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Abstract: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death

worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease

is diagnosed in the majority of all cases. Palliative treatment options comprise of conven-

tional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific

small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted

to a small proportion of patients with lung cancer that harbor activating driver mutations.

Still, the effectiveness and favorable safety profile of these compounds have prompted a

systematic search for specific driver mechanisms of tumorigenesis and moreover the devel-

opment of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family

has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the

frequently observed overexpression in various tumor entities have raised much interest in

basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this

review, we give a comprehensive summary on the (pre-) clinical development of the different

types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and

efficacy data and give an overview on translational research aiming to identify predictive

biomarkers for a rational use of PLK inhibitors.
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Introduction
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death

worldwide.1 Due to often unspecific disease symptoms, locally advanced or meta-

static disease is diagnosed in the majority of all cases.2 Among others, adenocarci-

noma is the most common histopathological subtype and palliative treatment

options comprise of conventional cytotoxic agents, immunotherapy with check-

point-inhibitors and the use of specific small-molecule tyrosine kinase inhibitors

(TKI). However, these TKIs are mainly restricted to a small proportion of patients

with lung cancer that harbor activating driver mutations, such as activating EGFR

mutations or alterations in ALK, ROS1 and BRAF genes. Still, the effectiveness and

favorable safety profile of these compounds have prompted a systematic search for

specific driver mechanisms of tumorigenesis and moreover the co-evolutionary

development of corresponding kinase inhibitors. In the last two decades, the

Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation,

being involved in the complex process from mitotic onset to its termination. The

key role in cell proliferation and the frequently observed overexpression in various
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tumor entities have raised much interest in basic and

clinical oncology aiming to attenuate tumor growth by

targeting the PLK. In this review, we give a comprehen-

sive summary on the (pre-) clinical development of the

different types of PLK inhibitors in lung cancer and sum-

marize their mechanisms of action, safety and efficacy

data and give an overview on translational research aiming

to identify predictive biomarkers for a rational use of PLK

inhibitors.

Biological function and structure of
Polo-like kinases and historical
overview
The human homolog of the Polo gene was independently

cloned by three research groups in 1993/1994.3–5 All groups

reported a 603 amino-acid polypeptide with several nucleo-

tide differences that were all classified as polymorphisms.

The product of the human PLK1 gene is a 66KD serine/

threonine kinase protein.5 Today, altogether 5 isoforms of

PLK (PLK1-5) are known; however, PLK1 is by far the best

characterized isoform (see Figure 1A).6–9 PLKs (with the

exception of PLK5) contain a catalytic N-terminal serine/

threonine kinase domain and a C-terminal tandem-Polo-box

region with regulatory functions.10 The catalytic site incor-

porates most of the highly conserved hallmarks of serine/

threonine protein kinases.11 The tandem Polo-boxes of the N-

terminal domain are involved in substrate-binding and in

determining the correct subcellular localization of PLK1.12

First insights on the cell-cycle-dependent expression of

PLK1 were provided by Lake and Jelinek who showed

that PLK1 mRNA is nearly absent in the G1 phase of the

cell cycle, but reaccumulates in the S phase and reaches

highest levels during the G2/M phase,3 linking its function

to mitotic activity. Its role in mitosis was further elucidated

in 1995, when Goldsteyn et al confirmed increased tran-

scription at all stages of mitosis.13 They localized PLK1

juxtaposed to the spindle apparatus in confocal micro-

scopy analyses and concluded that PLK1 plays a role in

chromosome condensation, spindle dynamics and chromo-

some segregation. Aside of regulatory functions regarding

mitosis onset, PLK1 was found to be involved in the

assembly of key components of the contractile ring (eg,

ECT2, RhoA GTPAse, CYK4) at the equatorial cortex

during anaphase onset14,15 and finally in the exit process

participating in controlling chromosome segregation and

G1 phase entry.16,17 Other physiological roles of PLK1

have been recognized, involving telomere stabilization,

extracellular matrix invasion and regulation of topoisome-

rase IIa in cell cycle progression (see Figure 1B).18–21 For

example, Cyclin B1, a key component of the prophase

initiation, was identified as an important target structure

of PLK1, promoting its (Cyclin B1) nuclear translocation

after phosphorylation.22 Activation of PLK1 in turn is a

complex process, requiring phosphorylation of a con-

served threonine residue (Thr 210) within the PLK1 kinase

domain. The Aurora A kinase, a member of the Aurora

serine/threonine kinase family, was found to phosphorylate
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Figure 1 Structure and function of the human Polo-like kinases: (A) Polo-like

kinases in human cells. Schematic representation of the five identified PLKs in

human cells. The open reading frame amino-acid lengths are shown on the right,

the kinase domain is shown in red color with the corresponding amino-acid

position. Polo-box domains are shown in blue color. (B) Schematic diagram of

the cell cycle functions of PLK1.

Abbreviations: PLK, Polo-like kinases; KD, kinase domain; PB, Polo-box domain;

aa, amino acids.
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PLK1 during G2/M phase in synergistic action with Bora,

a known cofactor of Aurora A.23,24

Given the nature of PLK1 and its involvement in mitosis,

unsurprisingly, Holtrich et al provided evidence, that expres-

sion in normal human tissue is limited to highly proliferative

organs, such as the placenta, colon and the testis. However,

the transcripts are detectable in tumors of various origins,

including but not limited to lung cancer, colon and stomach

cancer as well as non-Hodgkin lymphomas,4 firstly pointing

to a possible relevance in malignant processes. Smith et al

later showed that cells transformed with PLK1 were capable

to produce tumors in nudemice.25 Liu and Erikson and others

used vector-based siRNA and antisense oligonucleotides to

deplete PLK1 in various cancer cell lines and found that

transfected cells arrested in G2/M phase and became highly

apoptotic.26–29 The formation of dumbbell-like chromatin

and the presence of 4 N DNA content further suggested the

inability of successfully transfected cells to completely sepa-

rate their chromatin. PLK1-depleted cells enter mitosis, but

accumulate in a pre-anaphase state with absence of focused

spindle poles and chromosomes that do not become stably

attached to the spindle apparatus.30 Interestingly, normal

human epithelial cells transfected with siRNA showed no

impaired survival.28 Conclusively, the preclinical data

unequivocally pointed to a central role in regulating mitotic

actions, which prompted a series of attempts to pharmacolo-

gically target PLK1.

Frequency of PLK1 expression in
NSCLC and its prognostic relevance
In an early study on 111 resected lung cancer specimens

from patients suffering from limited disease stages, a con-

siderable transcription of PLK1 mRNA (PCR-based

method) was documented in all but 4 patients. With a

proportion of >80%, the majority of the study population

consisted of male smokers with clinical stage I-II NSCLC.

Additionally, high PLK1 expression was an independent

risk factor for inferior survival in this cohort.31 Allera-

Moreau et al performed gene expression profiling of 77

genes involved in DNA replication in 93 tumor specimens

collected from chemo-naïve early-stage patients and ana-

lyzed its prognostic relevance. They could show that most

genes analyzed were significantly deregulated compared to

juxtaposed normal lung tissue. PLK1 was found to be

overexpressed in 92% of all probes analyzed, and a tran-

scriptive “replication signature” consisting of 5 specific

genes involving PLK1 was associated with inferior

relapse-free and overall survival.32 The prognostic rele-

vance of PLK1 expression was also confirmed by Wang

et al, who additionally found a positive correlation with

the presence of lymph node metastases and advanced

clinical stage (approximately 50% of all cases tested).33

Another study focused on squamous cell NSCLC and

evaluated PLK1 expression by immunohistochemistry

and PCR screening.34 PLK1 was upregulated in 72 of

132 tumor probes (55%) and overexpression markedly

correlated with disease stage and tumor size. In line with

previous data, high expression of PLK1 was a negative

prognostic factor correlating with inferior survival in uni-

variate and multivariate analysis.

Preclinical and clinical-
pharmacological PLK-1 targeting in
NSCLC
The biological function of PLK1 as a key regulator of

mitosis and its expression in various tumor entities overall

supported the potential role of PLK1 disruption in cancer

therapy. Zhou et al performed PLK1 antisense oligonu-

cleotide (ASO) (pcDNA3-PLK1) studies in A549 lung

cancer cells and determined cell proliferation, cell cycle

distribution and apoptosis.35 The number of viable cells

was markedly reduced 48 hrs after successful transfection

as compared with control cell lines. Flow cytometry

revealed a significant increase of cells in G2/M phase

and apoptosis in the transfected cell lines. Mixing studies

furthermore revealed a sensitization to vinorelbine quanti-

fied by a reduction of the IC50 by more than 40% in the

transfected cell lines, implying a synergistic effect of che-

motherapy and PLK1 disruption. Another study was car-

ried out with low-proliferative NCI H596 lung carcinoma

cell lines. PLK1 function was blocked with an adenoviral

delivery of a dominant-negative (dnPLK1) gene.36 The

expression of the dnPLK1 caused significant apoptosis at

relatively low wild-type:dominant-negative expression

ratios despite low proliferation rates of the H596 cell

line. In another study, in vitro cell growth of A549 lung

cancer cell lines transfected with PLK1 ASOs was reduced

by more than 50% with a moderate induction of G2/M

phase arrest.29 Moreover, systemical treatment of A549

xenograft nude mice with bolus injections of PLK1

ASOs inhibited tumor growth by 70–86%. Kawata et al

used a lung cancer xenograft model to determine PLK1

influence on metastatic tumor spread: A549 cells were

inoculated into the murine spleen and subsequent liver
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metastasis was compared between control animals and

mice treated with PLK1 small interfering RNA.37

Macroscopic analysis of mice exsanguinated 70 days

after cancer cell inoculation showed a significantly lower

volume of liver metastases. Finally, in another xenograft

model (nude mice) with subcutaneously inoculated A594

cells, treatment with PLK1 silencing small hairpin DNA

resulted in a significant delay in tumor growth compared to

sham treatment, and the combination with gemcitabine

caused a strong inhibition of tumor cell proliferation by

enhanced apoptosis in an additive manner.38

In summary, disruption of PLK1 was feasible in pre-

clinical models and showed encouraging anticancer activ-

ity, thus leading the way to the clinical evaluation of PLK1

inhibitors.

The development of small
molecules to target PLK1
Inhibitory molecules of the kinase domain may be distin-

guished in ATP-competitive and non-ATP-competitive

inhibitors, depending on their mechanism of action. The

deep cavity of the PLK1 ATP binding site is an obvious

target; however, the highly conserved structure of binding

sites makes the identification of specific inhibitors a chal-

lenging endeavor due to potential off-target side effects.

The first specific inhibitor described in the literature is

scytonemin, an extracellular matrix pigment synthesized by

cyanobacteria. It is supposed to be an effective absorber of

damaging ultraviolet rays, while allowing the transmittance

of wavelength necessary for photosynthesis.39 This natural

marine product was found to inhibit PLK1 in a dose-depen-

dent manner while sparing toxic effects in nonproliferating

cells, providing a possible template for the upcoming devel-

opment of PLK1 inhibitors.40 However, scytonemin showed

similar inhibitory effects on other kinases (CDK1, CHK1,

MYT, PKC), and the inhibitory indices indicated additional

non-competitive modes of action. An overview on PLK1

inhibitors that had been tested clinically in patients with

lung cancer gives Table 1. A comprehensive summary

enumerating all conducted trials with PLK1 inhibitors in

lung cancer patients is depicted in Table 2.

BI 2536
BI 2536 was a first-in-class highly selective ATP-compe-

titive small molecule based upon a dihydropteridone deri-

vative that accomplished inhibiting the enzymatic activity

of PLK1 by blocking the ATP-binding site. This

compound inhibits PLK1 with an at least 1.000-fold selec-

tivity against a panel of other kinases and an IC50 of 0.8

nM. Irrespective of the tumor origin, the agent inhibits the

proliferation of various cell lines in culture assays,41

including the KRAS mutated A549 in addition to NCI-

A460 and the TP53 mutated NCI-520 lung cancer cell

lines. Comparable to previous RNA-based silencing stu-

dies, BI 2536 induced mitotic arrest and cells accumulate 4

N DNA content, indicative of G2/M arrest. Subsequently,

massive tumor cell death and apoptosis occurred after 48

hrs of treatment. The growth inhibitory potential was also

tested in an A549 xenograft model by using a twice-

weekly i.v. schedule, and excellent tolerability and mean-

ingful tumor regression were observed.

A first in human Phase I open-label dose-escalating

PLK1 inhibitor study was conducted in patients with

refractory and/or metastatic solid tumors.42 A total of 40

patients were treated with at least one cycle of parenteral

BI 2536 following a 3+3 escalation scheme starting with

25 mg on day 1 every 3 weeks (D1Q3W). Patients

included suffered from colorectal and renal cancer as

well as sarcoma among several other cancer entities. The

inclusion of patients with lung cancer, however, was not

reported. Dose-limiting toxicities were observed at the 250

mg dose level, comprising of neutropenic infection and

neutropenia; therefore, the maximum tolerated dose was

set to 200 mg for further enrollment. Other namable toxi-

cities were gastrointestinal side effects, fatigue, arthralgia

and γ-glutamyltransferase increase without additional

signs of hepatic toxicity. Antitumor activity was encoura-

ging with a reported disease control rate of 42% with one

patient achieving a partial response.

A total of three clinical trials with BI 2536 were con-

ducted in which patients with NSCLC were enrolled. A

Phase I trial aimed to define the maximum tolerated dose

of single-agent BI 2536 and overall safety in various cancer

entities, including each one patient diagnosed with SCLC

and NSCLC, respectively. Toxicity was comparable to pre-

vious data with mainly hematotoxic side effects and no new

safety issues raised. The patient suffering from SCLC

experienced disease stabilization for more than 2 cycles.43

Two clinical trials enrolled patients with relapsed or

refractory NSCLC only, a Phase II trial evaluating the

efficacy of single-agent BI 2536 and a Phase I trial aiming

to determine the recommended Phase II dose of peme-

trexed in combination with BI 2536. Both clinical trials

showed only modest efficacy in NSCLC patients with

tumor response limited to a few patients each. Sebastian
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and co-authors concluded that despite the objective

response rates (ORR, 2%) following single-agent BI

2536 administration in R/R NSCLC patients being low,

the capability of BI 2536 to achieve response rates with

low treatment-induced mortality suggests clinical activity

of Plk-1 inhibitors in relapsed NSCLC.44 Importantly,

most of the adverse events affected the hematopoietic

system without causing relevant clinical problems to the

majority of patients, thus potentially warranting combina-

tion strategies. However, although not powered for

response rate, the combination of BI 2536 with peme-

trexed in the Phase I trial has similarly shown only modest

anti-tumor activity with an ORR of 5% (n=2).45 Still, these

two patients had a progression-free survival (PFS) of 20.5

months and a censored PFS of 20.1 months, raising the

questions of valid biomarkers to more precisely allocate

PLK1 inhibitory strategies.

BI 6727 (volasertib)
The second-generation PLK1 inhibitor volasertib (BI

6727), an additional dihydropteridinone derivative, is a

potent and selective agent with a favorable pharmacoki-

netic profile.46 In comparison to BI 2536, volasertib shows

improved tissue penetration leading to a high volume of

distribution and a prolonged terminal half-life, which

offers a theoretic therapeutic advantage, thus leading to

prioritization of volasertib in clinical development.

Preclinical efficacy was determined in several cell culture

assays and its derivative xenograft models, including the

lung cancer cell line NCI-H460. Furthermore, it was

shown that volasertib (and BI 2536) was effective in

EGFR mutant cell lines, and drug-induced cell death was

increased in those gaining acquired resistance, especially

due to epithelial-to-mesenchymal transition, thus provid-

ing a rationale for volasertib and EGFR TKI combination

strategies.47–49 Therapeutical potential of volasertib in pre-

clinical assays has also been demonstrated for SCLC cell

lines, in which PLK1 inhibition significantly attenuated

cell proliferation and induced apoptosis in a dose-depen-

dent manner.50

The clinical development of volasertib in patients suf-

fering from NSCLC consists of 6 clinical trials, 5 of which

were Phase I trials enrolling various solid tumor entities in

the relapsed or refractory state.51–56 Two of these trials

evaluated increasing doses of volasertib in combination

with other target therapy compounds, afatinib54 and

nintedanib,56 respectively. In total, 25 patients with

NSCLC were enrolled in these 5 trials, of which 2 patientsT
ab
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achieved a partial remission as a best response. Transient

hematologic side effects, fatigue and gastrointestinal toxi-

city were the most common dose-limiting adverse events;

however, treatment was overall reported as well-tolerated.

A three-armed Phase II trial evaluating volasertib sin-

gle agent or in combination with pemetrexed against

pemetrexed monotherapy was conducted by Ellis et al.

The trial enrolled 131 patients with relapsed or refractory

NSCLC. Although the overall response rate of 21% was

highest in patients treated in the combination trial arm

compared to volasertib (8.1%) or pemetrexed (10.6%)

monotherapy, PFS with the combination strategy (3.3

months) was inferior to pemetrexed single agent treatment.

In an exploratory comparison between volasertib mono-

therapy and pemetrexed monotherapy, the HR was 2.045

(95% CI, 1.27–3.292; p=0.0027) favoring pemetrexed,

although surprisingly the response rates in both single-

agent trial arms were similar. The discordance between

response rate and PFS was attributed to chance imbalances

within this small clinical trial.

Although all these trials could convincingly demonstrate

that the toxicity profile of volasertib was very well manage-

able, even in combination strategies, the overall efficacy in

NSCLC patients was lower than expected.

ON01910 (rigosertib)
ON01910 was the first-of-its class non-ATP-competitive

PLK1 inhibitor binding near or at the PLK1 substrate binding

site, since substrates compete for its inhibitory activity.57 In

vitro studies with normal human cell lines showed surpris-

ingly low growth attenuation and were very resistant to the

apoptotic effect of ON01910. In several tumor cell culture

assays (including two lung cancer cell lines: A549, H157),

however, ON01910 induced mitotic arrest characterized by

spindle abnormalities leading to apoptotic death. Of interest,

it was tested if co-culturing of tumor cells with sublethal

amounts of ON01910 may induce resistance to the com-

pound, but such cell lines could not be isolated, indicating

that acquired resistance to ON01910 itself may cause a

survival disadvantage. Furthermore, ON01910 has been

identified as an effective inhibitor of the PI3K/Akt/mTOR

pathway in preclinical series.58,59

The clinical development of ON01910 in NSCLC is

based on two Phase I clinical trials, that enrolled in total of

3 NSCLC cases,60,61 all of which did not respond to this

non-ATP-competitive agent. Aside of transient hematolo-

gic side effects, dose-limiting toxicities consisted of dis-

turbances in electrolyte balances, pelvic pain and urinary

tract symptoms in addition to the occurrence of neurocog-

nitive dysfunction. These side effects differed to former

experiences with PLK1 inhibitors, presumably owing to

the different mechanism of action of ON01910. Priority of

the clinical development of rigosertib is currently

restricted to malignant hematologic diseases.

NMS-1286937/HMN-214
Two early-phase clinical trials had been conducted aiming to

define the MTD and overall safety with additional PLK1

inhibiting compounds: HMN-214 and NMS-1286937.62,63

Altogether 9 lung cancer patients were recruited with no

documented response in these patients. Safety and toxicity

were overall comparable to other ATP-competitive PLK1

inhibitors.

Other ATP and non-ATP
competitive PLK1 inhibitors
There is an ongoing list of ATP-competitive and non-compe-

titive compounds in preclinical or early phase clinical devel-

opment (eg, MLN0905,64 Ro3280,65 CFI-400945,66

CYC14067); however, patients with lung cancer have not

been enrolled in trials conducted with these compounds;

thus, detailed information on preclinical and/or trial results

are not presented here. A list of ongoing clinical trials invol-

ving PLK1 inhibitors in solid malignancies depicts Table 3.

The new class of polo-box-domain
inhibitors
The highly conserved nature of the ATP-binding pocket and

the anticipated or experienced side effects of its inhibition

gave rise to a new class of PLK1 targeting compounds that

target the PLK1 tandem polo-box domain (PBD). Of interest,

unlike PLK1-3, PLK5 only contains a single PBD. Polo-box

binding inhibitors fall into 2 categories, peptide-based and

small-molecule based. Peptides primarily provide functional

information on protein–protein interactions and give rise to the

identification of surface structures and potential binding pock-

ets for targeting the PBD, that might be allosterically masked

in the absence of a peptide ligand. However, peptides are in

general not cell-permeable and are susceptible to proteolysis.

These inhibitors serve as proof-of-concept models to acceler-

ate the development of pharmacological agents. Small mole-

cule inhibitors on the other hand provide the advantages of cell

permeability, are characterized by a high degree of selectivity

and represent inhibitors for potential cancer-therapy.
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The first phosphopeptide designed to target the PDB

was PoloBoxtide optimal that was not specifically designed

to target the PBD, but was co-identified with the regulatory

domain of the PLKs themselves.12,68 The definition of the

optimal binding motif of the PBD in these pivotal studies

provided the basis for the development of PBD targeting

agents. Other peptide-based inhibitors, PLHSpT,

FDPPLHSpTA, and their modified sister compounds were

able to induce mitotic arrest in a high proportion of cancer

cells after microinjection in culture assays, supporting their

mechanism of action in the context of malignancy.69 The

first small-molecule inhibitor of the PBD was Poloxin that

was found through systematic screening of chemical

libraries.70 The compound induced mitotic arrest and apop-

tosis in HeLa cells with an IC50 of 4.8 µM and suppressed

tumor growth in xenograft mouse models.71 A handful of

comparable compounds have been developed/identified so

far: Poloxin-2,72 Purpurogallin,69 Poloxipan,73 bg-34,74

Poloppin75 and Poloppin-2.75 To our knowledge, there is

currently no clinical trial recruiting with this new type of

PLK inhibitors. However, one of the main green tea poly-

phenols (epigallocatechin) was found to be an inhibitor of

the PLK1 PBD,76 thus falling into this category of PLK

inhibitors. The only clinical trial that was conducted in 17

patients with advanced lung cancer treated with green tea

extract found low efficacy with no objective responses.77

The search for predictive
biomarkers
The clinical activity of PLK1 inhibitors in NSCLC has only

shown modest activity. Still, a small proportion of patients

derives the meaningful clinical benefit that might be masked

among a larger proportion of patients who fail to benefit

from PLK1 inhibition. Therefore, the identification of pre-

dictive biomarkers might be the key to enrich patients who

benefit from this class of inhibitors. Unfortunately, transla-

tional research and exploratory biomarker analysis were not

part of the study objectives in most early phase clinical

trials that had involved patients with NSCLC. Still, there

is some preclinical and clinical evidence on molecular

mechanisms that support the usefulness of PLK1 inhibition

in specific (NSCL) cancer subentities.

Preclinical evidence for emerging
biomarkers
It has been consistently shown that TP53 defective cancer

cell lines were more prone to reduced survival than theirT
ab
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wild-type counterparts.78–84 Although TP53 usually acts in

an anticancer capacity, it was recently shown that func-

tional TP53 reduces the sensitivity of cell lines to PLK1

inhibitors and maintains centrosome separation and com-

pletion of mitosis in the presence of PLK1 inhibition.85

Cells lacking TP53 show an increased proportion of abnor-

mal spindle formation and arrest in G1 phase upon treat-

ment with PLK1 inhibitors. Therefore, the presence of

inactivated TP53 might serve as a predictive biomarker

in NSCLC patients, that is present in approximately 50%

of all cases.86

KRAS mutations are one of the most common genetic

alterations in patients with NSCLC; however, its prognos-

tic role as a single or co-mutation has extensively been

investigated with inconsistent results (eg, reviewed in87).

There have been attempts to therapeutically address KRAS

mutated tumors (such as NSCLC) which have been proven

to be largely refractory to those target treatment

approaches. An RNAi screen performed by Luo et al

identified PLK1 and components of the APC/C ubiquitin-

conjugating holoenzyme as a survival critical cofactor in

KRAS p.G12C cell lines and xenografts.88 Increased apop-

tosis in KRAS mutated cell lines compared to their wild-

type counterparts was also seen after treatment with the

PDB inhibitor Pollopin,75 BI 6727 and BI2536.47

Furthermore, it has been shown that ON01910 (rigosertib)

has the ability to bind to the RAS-binding domain of the

RAF family proteins and thus effectively blocking RAS

downstream signaling.89 The PI3K-mTor pathway as a

second key regulator of cell growth cross-talks with the

RAS-RAF-ERK pathway and positively and negatively

co-regulate each other.90 As mentioned above, rigosertib

has been identified as an effective inhibitor of PI3K. In

xenograft models of colorectal and lung cancer (A549 cell

line xenograft), reduction in tumor growth after rigosertib

treatment was accompanied by downregulation of RAS-

RAF-ERK and PI3K-mTor pathways. This has also been

shown for other preclinical models of hepatocellular car-

cinoma, head and neck and prostate cancers.79,91,92

Whether this effect is highly specific for rigosertib or is

also traceable in other PLK1 inhibitors is not conclusively

clarified; however, a direct targeting of PI3K has not been

shown for the other compounds. In summary, tumors har-

boring activating KRAS mutations or show increased activ-

ity of RAS downstream signaling pathways are supposed

to be more sensitive to PLK1 targeting. In case of rigo-

sertib, (co-) activation of the PI3K pathway, as indicated

by PIK3CA expression or PTEN loss (a tumor suppressor

gene counteracting to the PI3K pathway), might addition-

ally function as a predictive marker for tumor response in

PLK1 inhibition. However, although KRAS and TP53

alterations preclinically indicate a sensitization to PLK1

inhibition, the high proportion of patients with NSCLC

harboring these mutations and the low tumor response

rates contradict a sufficient sensitivity of these markers.

Cyclin B1, a physiologic target structure of PLK1, is a

key mitotic cyclin in the G2/M phase transition of the cell

cycle, is overexpressed in various tumor entities and has

consistently been described as a negative prognostic factor

in NSCLC with a frequency of approximately 20%, parti-

cularly in squamous cell NSCLC.93–97 In one study, the

dynamic reduction of mRNA transcription of cyclin B1

upon treatment with ON01910 positively correlated with

response to PLK1 inhibition in patient-derived pancreatic

cancer xenografts.98 Thus, although absolute expression of

cyclin B1 did not conclusively predict tumor response in

xenografts or in those patients who were subsequently

treated with ON01910, early dynamic changes were highly

predictive for treatment response. A similar relationship

has been described in patients with hematologic malignan-

cies treated with ON01910 and the dynamic changes of

cyclin D1 expression measured by flow cytometry.99

However, this relationship has not been proven in lung

cancer (models) yet. Other biomarkers with predictive

potential have been evaluated in solid malignancies other

than NSCLC. The centrosomal protein CEP55 is a down-

stream target of the MAPK pathway and a key regulator of

cytokinesis.100 Its overexpression is associated with infer-

ior survival in NSCLC and breast cancer.101 In xenograft

models of triple negative breast cancer, the combined

inhibition of MEK1/2 (AZD6244) and PLK1 (volasertib)

substantially impacted tumor growth.100 However, the role

of CEP55 as a potential biomarker for PLK1 inhibition in

NSCLC has not been elucidated yet. Additionally, head

and neck squamous cell cncer (HNSCC) cell lines and

xenograft models with mutated AJUBA, presumably an

essential activator of the Aurora Kinase A, were highly

sensitive to knockdown or inhibition of PLK1.102 Presence

of activating AJUBA mutations might therefore play a role

as a predictive biomarker in head and neck cancers and

other solid malignancies for successful PLK1 targeting.102

Finally, there is emerging evidence that PLK1 activa-

tion plays a key role as an acquired mechanism of resis-

tance, particularly in the process of epithelial-to-

mesenchymal transition (EMT). EMT is a complex mole-

cular and cellular process involved in tissue remodeling
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that has been linked to tumor progression and metastasis

and precludes a high plasticity of cancer cells.103

Importantly, EMT has been found to be associated with

inherited and acquired drug resistance,104–106 in case of

NSCLC particularly in refractoriness to platinum therapy

and acquired resistance to EGFR TKIs.107–109 Presence of

an EMT gene signature determined by analyzing 264

different genes in lung cancer cell lines predicted sensitiv-

ity to PLK1 inhibition.47 This could also be shown in two

erlotinib-resistant cell lines with activating EGFR muta-

tions that harbored an EMT gene profile.49 Of note, it was

recently shown that NSCLC cell lines (HEK293) with

epithelial gene signature and constitutive cMET activation

were highly resistant to volasertib treatment, whereas

PLK1 inhibition prevented cMET phosphorylation in

mesenchymal isogeneic cell pairs leading to high apopto-

sis rates.110 The combination of cMET and PLK1 inhibi-

tion in this setting led to sustainable xenograft tumor

regression possibly paving the way for combination stra-

tegies involving PLK1 and cMET targeting therapy.

Conclusively, acquired resistance to target therapies or

conventional cytotoxic agents involving EMT might be a

domain of PLK1 inhibition in the future.

Clinical and patient-derived
evidence for predictive biomarkers
The largest set of tumor samples for exploratory biomarker

screening were obtained from the phase I trial conducted by

Sebastian et al with BI 2536.44 Breitenbuecher and collea-

gues performed broad spectrum posthoc analyses with

archival tumor samples from 47 patients using immunohis-

tochemistry and DNA sequencing.111 Sequence analysis of

all mutational hotspot exons of KRAS, EGFR, BRAF and

PIK3CA was successfully conducted in 26 patients, immu-

nohistochemistry analysis for the expression of PTEN,

HER2, PLK, p-AKT and p-ERK was informative in 20

patients. Exploratory correlation analyses showed notably

long PFS in some patients harboring KRAS mutations in the

cohort of nonsquamous NSCLC, but this relationship failed

to meet statistical significance. There was no survival dif-

ference in patients with KRAS-mutated lung cancer com-

pared to the KRAS wildtype cohort. Partially owing to the

small sample size, other outcome associations with genetic

alterations could not be identified. When testing for PI3K/

AKT/mTOR pathway activation indicated by positive ERK,

AKT and (loss of) PTEN IHC, there was no significant

relationship with PFS or OS outcomes.

In the Phase I trial in relapsed or refractory solid malig-

nancies (NSCLC, n=1) conducted by Bowles et al, archival

tumor tissue blocks from 32 participants were assessed with

DNA sequencing for the presence of common mutations in

15 hotspot genes.61 Additionally, in a subset of patients,

FISH analyses were performed to determine the PIK3CA

and PTEN gene copy number. In a subset of patients with

squamous cell cancers (n=6; NSCLC, n=1), a PI3K path-

way activation via PIK3CA amplification and PTEN loss in

combination with an inactivated TP53 was seen in those 2

patients with therapy response. However, others with these

mutations failed to respond to therapy indicating that both

mutations may be necessary but are not sufficient to induce

a response to PLK1 inhibition.

Conclusions
The captivating position of PLK1 as a central key regulator of

mitosis leads to numerous attempts to pharmacologically dis-

rupt PLK1 signaling in various cancer entities, including lung

cancer. Currently, three different types of small-molecule inhi-

bitors – ATP-competitive, non-ATP competitive and PBD

inhibitors – have found their way into clinical trials; however,

most experiences were gained with the ATP-competitive com-

pounds BI 2536 and BI 6727 (Volasertib). The overall toxicity

of PLK inhibitors was judged as well manageable with dose-

dependent hematotoxicity as the limiting side effect in most

clinically tested compounds. The overall efficacy in patients

with NSCLC however was limited and in the context of the

rapidly broadening landscape of immunotherapy (combina-

tions) and small-molecule strategies, further development of

PLK1 inhibitors is currently primarily restricted to more pro-

mising areas, such as hematologic malignancies. Still, a small

proportion of patients shows an enduring benefit of PLK1

inhibition, probably masked by a higher proportion of patients

showing refractoriness to this small-molecule class. There

have been few clinical attempts to define predictive biomar-

kers to enrich lung cancer patients that may derive increased

benefit fromPLK1 inhibition, but in summary, these suggested

biomarkers performed weakly in predicting tumor responses

in NSCLC patients and more research is needed to define the

molecular frame of effective PLK1 targeting. In recent years,

the role of PLK1 in acquired therapy resistance has been

investigated and has been linked to resistance to cytotoxic

agents as well as target therapies. In light of these observa-

tions, the future domain of PLK1 inhibitors in the treatment of

lung cancer may be found in combination strategies to prevent

early treatment failure and delay obligatory acquired resis-

tance in advanced or metastatic disease. More studies are
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inevitably needed to define the optimal role of PLK1 inhibition

in lung malignancies.
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