
OR I G I N A L R E S E A R C H

CeO2NPs relieve radiofrequency radiation,

improve testosterone synthesis, and clock gene
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Introduction: The ratio of Ce3+/Ce4+ in their structure confers unique functions on cerium

oxide nanoparticles (CeO2NPs) containing rare earth elements in scavenging free radicals

and protecting against oxidative damage. The potential of CeO2NPs to protect testosterone

synthesis in primary mouse Leydig cells during exposure to 1,800 MHz radiofrequency (RF)

radiation was examined in vitro.

Methods: Leydig cells were treated with different concentrations of CeO2NPs to identify

the optimum concentration for cell proliferation. The cells were pretreated with the optimum

dose of CeO2NPs for 24 hrs and then exposed to 1,800 MHz RF at a power density of 200.27

µW/cm2 (specific absorption rate (SAR), 0.116 W/kg) for 1 hr, 2 hrs, or 4 hrs. The medium

was used to measure the testosterone concentration. The cells were collected to determine the

antioxidant indices (catalase [CAT], malondialdehyde [MDA], and total antioxidant capacity

[T-AOC]), and the mRNA expression of the testosterone synthase genes (Star, Cyp11a1, and

Hsd-3β) and clock genes (Clock, Bmal1, and Rorα).

Results:Our preliminary result showed that 128 μg/mLCeO2NPswas the optimum dose for cell

proliferation. Cells exposed to RF alone showed reduced levels of testosterone, T-AOC, and CAT

activities, increased MDA content, and the downregulated genes expression of Star, Cyp11a1,

Hsd-3β, Clock, Bmal1, and Rorα. Pretreatment of the cells with 128 μg/mL CeO2NPs for 24 hrs

followed by RF exposure significantly increased testosterone synthesis, upregulated the expres-

sion of the testosterone synthase and clock genes, and increased the resistance to oxidative

damage in Leydig cells compared with those in cells exposed to RF alone.

Conclusion: Exposure to 1,800 MHz RF had adverse effects on testosterone synthesis,

antioxidant levels, and clock gene expression in primary Leydig cells. Pretreatment with

CeO2NPs prevented the adverse effects on testosterone synthesis induced by RF exposure by

regulating their antioxidant capacity and clock gene expression in vitro. Further studies of the

mechanism underlying the protective function of CeO2NPs against RF in the male repro-

ductive system are required.

Keywords: CeO2NPs radiofrequency radiation, Leydig cell, testosterone synthesis, clock

genes, antioxidant

Introduction
Exposure to radiofrequency (RF) radiation at frequencies of 850–2,100 MHz,

which are used for cellular phones, is increasing rapidly in modern life.1

Consequently, public concerns about the effects of RF radiation on health are
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also increasing rapidly throughout the world.2 Infertility

is common in approximately 15% of the couples glob-

ally, and this is attributed to environmental factors,

including exposure to RF radiation.3–5 In humans, the

testis is located in the area of RF exposure because men

usually carry their mobile phones in their trouser pockets

or waist-bands or keep computers in their laps. Reports

have suggested that RF exposure affects testicular devel-

opment, damages the seminiferous tubules, and reduces

the number of Leydig cells in rats.6 Testosterone, the

hormone secreted by Leydig cells in testes, plays

a pivotal role in sustaining structural and functional

integrity of male reproductive organs.7 The effects of

RF exposure on testosterone, male sex hormone, in ani-

mals were inconsistent: some studies showed decreased

levels in rabbits and rats while others reported increased

levels in mice and humans.8–11 The observation in our

previous studies indicated that RF exposure inhibited the

testosterone synthesis and that clock gene Rorα was

involved in its regulatory mechanism.12 There were sug-

gestions that free radical-mediated pathway might be

involved in the adverse effects of RF exposure on tes-

tosterone secretion.13

Cerium oxide nanoparticles (CeO2NPs) are oxides of

rare earth elements and attracted much attention in their

biological applications due to the switch between Ce3+ and

Ce4+ on the surface of CeO2NPs structure.
14 The prepara-

tion method, particle size, exposure route, and cell type

studied have been found to influence the biological effects

of CeO2 NPs.15 Particles with smaller size have a larger

surface area per mass unit and hence, they were found to

be potentially more active as antioxidant and UV

shield.16,17 In our previous studies, CeO2NPs was found

to improve the antioxidant capacity of tissue in mice.18

There were reports suggesting that some strong antioxi-

dant may act as a protective agent and keep the male

reproductive system from adverse effects of the RF expo-

sure through the elimination of the highly reactive free

radicals.19,20 Hence, in this study, the antioxidant capacity

of CeO2NPs was investigated on testosterone synthesis

and adjusting the clock genes expression in primary

Leydig cells under RF exposure.

Materials and methods
CeO2NPs
The CeO2NPs were obtained from Sigma-Aldrich

(Shanghai, China) (Product Number: 544,841, APS: <25

nm and purity >99% trace metal basis). Their character-

istics were detected by scanning electron microscopy

(SEM, Quanta FEG 250, Hillsboro, OR, USA), transmis-

sion electron microscope (TEM, JEOL 2100, Tokyo,

Japan), and X-ray powder diffractometry (XRD8

Advance X-ray diffractometer; Bruker AXS Endeavor,

Billerica, USA) and presented in Figure 1A, B and

D. The X-ray diffraction of the precipitated material

showed cubic crystals. The intense peaks from the XRD

test corresponded to the diffraction peak of CeO2. The size

distribution of CeO2NPs with a 18–40 nm size range was

analyzed fom the transmission electron microscopy images

as shown in Figure 1C, and the average size of CeO2NP

was 27.62 ± 3.01 nm.

Primary Leydig cells separation and

identification
The experiments were approved (number, 201701A323)

by IACUC (Institutional Animal Care and Use

Committee) of Soochow University, China. All procedure

for the animal experiment was conducted according to the

guidelines of IACUC of Soochow University. Primary

Leydig cells used in the experiments were isolated from

the testis of 9-week-old C57 male mice who exhibited

circadian rhythmicity by 0.05% Collagenase

I. Approximately 5.0×106 cells were mixed with 3 mL

complete medium consisting of 1:1 DMEM/F-12

(Invitrogen, Thermo Fisher, Shanghai, China), 2.5% fetal

bovine serum (FBS) and 5% horse serum (Gibco, Grand

Island, NY, USA) and cultured in an incubator maintaining

37°C, 5% CO2 atmosphere, and 95% air. The cells were

cultured in vitro for 24 hrs at which time they were

processed for the cell purity identification using HSD-3β-
specific histochemical staining method.21 Those with dark

blue particles were identified as viable in Leydig cells.

Experimental design
Firstly, cell proliferation assay was used to evaluate the most

suitable addition dose of CeO2NPs according to cell prolifera-

tion rate. Secondly, cells which were pretreated with/without

CeO2NPs (the optimal addition level obtained from the first

step) for 24 hrs were then exposed to 1,800MHz RF for 1 hr, 2

hrs, or 4 hrs. Immediately after RF exposure, the culture

medium was collected to measure testosterone concentration.

The cells were kept to determine the antioxidant levels (MDA,

CAT, and T-AOC) and to extract the total RNA for real-time

PCR to examine mRNA expression of testosterone synthesis
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and clock genes. The samples were investigated from these

groups of Leydig cells as Table 1.

Cell proliferation assay
Approximately 5.0×106 Leydig cells were seeded in a separate

sterile 35-mm petri dish in quadruplicate, and semi-confluent

cells were starved in DMEM/F12 medium (without serum for

16 hrs) to synchronize at G0/G1 phase. Then, the cells were

cultured in complete medium with 2.5% FBS and 5% horse

serum for 8 hrs and then distributed into separate 96-well

plates, 10 μL CeO2NPs solution diluted by dispersant (PBS

with 0.5% DMSO) was added to the medium of cells by 10

addition gradients as following: 0 (Blank), 0 (Solvent), 4, 8, 16,

32, 64, 128, 256, 512, and 1,024 μg/mL in quadruplicate.MTT

assay [3-(4, 5- dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium

bromide (MTT)-based colorimetric method] was performed to

find the optimal concentration ofCeO2NPs for the proliferation

of Leydig cells. Twenty microliters MTT (Sigma-Aldrich,

China) solution (5 mg/mL in PBS) was added, and the cells

were further incubated for 4 hrs at 37°C. Then, 150 μLDMSO

was added to dissolve of formazan crystals. Finally, the absor-

bance in each well was measured at 490 nm using amicroplate

reader (Beckman, San Jose, CA, USA). Cell proliferation rate

was used as the evaluation index of the most suitable addition

dose of CeO2NPs: Cell proliferation rate (%) = (OD value in

the experimental group/OD value in the solvent group) ×100.

RF exposure system and dosimetry
In this experiment, the RF exposure system consists of RF

generator (E4438C ESG; Agilent Technologies Inc., Palo

Alto, CA, USA) and narrow band amplifier (SN1012; HD
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Figure 1 Characterization of test material CeO2NPs. (A) Scanning electron micrographs of CeO2; (B) transmission electron micrographs of CeO2; (C) size distribution

histogram of CeO2NPs; (D) the results of XRD test.

Abbreviations: CeO2NPs, cerium oxide nanoparticles; XRD, X-ray powder diffractometry.

Table 1 Experimental design groups

Groups Solvent CeO2NPs RF exposure

Blank – – –

Solvent Control + – –

CeO2NPs + + –

RF 1 hr + – +

RF 2 hrs + – +

RF 4 hrs + – +

CeO2NPs + RF 1 hr + + +

CeO2NPs + RF 2 hrs + + +

CeO2NPs + RF 4 hrs + + +

Abbreviations: CeO2NPs, cerium oxide nanoparticles; RF, radiofrequency radiation.
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Communications Corp, New York, NY, USA). The sensors

and fans of the exposure system were connected to a PC

that monitors the power densities (200.27 μW/cm2) during

RF exposure and maintain a constant temperature and

environment (37°C, 5% CO2). The RF exposure system

was set to produce an electromotive force similar to that

emitted by the global system for mobile communications

mobile phones with a frequency of 1,800 MHz. As shown

in Table 1, the cells were pretreated with/without CeO2

NPs for 24 hrs, and then exposed to 1,800 MHz RF

radiation at 200.27 μW/cm2 power densities for 1 hr, 2

hrs, or 4 hrs, respectively. The special absorption rate

(SAR) was evaluated and computed using the 3D-FDTD

full-wave electromagnetic simulation software, Sim4life

4.0 (ZMT Zurich MedTech, Zürich, Switzerland), and the

specific absorption rate distribution inside the culture med-

ium is shown in Figure 2. As shown in Figure 2, the

maximum SAR was 0.519 W/kg, and the mass-average

SAR was 0.116 W/kg simulated in Sim4life 4.0.

Testosterone assay
Cell culture medium was collected after RF exposure for

1, 2, and 4 hrs. The medium was centrifuged at 3,000 rpm

for 10 mins, and the supernatants were kept to evaluate for

testosterone concentration using the Beckman DTX-880

Multimode Plate Reader (Beckman Coulter, San Jose, CA,

USA). The testosterone levels were obtained using

enzyme-immunoassay ELISA kit (Elabscience, Wuhan,

China), and the absorbance was read at 450 nm.22 All

samples were read in duplicate, and the coefficient of

variation was less than 12% within and between measure-

ments. Duplicate samples were used for each assay and

repeated three times.

Antioxidant levels
Cells were collected after RF exposure for 1, 2, or 4 hrs

with trypsinization, washed and centrifuged at 1,000× g at

4°C for 20 mins. Then, the cells were sonicated to disrupt

the cell wall, centrifuged at 8,000× g for 10 mins at 4°C,

the supernatant was kept on ice to determine the CAT

activities, MDA content, and T-AOC levels using kits

according to manufacturers’ instructions (Suzhou Comin,

Suzhou, China), respectively.

Real-time PCR
The Leydig cells were collected after RF exposure for 1, 2, or

4 hrs for real-time PCR. Total RNA was isolated using the

Mini Kit (Qiagen, Duesseldorf, Germany) and, the quality

and quantity were determined using BioPhotometer

(Analytik Jena AG, Jena, Germany). Quantitative real-time

PCR was conducted on the QuantStudio™ 7 Flex Real-Time

PCR system (Life Technologies, Carlsbad, CA, USA) using

2.5X SYBR Green Abstart One Step RT-PCR Mix (Sangon

Biotech, Shanghai, China) according to the manufacturer’s

instructions. Primers were designed and synthesized by

Invitrogen (Life Technologies, Shanghai, China) and the

forward and reverse sequences are presented in Table 2. All

values were normalized to a mice housekeeping gene β-actin.
The fold change in mRNA was calculated by the ΔΔCt
method (fold =2ΔΔCt). All samples were tested in duplicates.

Statistical analysis
All data were presented as mean ± SD (standard devia-

tion). Statistical analyses were performed by one-way

analysis of variance between the Blank/Solvent/CeO2

NPs/RF/CeO2NPs+ RF groups with SPSS 22 (SPSS Inc,

Chicago, IL, USA). When appropriate, LSD test was car-

ried out. A statistical P-value of <0.05 between two groups

was indicative of significant difference.

Results
Identification of primary Leydig cell
Figure 3A and B shows the Leydig cells stained with

HSD-3β-specific dye after culturing in vitro for 24 hrs.

The cytoplasm of most cells was blue-black with dark

blue particles, and more than 95% of the cells are

stained. Thus, the purity of primary Leydig cells was

above 95%.

[W/kg]

0

0.519

SAR(X,Y,Z,f0)

Figure 2 Distribution of SARof the culturemedium inside a standard petri dish (35-mm)

exposed to 1,800 MHz radiofrequency fields (power densities, 200.27 μW/cm2).

Abbreviation: SAR, specific absorption rate.
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Proliferation of Leydig cells affected by

different does CeO2NPs
The proliferation rate of Leydig cells which were treated

with different addition doses CeO2NPs [0 (Blank), 0

(Solvent), 4, 8, 16, 32, 64, 128, 256, 512, and 1,024 μg/
mL] is shown in Figure 4. In terms of the cell proliferation

rate, there is no statistical difference between Blank and

Solvent groups. The proliferation rate was significantly

increased to 127.72%, 181.22%, and 148.53% in cells

treated with 64, 128, and 256 μg/mL CeO2NPs, respec-

tively, compared with the solvent (0 μg/mL) group

(100%). There was no statistical difference in other CeO2

NPs-treated groups. Therefore, the addition concentration

of 128 μg/mL CeO2NPs was considered optimum for the

proliferation of Leydig cells and also as the protective

dose for RF exposure in the next experiments.

Testosterone
Testosterone synthesis reflects the function of primary

Leydig cells, which is easily affected by environmental

factors. In this study, for testosterone concentrations in

cells medium, solvent control group is no statistical differ-

ence from the blank group. Compared with the solvent

control group, CeO2NPs (128 μg/mL) addition increased

the testosterone concentrations, while RF exposure for 1,

2, and 4 hrs significantly diminished testosterone levels.

Cells pretreated with 128 μg/mL CeO2NPs for 24 hrs and

then exposed to RF for 1, 2, and 4 hrs, showed increased

testosterone concentration compared to that of RF expo-

sure alone groups, respectively (Figure 5). The results

showed 128 μg/mL CeO2NPs pretreatment could protect

RF exposure-induced toxicity on testosterone synthesis.

Antioxidant levels (CAT, MDA, and

T-AOC)
The data in Figures 6–8 show the results of CAT activities,

MDA content, and T-AOC levels. For three antioxidant

parameters, there is no difference between the blank group

and the solvent control group. There were significant differ-

ences between solvent control and CeO2 NP/RF-exposed

cells. Cells treated with 128 µg/mL CeO2NPs showed

increased the CAT activities and T-AOC levels, reduced

MDA content in primary Leydig cells, while RF exposure

induced the opposite change on antioxidant levels.

Compared to cells exposed to RF for 1, 2, and 4 hrs groups,

CeO2NPs + RF each group reduced the MDA content,

increased CAT activities and T-AOC levels. The changes

in CATactivities, MDA content, and T-AOC levels observed

A B

Figure 3 Stain of HSD-3β on primary leydig cells (A, 20×; B, 40×).

Abbreviation: HSD-3β, 3β-Hydroxysteroid dehydrogenase.

Table 2 Primer sequence for real-time PCR

Genes Primer sequence

Star Sense: 5ʹ-GGCATACTCAACAACCAGAAGGC −3’

Antisense: 5ʹ-CTCCATGCGGTCCACAAGTTCTTC −3’

Cyp11a1 Sense: 5ʹ-CCGTGGATAACAGCAGCAGGAAC −3’

Antisense:5ʹ-CCAGCACAGATGGTCGCAGATAC −3’

Hsd-3β Sense: 5ʹ-TCCACACTGCTGCTGTCATTGATG −3’

Antisense: 5ʹ-AGAAGATGAAGGCTGGCACACTTG −3’

Bmal 1 Sense: 5ʹ-CTCGGTCACATCCTACGACAAAC −3’

Antisense: 5ʹ-CACAGAAGCAAACTACAAGCCAAC −3’

Clock Sense: 5ʹ-TGGTGACTGCCTATCCTACCTTCG −3’

Antisense: 5ʹ-TGCTGCTGCTGCTGCTGTTG −3’

Rorα Sense: 5ʹ-CCACCTACTCCTGTCCTCGTCAG −3’

Antisense: 5ʹ-CTTCTGCACCTCGGCGTACAAG −3’

β-actin Sense: 5′-TGGAATCCTGTGGCATCCATGAAAC-3’

Antisense: 5ʹ-TAAAACGCAGCTCAGTAACAGTCCG-3’
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after RF exposure 1, 2, and 4 hrs were reversed by pretreat-

ment with 128 µg/mL CeO2 NPs for 24 hrs.

Testosterone synthase genes expression
The data in Figure 9 show the results of the real-time PCR test

for Star, Cyp11a1, and Hsd-3β. From the results, there is no

difference between the blank group and the solvent control

group in the three gene expression. Compared to the solvent

control group, exposure of the cells to 128 µg/mL CeO2 NPs

quite significantly increased the mRNA expression of testos-

terone synthesis genes Star, Cyp11a1, and 3β-Hsd in primary

Leydig cells, while RF exposure for 2or 4 hrs induced the

distinct downregulation of the three testosterone synthesis

genes expression. CeO2NPs + RF groups at all RF exposure

times distinctly enhanced the genes expression of testosterone

synthesis Star, Cyp11a1, and Hsd-3β in primary Leydig cells

compared toRF exposure alone for 1, 2, and 4 hrs, respectively.

The downregulation effects of RF exposure effect on the

mRNA expression of testosterone synthesis genes, Star,

Cyp11a1, and Hsd-3β could be effectively reversed by 128

µg/mL CeO2NPs pretreatment for 24 hrs.

Clock genes expression
The results of real-timePCR for clock genesBaml1,Clock, and

Rorα mRNA expression are shown in Figure 10. As reported

above indicators, no difference appeared between the blank

group and solvent control group in the expression of clock

genes. As compared to the solvent control group, Rorα, Clock,

and Baml1 mRNA expression remarkably increased in CeO2

NPs treatment group. There are significant decreases on the

mRNA expressions of Baml1, Clock, and Rorα in the RF

exposure 2or 4 hrs group compared to the solvent control

cells, and RF exposure 1 hr also reduced the gene expressions

of two clock genes Clock and Rorα except for Baml1 expres-

sion. As for the genes expression of Rorα, Clock, and Baml1,

CeO2NPs + RF each group is higher than that of RF exposure

alone for 1, 2, and 4 hrs, respectively. The downregulation

toxicity of RF exposure on the mRNA expression of clock

genesRorα, Clock, andBaml1 could be effectively reversed by

128 µg/mL CeO2NPs pretreatment 24 hrs.

Discussion
There were several reports suggesting RF exposure effects

on various cellular systems, and highly reactive free
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radicals were implicated in adverse biological effects (oxi-

dative damage) induced by RF.23–26 The aims of this study

were to examine whether 1,800 MHz RF radiation induces

oxidative stress and promote lipid peroxidation and also to

investigate the role of CeO2NPs, which have antioxidant

properties, against possible testosterone synthesis toxicity

in primary Leydig cells induced by 1,800 MHz RF radia-

tion in vitro.

Leydig cells are located in interstitial of seminiferous

tubules in testis and play an important role in the paracrine

regulation of spermatogenesis and, are responsible for the

synthesis of testosterone.27 Testosterone has significant

effects during the growth and development of the male

reproductive organs.28 Long-term exposure to environ-

mental toxins was suggested to be responsible for the

decline of testosterone that further induced the defective

sperm.29 It is generally considered that Leydig cells are

sensitive to the environmental stress, such as heat, radia-

tion, and exposure to heavy metals.30,31 There were reports

indicating RF radiation from cell phone, and other electro-

nic equipment may have a negative influence on Leydig

cells.25,32 In our previous studies, we found 1,800 MHz

RF exposure reduced the level of testosterone synthesis in

mice and rats.12,33 The results in the present study showed

that 1,800 MHz RF exposure for 1, 2, and 4 hrs negatively

affected testosterone synthesis in primary Leydig cells.

In order to investigate the potential mechanisms of RF

exposure effect on primary Leydig cells, the expression of

genes involved in testosterone synthesis (Star, Cyp11a1,

Hsd-3β) was examined, and all were found to be altered.

Steroidogenic acute regulatory protein (StAR) is able to

mediate the production of steroid hormones which is

initiated by translocation of cholesterol through the mito-

chondrial membrane from the outer to the inner.34

Cholesterol was metabolized into pregnenolone by cyto-

chrome P450 Family 11 subfamily A member 1

(CYP11A1), and the hormonally and developmentally

regulated expression of CYP11A1 is mainly driven by

a variety of trans-acting factors.35 Due to the close corre-

lation with HSD-3β, pregnenolone transfers from the mito-

chondria into the smooth endoplasmic reticulum.36 In this

study, the mRNA expression levels of Star, Cyp11a1, and

Hsd-3β in Leydig cells exposed to RF radiation for 2and 4

hrs decreased significantly, which could be responsible for

the inhibition of testosterone synthesis.

In our previous study, we found that RF exposure inhib-

ited testosterone synthesis through CaMKI/RORα signaling

pathway. RORα (the retinoid-related receptor alpha) is

a critical member of the core clock gene machinery, its

ROR response elements (ROREs) have been identified in

several clock genes including Bmal1 and Clock, indicating

that ROREs are essential for rhythmic transcriptional regula-

tion of Bmal1 and Clock.37 BMAL1 as an essential
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difference was significant as, # P<0.05, ## P<0.01.
Abbreviations: CeO2NPs, cerium oxide nanoparticles; RF, radiofrequency radia-

tion; CAT, catalase.
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Figure 7 MDA content in Leydig cells treated by CeO2NPs, RF and CeO2NPs + RF.

Notes: Compared with the Solvent Control group, the difference was significant as,

**P<0.01; compared with the RF group at same exposure time, the difference was

significant as, ## P<0.01.
Abbreviations: CeO2NPs, cerium oxide nanoparticles; RF, radiofrequency radia-
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component of the circadian pacemaker in mammals can

regulate the rate-limiting step of steroidogenesis by enhan-

cing the transcription of Star gene.38 Biological clock genes

also regulate the expression of cytochrome P450 (CYP) gene

family members in which Cyp11family including

CYP11A1.39 The gene expression of Hsd-3β is also under

transcriptional control of the circadian clock.40 Thus, testos-

terone synthesis can be changed by clock genes expression.

In this present study, the clock genes Rorα, Clock, and Baml1

as well as the three steroidogenic genes, viz., Star, Cyp11a1,

Hsd-3β, were downregulated in mouse primary Leydig cells

exposed to 1,800 MHz RF radiation for 1, 2, and 4 hrs.

Damage in biological systems induced RF emitted

from cellular mobile phones may be due to the accumula-

tion of free radicals which enhance oxidative stress, and

change the antioxidant defense systems of tissues.41 Under

oxidative stress, circadian rhythmicity is usually affected

and the expressions of the key circadian gene are directly

inhibited.42 In the present study, 1,800 MHz RF exposure

negatively affected testosterone synthesis and clock genes

expression, decreased the CAT and T-AOC levels,

increased the MDA content, changed the antioxidant capa-

city of primary Leydig cells, and induced the oxidative

stress. Thus, the results demonstrated that the inhibition on

testosterone synthesis induced by RF exposure may be due

to oxidative stress and downregulation of clock genes.

CeO2NPs have antioxidant properties due to their vari-

able particle sizes, crystal structures, and surface chemis-

tries, and have also been demonstrated that are able to

quench ROS produced and protect cells against oxidative

damage due to its free radical-scavenging properties.43,44

Solv
en

t C
on

tro
l

Blan
k

RF4h
RF2h

RF1h

CeO
2N

Ps+
RF1h

CeO
2N

Ps

CeO
2N

Ps+
RF2h

CeO
2N

Ps+
RF4h

* * * *

**

**

**
**

**

**

##

##

#
#

##
##

##

##

##

3

4

Hsd-3β
Cyp11a1
Star

1

0

2

R
el

at
iv

e 
m

R
N

A 
ep

re
ss

io
n

Figure 9 The mRNA expression of testosterone synthase genes (Star, Cyp11a1, Hsd-3β) in Leydig cells treated by CeO2NPs, RF, and CeO2NPs + RF.
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In the present study, application alone of CeO2 NPs

increased the CAT activities and T-AOC levels, decreased

the MDA content, which agreed with the literature that

reported CeO2NPs reduced the oxidative stress.45

Meanwhile, these nanoparticles further relieved the oxida-

tive stress induced by RF, accompanied by the upregula-

tion of clock genes Rorα, Clock, and Baml1 in this present

study. These results were consistent with the report which

indicated circadian clock is involved in regulating the

response of a cell to oxidative stress.46

Previous studies reported that CeO2NPs materials have

positive effects on reproductive cells in sheep and are

capable of promoting reproductive performance in

rabbits.47,48 It is also reported citrate-stabilized CeO2NPs

help to accelerate the proliferation of primary mouse

embryonic fibroblasts in vitro.49 In the present study,

CeO2NPs treatment alone promoted the proliferation of

mouse primary Leydig cells, enhanced the testosterone

synthesis and clock genes expression, and increased the

antioxidant capacity. Further, we found that pretreatment

of the cells with CeO2NPs for 24 hrs reduced the oxidative

damage and the clock genes downregulation caused by RF

exposure and thus, improved the testosterone synthetase

genes expression and testosterone secretion.

As there are always two sides to everything, CeO2NPs

also showed some toxicities.50,51 According to our previous

studies in animals, it must be noted that doses play a crucial

role in the benefits or toxicity of CeO2NPs on the repro-

ductive system.18,52 In the present study, we set ten dose

gradients to screen the optimum addition dosage of CeO2

NPs by proliferation rate assay of Leydig cells. The results

found that the cell proliferation rate was increased most

significantly at the dose 128 μg/mL but then gradually

decreased above the 128 μg/mL. It suggested there is an

optimum addition for the proliferation of mouse primary

Leydig cells, and CeO2NPs above the optimum addition

level may induce a declining cell proliferation rate, even

inhibit the cells proliferation as the dose constantly

increases.

Conclusion
In summary, our study provided some evidence that

1,800 MHz RF exposure may first induce the oxidative

damage in primary Leydig cells and then, weaken the

expression of clock genes Clock, Bmal1, and Rorα

which in turn, downregulates its target genes involved

in testosterone synthesis, including Star, Cyp11a1, and

Hsd-3β, resulted in reduced testosterone production.

Preexposure of the cells to CeO2NPs also reduced RF

radiation effects, improves testosterone synthesis and

clock genes expression in Leydig cells via enhancing

antioxidant levels.
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