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Background: Biotemplates are attractive templates for the synthesis of nanometals and

inorganic compound nanostructures.

Methods: In this work, for the first time, iron oxide quantum dot nanoparticles (QDNPs) were

prepared using albumen as a biotemplate. Next, the prepared nanoparticles were characterized

using dynamic light scattering for determination and evaluation of the hydrodynamic diameter

and zeta potential of the particles. Moreover, optical and scanning electron microscopes were

applied to evaluate morphology. Spherically shaped iron oxide QDNPs were obtained with

appropriate particle size and distribution. Fe(NO3)3.9H2O and egg whites were used as the source

of the Fe element and particle size control agent in the aqueous medium, respectively. Afterward,

the effect of calcination temperature parameters on the crystallinity purity and size of Fe

nanocrystals were investigated. Also, products were characterized by various detection analyses

such as thermogravimetry analysis/DTA, XRD, UV-vis, Fourier transform infrared (FT-IR,)

transmission electron microscopy, and SEM. In order to investigate the antibacterial effect of

the synthesized Fe nanobiological samples against bacterial strains, they were dissolved in

dimethyl sulfoxide and diluted using distilled water. Then, different serial dilutions of 64 μg/

mL, 32 μg/mL, 16 μg/mL, 8 μg/mL, 4 3BCg/mL, 2 μg/mL, 1 μg/mL, and 0.5 μg/mL of

nanobiological samples were prepared and added to the Mueller–Hinton agar medium.

Results: The minimum inhibitory concentration of the synthesized iron oxide quantum dot

nanobiological was determined against pathogenic microbial strains of bacteria including

Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Micrococcus luteus,

Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, and Klebsiella pneu-

monia on the culture medium plate.

Conclusion: The present nanobiological samples can be considered as a new material

candidate for antibacterial drugs.
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Introduction
Today, one of the problems threatening the environment and human health is the use of

hazardous chemicals in the preparation of industrial,1 laboratory,2 andmedicalmaterials.3

The nonuse of hazardous substances for human health and the environment; the provision

of uniformly high nanoparticles and with high efficiency, nonuse of equipment, special

equipment, and physical conditions; and complex chemical solutions are among the other
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benefits of green synthesis methodology.4,5 Therefore, it is

imperative to introduce and develop synthetic methods based

on the principles of green chemistry on an industrial scale for

industrial societies.6 The Fe nanoparticles because of their

special magnetic properties have many applications in the

medical field such as antioxidant properties,7,8 targeted drug

delivery,9 cosmetics,10 hygiene products, catalysts, and

biotechnology.11–13 Numerous chemical and physical methods

have been reported for the synthesis of the Fe nanoparticles

such as vapor transport,14 chemical vapor deposition,15 che-

mical bath deposition,16 sol-gel,17 spray pyrolysis,18 and sol-

vothermal/hydrothermal methods.19 Also, Fe nanoparticles

have been synthesized with various morphological properties

such as nanowires,20 nanoneedles,21 nanoparticles,22,23 and

nanorods.24 Egg whites are biological and natural fluids that

contain high levels of amino acids and proteins such as albu-

men and lysozyme.25 Structurally, these amino acids can play

a stabilizing and controlling role in the synthesis of

nanoparticles.26 In the last decade, many procedures have

been reported for the preparation of metal nanoparticles such

as Au, Ag, Cu, Pt, Pd, and Ru. In this regard, the hydrothermal

method with potential advantages as a cost-effective, high

purity, and controlled morphology are used for the synthesis

of inorganic nanostructures such as metal nanoparticles and

metal oxides.27,28 Fluorescent semiconductor nanoparticles

with optical and superconductivity properties have great

importance in various applications such as medicine,29 cell

imaging,30 and other biomedical applications.31 According to

literature, the magnetic nanoparticles such as Fe nanostruc-

tures give no or low toxicity in the MTT assay except for the

uncoated nanoparticles. In the present work, using a simple

hydrothermal method and egg white protein, we aimed to

design and produce albumen as biotemplate, eco-friendly,

cost-effective, a green organic matrix, and green method for

producing iron oxide quantum dot monodispersed nanoparti-

cles with well-controlled particle size. Recently, several stu-

dies have been conducted on the use of nanoparticles and

nanostructures as antimicrobial agents. A summary of these

works is presented in Table 1. The green pathway of prepara-

tion of iron oxide quantum dot nanoparticles (QDNPs) in

albumen as biotemplate is depicted in Scheme 1. The synthe-

sized samples were then characterized by various detection

analyses such as thermogravimetry analysis (TGA)/DTA,

XRD,UV-vis, Fourier transform infrared (FTIR), transmission

electron microscopy (TEM), atomic force miscroscopy

(AFM), and SEM.

Experimental
Materials and physical measurements
Preparation of Fe nanoparticles

Iron oxide QDNPs were prepared by a soft-chemistry

synthesis involving a co-precipitating-assisted hydrother-

mal method. For this purpose, 0.50 g Fe(NO3)3.9H2O was

dissolved in 25 mL distilled water. The mixture of NO3

and ferric ions was stirred for 60 mins with 400 rpm under

the argon gas (solution A). In the next step, different

concentrations of freshly extracted albumen were dis-

solved in the relative ratio of deionized water to ethanol

and then stirred at 400 rpm in hot water bath for 30 mins

(solution B). Then, the obtained albumen suspension was

added dropwise to the solution A and pH of the solution

was maintained between 6.5 and 7.8 by adding NaOH and

an ammonia solution dropwise. To prevent the agglomera-

tion different values of CTAB as a surfactant, about

Table 1 Summary of researches about useful nanoparticles and nanocomposites as antimicrobial agents

Types ofnano-
composites

Particle size
(nm)

Synthesis
method

Microorganisms tested References

ZnO NPs 2.90–25.20 Green synthesis B. megaterium, Bacillus pumilus,

and B. cereus

32

Pd@TiO2 200–400 Photochemical

route

Escherchia coli 33

Cu 2–350 Chemical

reduction

Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa,

and Candida albicans

34

γ-Fe2O3 60–80 Matrix-mediated

method

Staphylococcus aureus 35

Carbon dots/Ag 1–5 Hdrothermal

treatment

Staphylococcus aureus, Escherichia coli 36

SiO2/nano 200 Tetraethyl

orthosilicate

Staphylococcus aureus 37
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0.05–1.5 mg was added to the above solutions. The sus-

pension was transferred into a Teflon autoclave with a

stainless steel shell. The autoclave was kept at 150–

220℃ for 4–10 hrs under various conditions according to

Table 2. Eventually, the obtained black samples were

washed with ethanol and acetone and dried at room tem-

perature. The as-prepared products were analyzed by

XRD, EDAX, SEM, AFM, TEM, and FTIR.

Minimum inhibitory concentration (MIC) assessment

In this study, for detection of antibacterial activity of the

iron oxide QDNPs, the agar dilution technique was used to

measure qualitatively the in vitro activity of an antimicro-

bial agent against the test bacteria. In this method, graded

amounts of antibiotics were incorporated in agar plates and

inoculated in spots with the organisms. For this purpose,

10 small tubes were filled with 2 cc of the Muller–Hinton

broth and then 10 large tubes (25 cc) were filled with 18 cc

of the Muller–Hinton agar and transferred to the autoclave.

In the next step, the first tube was added to 2 mL of the

stock solution and after mixing, 2 cc of the first tube was

added to the second tube. This process was continued until

2 cc of the final tube was poured out and 8 consecutive

dilutions were prepared from the specimen and concentra-

tions of 640 μg/mL, 320 μg/mL, 160 μg/mL, 80 μg/mL, 40

μg/mL, 20 μg/mL, 10 μg/mL, and 5 μg/mL were obtained.

Each of these dilutions was then added to 18 cc of solid

culture medium and the final concentrations were achieved

as 64 μg/mL, 32 μg/mL, 16 μg/mL, 8 μg/mL, 4 μg/mL,

2 μg/mL, 1 μg/mL, and 0.5 μg/mL.

Results and discussion
Characterization of iron oxide QDNPs
The XRD analyses at low angles can be used to identify the

crystalline phases present in a material and then obtain che-

mical composition information in order to prove the success

of the exchange reaction. The peaks appeared at 2θ=45.56°
and 65.54° can be indexed to the characteristic diffraction

peaks of (110) and (200) planes of cubic iron oxide quantum

dots (JCPDS No. 87-0721) and space group number: 229. In

order to interpret X-ray pattern, the relationship between the

angle of diffraction (2θ), the wavelength of the x-ray beam

(λ), and the distance between each set of atomic planes of the

crystal lattice (d), Deby–Sherrer equation (Eq. 1) can be

employed. This equation gives the mean diameter of the

crystallites with the help of the following formula:

D ¼ kλ=βcos θð Þ (Eq:1)

where D is mean crystallites size, λ is X-ray wavelength

(1.54056 Å), β is broadening of the line measured at half

its maximum intensity (in radius), θ is diffraction angle

from Bragg planes, and k is shape factor (0.9). Figure 1A

shows the XRD pattern of the products before annealing
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Scheme 1 The green pathway of preparation of iron oxide quantum dots in albumen as biotemplate.
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and Figure 1B shows as-synthesized Fe QDNPs after

calcination at 250℃ for 3 hrs. The XRD pattern shows

the sharp peaks occurring in 2θ =10° to 80°. Energy-

dispersive X-ray spectroscopy (EDS) analysis as an analy-

tical technique was used for estimating the composition

percentage of elements and elemental analysis or chemical

characterization of the products. From the EDS results, it

can be seen that the iron oxide QDNPs are mainly com-

posed of one major element (ie, Fe) and minor amounts of

Ca, Mn, and Ni peaks, which can be related to conditions

of the laboratory environment. In fact, due to the high

surface to volume ratio of the nanoparticles, they can

absorb more elements in their surfaces. EDS analysis

results are shown in Figure 1C. Therefore, it can be stated

that the synthesized products have a high purity (ie,

76.13% of the Fe element).

The morphology and particle size distribution of the iron

oxide QDNP samples were determined with field emission

scanning electron microscopy and TEM. The results show

that there are albumen matrix chains surrounding iron oxide

QDNPs dispersed uniformly with a diameter of about <80

nm. This analysis showed that the QDNPs were sphericalT
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Figure 1 XRD patterns of the products before annealing (A), the as-synthesized

iron oxide quantum dots after calcination at 250◦C for 3 hrs (B), and quantitative

elements results of products (C).
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and homogenous and did not produce aggregates. The par-

ticle sizes observed in the TEM images are consistent with

the sizes obtained with dynamic light scattering (DLS). The

results showed that using albumen as a biotemplate during

the synthesis leads to products with less agglomeration and

high uniformity. Figure 2A and B present the spherical

morphology of the iron oxide QDNPs from SEM and

TEM images, respectively.

DLS, as a nondestructive analysis, is utilized for mea-

suring the hydrodynamic size of molecules and submicron

particles. Therefore, the light diffusion method is one of

the methods for determining the size and distribution of

particle size in QDNP structures. DLS results of iron oxide

QDNPs showed that the biotemplate of albumen and

synthesis methods could have a positive effect on the

distribution particle size of the products. DLS of the iron

oxide QDNPs is illustrated in Figure 2C.

The unique properties of Fe QDNPs such as topogra-

phy and interactions are because of their morphological

and distribution particle size. AFM is a suitable technique

to characterize the size and shape of QDNPs through the

force between the tip and the sample that can produce a

three-dimensional image of the iron oxide QDNPs sur-

faces. The AFM image (topography) in Figure 3A shows

the formation of layers of three-dimensional spherical iron

oxide QDNPs. The AFM image demonstrates the suitable

distribution and in the surface topography of nanoparticle

size at a cross-section of the sample. Brunauer–Emmett–

Teller was used for measuring the specific surface area and

porosity of the nanomaterials. The N2 adsorption-deso-

rption isotherms and pore size distribution of the iron

oxide QDNPs are shown in Figure 3B. The average pore

size of products is estimated from the pore volume.

Assuming a cylindrical pore geometry (type-A hysteresis),

the average pore radius (rp) can be expressed as Eq. 2:

rp ¼ 2Vliq= S (Eq:2)

Total pore volume in iron oxide QDNPs is derived from the

amount of vapor adsorbed at a relative temperature close to

unity (assuming pores are filled with liquid adsorbate),

which can be calculated as Eq. 3:

Vliq ¼ PaVadsVm=R T (Eq:3)

where Vads, Vliq, and Vm indicate, respectively, the volume

of gas adsorbed, the volume of liquid N2 in pores, and

molar volume of liquid adsorbate (N2=34.7 cm 3/mol).

Also, Pa and T show ambient pressure and ambient tem-

perature, respectively. The results showed that the charac-

terized heats of adsorption are less than the adsorbate heat

of liquefaction. Moreover, it is seen that adsorption pro-

ceeds as the adsorbate interaction with an adsorbed layer

exceeds the interaction with the adsorbent surface.

According to calculations, adsorption cross-section area,

standard volume, and dead volume were estimated to be

0.162 nm2, 9.779 cm3, and 15.972 cm3, respectively.

TGA can be used to study the mass change of samples

under a programmed condition. The TG curves of the iron

oxide QDNPs (Figure 3C) demonstrate a single stage of

weight loss or decomposition. The weight loss occurred in

the temperature range of 120–145℃ is related to the

decomposition of albumen chain and egg proteins chain

from around of nanoparticles. After 145℃, iron oxide

QDNPs reach relative temperature stability.

QDNPs as semiconductor nanocrystals exhibit unique

optical properties because of their combined material band

gap energy and quantum well phenomena, discussed in the

previous section. One of the important properties of the
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C
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Figure 2 The SEM image (A), TEM image (B) dynamic light scattering as-synthe-

sized iron oxide quantum dots prepared via co-precipitation-assisted hydrothermal

method S1 (C).

Abbreviations: SEM, scanning electron microscope; TEM, transmission electron

microscopy
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QDNPs is their energy gap and the estimated absorption

rate between valance and conduction bands. When the

electrons are excited by an energetic source, their energy

is equal to the energy band gap, which is an optical

absorption edge in the absorption spectra. The QDNPs

band gap can be estimated as Eq. 4.

Eg ¼ hc=λ Eq:4

Figure 4A shows the UV-Vis absorption spectra of the iron

oxide QDNPs in the room temperature and optical proper-

ties of samples with visualizer 160818. The Fe QDNPs

band gaps of the nanostructures are higher than the bulk

iron oxide, which can be attributed to the quantum con-

finement effects. This effect shifted the absorption spectra

to the blue region in samples such that the sizes of S1 and

S6 are 215 nm and 225 nm, respectively; these data are in

good agreement with the particles size of the iron oxide

QDNPs. Also, in samples S4 and S8 with 65 nm and 110

nm particle sizes, the UV-vis absorption spectra show 230

nm and 240 nm values, which can be related to redshift in

products. FTIR spectroscopy is one of the most important

techniques used to identify functional groups. The absop-

tion bands at 3443 cm–1 (O–H stretching), 2323 cm–1 (C–

O bending), 1621 cm–1 (N–H stretching), 1033 cm–1 (C–H

stretching), and 612 cm–1 related to vibrations of Fe–O

bonds in iron oxide QDNPs are shown in Figure 4B.

X-ray photoelectron spectroscopy (XPS) as a nondes-

tructive analysis can provide fundamental information

about elemental distributions, layer thicknesses, and sur-

face structures. Moreover, this analysis provides informa-

tion about nanoparticles with sizes below 20 nm, which

may not be readily analyzed by other methods. XPS spec-

trum of iron oxide QDNPs is presented in Figure 5A The

photoelectron peaks at ranges about 714.11 eV, 534.12 eV,

310.87 eV, and 208.89 eV are related to the binding ener-

gies of iron, oxygen, nitrogen, and carbon, respectively.

The narrow scan of iron oxide QDNPs 2p-electrons is

103
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Figure 3 AFM images of the synthesized iron oxide quantum dots (A), the N2

adsorption/desorption (ADS/DES) isotherm at room temperature (B), and TGA

profile obtained for iron oxide quantum dots (C).
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shown in Figure 5B. The XPS spectrum of iron oxide

QDNPs 2p-electrons shows two binding energies, which

are related to Fe 2p (3/2) and Fe 2p (1/2) at about 726.82

and 712.9 eV, respectively. Therefore, the obtained results

demonstrate that the iron oxides are present on the surface

of the as-synthesized nanoparticles. The presence of car-

bon elements indicates that the albumen as a biotemplate

and biomolecules acted as a capping agent for the synthe-

sized iron oxide QDNPs structures.

Antibacterial activity of iron oxide QDNPs against 4

Gram-negative and 4 Gram-positive bacteria using agar

well diffusion with nanocomposites prepared under different

conditions as 64 μg/mL, 32 μg/mL, 16 μg/mL, 8 μg/mL, 4

μg/mL, 2 μg/mL, 1 μg/mL, and 0.5 μg/mL in solid culture

media from 1 to 8, respectively, are shown in Figure 6. The

MIC of the iron oxide QDNPs samples for Gram-positive

and Gram-negative bacterial strains is illustrated in Table 3.

The results showed that the Fe QDNP samples had the

maximum sensitivity and antimicrobial properties against

all Gram-negative microbial strains, except E. coli PTCC

1330 that showed growth in about 0.5 µg/ml. Also, for

Gram-positive strains, it can be stated there is some growth

within 0.5 µg/mL to 2 µg/mL and 0.5 µg/mL for M. luteus

PTCC.1110 , and S. aureus PTCC.1112, respectively.

Iron oxide QDNPs applied the antibacterial effect in

two viewpoints. First, these quantum dots can reduce ATP

synthase activities by changing the membrane potential,

which leads to a decrease in the metabolism process.

Second, collapsing biological mechanism of bacteria

through refused the subunit of the ribosome binding. At

the same time, they proved to be less toxic to mammal

cells.38 Shrinking QD structures and increasing the sur-

face-to-volume ratio resulted in an increase in surface

activity and hence provided an improved contact with the

bacteria. These two important reasons greatly enhanced

the antimicrobial activity of the quantum dots. Iron oxide

QDNPs disturbed the normal functioning of bacterial pro-

teins of the cell wall and caused cell death.39 Iron oxide

50

40

30

C
ou

nt
s/

se
c 

(×
10

4 )
C

ou
nt

s/
se

c 
(×

10
4 )

20

10

0

50

40

30

20

10
740 730 720

Fe

Fe 2p
O s

N s
C s

Fe
2p (3/2)

2p (1/2)

710 700 690

1200 1000
Binding energy (eV) 

Binding energy (eV) 

800 600 400 200

B

A

0
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Figure 6 Antibacterial activity of the iron oxide quantum dots against 4 Gram-negative and 4 Gram-positive bacteria. Different serial dilutions as 64 (plate 1), 32 (plate 2), 16

(plate 3), 8 (plate 4), 4 (plate 5), 2 (plate 6), 1 (plate 7) ,and 0.5 (plate 8) μg/mL in the Muelle–Hinton agar medium.
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QDNPs, because of their high surface-to-volume ratio, can

easily react with phosphorus or sulfur in DNA molecules

at cell wall bacteria. The iron oxide QDNPs bounded with

thiol groups of enzymes through the release of oxygen

species and disrupted their respiratory chains. Therefore,

damage occurred in the cell structures and finally led to

cell death mechanism.40,41

In vivo study
To investigate optical properties of iron oxide QDNPs,

we dissolved 0.005 mg/mL QDs at 1:2 ratio of three-

times distilled water to ethanol and injected them to the

rat tail (Balb/c male). Next, anesthesia was injected with

a 1:2 ratio of ketamine/xylazine immediately. Male

Balb/c weighing 150–200 g was fed with standard diet

and kept under 12:12 hr light/dark cycles, at 20℃ and

relative humidity of 25–30%. This study received ethical

approval (96000752) from the local ethical committee of

the Kerman University of Medical Sciences. First, no

optical properties were observed, but after 3 mins, the

optical properties of iron oxide QDNPs can appear in

images. Injection stage and in vivo image of mice 3

mins after of injection are illustrated in Figure 7A and

B, respectively.

Conclusions
The shape of nanoparticles has a strong effect on the

antibacterial properties. Our results, for the first time,

show the preparation of iron oxide QDNPs synthesized

with albumen as biotemplate. Nonuse of harmful chemi-

cals in the preparation of the iron oxide QDNPs with

suitable extensibility in albumen and unique optical prop-

erties are very important and useful in different applica-

tions. The iron oxide QDNPs have significant antibacterial

activity against Gram-positive and Gram-negative bac-

teria. Products in this study were characterized by AFM,

XRD, SEM, TEM, FTIR, and UV-vis. To gain further

insight, it is suggested conducting some in vivo studies

for confirmation of antibacterial results and in vitro

observations.

Research Highlights
(a) For the first time, iron oxide quantum dots nano-

particles synthesized with an albumen as

biotemplate.

(b) Iron oxide quantum dots synthesized with per-

fect distribution and uniform particle size about

5–9 nm.T
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(c) The albumen acts as a biomolecules template,

green reductance, and capping agent for the synthe-

sized iron oxide quantum dots structures.

(d) Iron oxide quantum dots show high sensitivity anti-

bacterial activity especially against Gram-positive

and Gram-negative bacteria.
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