

related transcription factor 2) and Id-1 (inhibitor of DNA-

binding 1).37 Notably, icariin and IC/HAA scaffolds but

not the HAA scaffold stimulated the canonical Wnt/β-
catenin pathways in the present study. Icariin also facil-

itates the maturation of primary osteoblasts and bone

remodeling activity of osteoblasts. Scaffold slow-release

of icariin induced the expression of terminal differentiation

markers ALP (alkaline phosphatase), OCN and Runx2 in

our study. Further, it has been demonstrated that new bone

formation was detected in β-TCP ceramic scaffolds loaded

with icariin but not in β-TCP ceramic scaffolds alone after

intramuscular implantation in the backs of rats for three

months.38 Ectopic bone formation strongly demonstrated

the potential for osteoinduction of icariin.

The phytomolecule icariin promotes bone formation

through enhancing of osteoblastic differentiation, miner-

alization, and vascularization and the inhibition of osteo-

clastic activity.39 Incorporation of icariin into an HAA

scaffold greatly advanced osteoblastic differentiation and

mineralization of BMSCs cultured with the scaffold.

Alginate was actually designed to mediate a sustained

release of bioactive substances, and it is used as a drug

delivery system.40 The HAA scaffold expands with water

immersion, and the icariin encapsulated in the HAA is

released. This release is quick and may be seen initially

after ten days. The release of icariin from the HAA scaf-

fold lasted at least 4 weeks. The structural integrity of IC/

HAA scaffolds gradually disappeared with the dissolution

of the HAA scaffold; thus, the icariin incorporated inside

the scaffolds also dissolved into the PBS solution.

Furthermore, bioactive substances were loaded into algi-

nate to protect the substances from rapid enzymatic degra-

dation and metabolization in vivo. The complete exposure

of icariin to fluid environments in vivo resulted in a sub-

stantial loss of bioactivity. Owing to the encapsulation of

icariin in the HAA scaffold, the local release of icariin was

sustained for longer than 40 days in vitro; thus, the IC/

HAA composite may exhibit long-term efficacy in enhan-

cing the repair of bone defects.

Conclusion
The present study described the preparation of a novel hydro-

xyapatite- alginate scaffold containing icariin (IC/HAA) for

the repair of critical-sized bone defects through osteoinduc-

tion, osteoconduction, and activation of genes for osteogenic

differentiation. The scaffold provided efficient, localized and

sustained delivery of therapeutics with no evidence of an

excessive inflammatory response, which supports its effec-

tive function and safety. Most notably, the scaffold showed a

coupling process of osteogenesis induction and osteoclast

activity inhibition because of the biological function of icar-

iin. Therefore, this cell-free icariin-carrying scaffold may be

used as a clinical treatment for bone defects in non-load-

bearing areas.
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