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Background: Exposure to environmental particulate matter (PM) #2.5 μm in diameter (PM
2.5

) 

and smoking are common contributors to COPD, and pertinent research implicates both factors 

in pulmonary inflammation. Using in vivo mouse and in vitro human cellular models, we inves-

tigated the joint impact of PM
2.5

 pollution, and cigarette smoke (CS) in mice or cigarette-smoke 

extract (CSE) in cells on COPD inflammation, and explored potential mechanisms.

Methods: Tissue changes in lungs of C57BL/6 mice exposed to PM
2.5

 and CS were studied by 

light microscopy, H&E, immunochemistry, and immunofluorescence-stained sections. Levels 

of inflammatory factors induced by PM
2.5

/CS in mice and PM
2.5

/CSE in 16HBE cells were also 

monitored by quantitative reverse-transcription (qRT)-PCR and ELISA. Expression of genes 

related to the Wnt5a-signaling pathway was assessed at transcriptional and protein levels using 

immunofluorescence, qRT-PCR, and Western blotting.

Results: Inflammatory response to combined exposure of PM
2.5

 and CS or CSE in mouse and 

16HBE cells surpassed responses incited separately. Although separate PM
2.5

 and CS/CSE expo-

sure upregulated the expression of Wnt5a (a member of the Wnt-secreted glycoprotein family), 

combined PM
2.5

 and CS/CSE exposure produced a steeper rise in Wnt5a levels. Use of a Wnt5a 

antagonist (BOX5) successfully blocked related inflammatory effects. ERK phosphorylation 

appeared to mediate the effects of Wnt5a in the COPD model, promoting PM
2.5

 aggravation of 

CS/CSE-induced airway inflammation.

Conclusion: Our findings suggest that combined PM
2.5

 and CS/CSE exposure induce airway 

inflammation and Wnt5a expression in vivo in mice and in vitro in 16HBE cells. Furthermore, 

PM
2.5

 seems to aggravate CS/CSE-induced inflammation via the Wnt5a–ERK pathway in the 

context of COPD.

Keywords: COPD, airway inflammation, PM
2.5

, Wnt5a

Introduction
COPD is a common disease characterized by airway obstruction due to structural altera-

tions of small airways and accompanied by systemic inflammation.1,2 This disease is 

creating immense fiscal demand and fueling individual/societal health care burdens.3 

Epidemiologic and genetic risk factors for COPD include long-term smoking, chronic 

environmental exposure to air pollution and chemical substances, and respiratory 

infections.4 As the primary risk factor, cigarette smoking is the chief cause for concern 

in COPD.5–7 Another strong risk factor for COPD is exposure to toxic atmospheric 

pollutants, especially fine-particulate matter #2.5 μm in diameter (PM
2.5

).8
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Extended exposure to PM
2.5

 may hasten deterioration of 

lung function and heighten the risk of developing COPD.9 

Numerous epidemiological studies have confirmed that in 

patients with COPD, PM
2.5

 may cause genetic and epigenetic 

alterations, as well as immunodysfunction.10–13 Results of a 

large epidemiological survey suggested that smokers are 

more susceptible than nonsmokers to PM
2.5

 pollution.14 Fur-

thermore, recent COPD studies have determined that PM
2.5

 

exposure may incite immune disorders, promote pulmonary 

inflammation, or aggravate airway remodeling in animal or 

cell models,15–18 although the precise mechanisms have yet 

to be fully clarified.

Wnt proteins have critical roles in many organisms related 

to carcinogenesis and embryonic development. Several Wnt 

ligands expressed in the developing and adult lung include 

Wnt2, Wnt3a, Wnt5a, Wnt5b, Wnt7b, Wnt10a, Wnt11, and 

Wnt13.19 Among them, Wnt5a and Wnt7b are expressed at 

high levels, particularly in the developing airway epithe-

lium during lung development. A new study has revealed 

the essential role of secreted Wnt4 in respiratory system 

development.20 Three pathways are implicated in Wnt sig-

naling: the canonical Wnt–β-actin pathway, the Wnt–Ca2+ 

pathway, and planar cell polarity.21 Downstream effects of 

Wnt signaling are achieved through various intracellular 

components, according to which pathway is activated. 

In fact, dysregulated Wnt signaling is an important aspect of 

chronic pulmonary diseases, such as COPD and idiopathic 

pulmonary fibrosis.22 Wnt5a, one of the well-studied Wnt 

family members, regulates cellular responses by activating 

or inhibiting canonical Wnt signaling, depending on the type 

of receptor involved.23

Studies examining the molecular mechanism of Wnt5a 

in COPD have been factually underweighted, and the role of 

Wnt5a with respect to interplay between COPD and airway 

inflammation induced by PM
2.5

/cigarette-smoke extract 

(CSE) still needs to be defined. Using animal and cellular 

models, we sought to investigate the joint impact of PM
2.5

 

pollution and CS on COPD inflammation and explore the 

mechanisms potentially involved.

Methods
Cell culture and treatment
A purchased human airway epithelial cell line transfected with 

human papillomavirus type 16 (HPV16) E6/E7 oncogenes 

(16HBE; American Type Culture Collection, Manassas, VA, 

USA) was cultured in RPMI 1640 (KeyGen Biotech, Nanjing, 

China) supplemented with 10% heat-inactivated FBS 

(Scientan, Beijing, China) and 1% penicillin–streptomycin 

(Scientan). The cells were incubated at 37°C in 5% CO
2
 with 

humidification, then exposed (or not) to PM
2.5

 (100 μg/mL) 

or 10% CSE. To investigate effects of Wnt5a on inflamma-

tion induced by PM
2.5

 and CSE, 16HBE cells were pretreated 

with the Wnt5a antagonist BOX5 (200 μM; Merck Millipore, 

Burlington, MA, USA) for 1 hour before adding 100 μg/mL 

PM
2.5

 or 10% CSE.

Cell-viability assay
The viability of 16HBE cells subjected to various treat-

ments was gauged using a WST8 assay kit (CCK8; Pro-

moter Biotechnology, Wuhan, China), according to the 

manufacturer’s instructions. Cells were exposed to PM
2.5

 

(25, 50, 100, or 200 μg/mL) plus 10% CSE for 24 hours or 

BOX5 (100, 200, or 300 μM) in RPMI 1640 culture medium 

(100 μL). Each group occupied five replicate wells. Data were 

drawn from three independent experiments. OD at 450 nm 

was determined with a microplate reader (Multiskan MK3; 

Thermo Fisher Scientific, Waltham, MA, USA).

RNA extraction and quantitative 
reverse-transcription PCR
Total RNA extracts of mouse lung tissue and cells were 

obtained using RNAiso Plus (Takara Bio, Kusatsu, Japan) 

as instructed, and their concentrations were measured by 

microvolume spectrophotometry (NanoDrop; Thermo 

Fisher Scientific). A reverse-transcription kit (PrimeScript 

RT; Takara Bio) was employed for cDNA synthesis, and 

thereafter using an ABI Fast 7900 HT real-time PCR system 

(Applied Biosystems, Foster City, CA, USA) for quantifica-

tion. Analysis utilized the 2−ΔΔCt method, with β-actin as the 

reference gene. Primer sequences are listed in Table 1.

Western blot analysis
Total proteins of mouse lung tissue and cells were extracted 

in lysis buffer containing phosphatase inhibitors using a 

BCA protein-assay kit (Bioyear Biotechnology, Wuhan, 

China) to measure concentrations. Once separated by 10% 

SDS-PAGE, the proteins were transferred to polyvinylidene 

difluoride membranes (Merck Millipore) and blocked (5% 

evaporated milk in Tris-buffered saline containing 0.05% 

Tween 20 [TBST]) for 1–2 hours, followed by overnight 

incubation with primary antibodies at 4°C. Correspond-

ing primary antibodies were applied: anti-Wnt5a (1:1,000; 

ABclonal Biotechnology, Wuhan, China), anti-P-ERK1/2 

(1:2,000; Cell Signaling Technology, Danvers, MA, USA), 

anti-T-ERK1/2 (1:1,000, Cell Signaling Technology), and 

anti-β-actin antibody (1:4,000; ABclonal Biotechnology). 

Membranes were then washed with TBST and incubated 

for 1 hour at room temperature with secondary antibodies 
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conjugated to HRP (1:4,000; Bioyear Biotechnology). Pro-

tein bands were imaged (ChemiDoc XRS + system; Bio-Rad, 

Hercules, CA, USA) and quantitatively analyzed (Image 

Lab; Bio-Rad).

ELISA for IL6 and IL8 levels
Cell cultures were collected and centrifuged at 3,000 rpm 

for 5 minutes at 4°C, and then stored at -80°C for later 

analysis. IL6 and IL8 concentrations in culture supernatants 

were detected by corresponding DuoSet ELISA kits (R&D 

Systems, Minneapolis, MN, USA) following the manufac-

turer’s instructions (limits of detection: IL6 9.38 pg/mL, 

IL8 31.3 pg/mL).

Routine, immunohistochemical, and 
immunofluorescence staining of mouse 
lung tissue
The right lung of each mouse was sampled, fixed in 4% 

paraformaldehyde, and processed using standard techniques 

by staining sections of paraffin-embedded tissue for H&E, 

immunohistochemistry, and immunofluorescence. For immu-

nohistochemistry, the primary antibody rabbit polyclonal 

anti-PCNA (Proteintech, Rosemont, IL, USA) was used. 

For Wnt5a immunofluorescence staining, sections of mouse 

lungs were deparaffinized, rehydrated, and subjected to 

heat-induced epitope retrieval. After washing and blocking, 

the slides were incubated overnight with mouse anti-Wnt5a 

primary antibody at 4°C. On the following day, incubation 

with fluorescein isothiocyanate–conjugated antimouse IgG 

(Jackson ImmunoResearch Laboratories, West Grove, PA, 

USA) took place for 1 hour in the dark at room temperature. 

Sections were subsequently washed three times, and DAPI 

nuclear stain was applied for fluorescence microscopy. For 

dual immunofluorescence staining, primary antibodies, 

including antineutrophils (mouse Ly6G; Abcam, Cambridge, 

UK) and T cells (rabbit CD3; Proteintech), were used to 

assess inflammatory cell populations.

Animal care and PM2.5/smoking-exposure 
protocols
Six-week-old male C57BL/6 mice were obtained from the 

Animal Experiment Center of Wuhan University and housed 

in the Laboratory Animal Center, Tongji Medical College. 

All animal experiments were approved by the animal experi-

ment ethics committee of Tongji Medical College, Huazhong 

University of Science and Technology and adhered to the 

Guide for the Care and Use of Laboratory Animals (National 

Institutes of Health, Bethesda, MD, USA).

Once adapted to the experimental environment, the mice 

were randomly assigned to one of four groups: controls, 

PM
2.5

, smoking, and PM
2.5

 + smoking (n=7 per group). 

Healthy control mice were exposed to room air without 

PM
2.5

, mice in the PM
2.5

 group inhaled PM
2.5

 (110 μg/m3) 

delivered by ultrasonic atomizer, and mice in the smoking 

group inhaled CS (ten cigarettes over 2.5 hours) delivered 

in a PAB-S200 animal passive smoking–exposure system 

(Biolab Technology, Beijing, China). Mice in the PM
2.5

 + 

smoking group were exposed simultaneously to both. All 

mice were treated twice daily 5 days per week for 10 months. 

At completion, the mice were killed and lung tissue collected 

for analysis.

PM2.5-sample preparation
PM

2.5
 was prepared as described previously with slight 

modifications.24 Between November 2016 and May 2017, 

daily PM
2.5

 samples were collected on Teflon filters (Ryder 

Keith Technology, Beijing, China) using a high-volume PM
2.5

 

sampler (UAS-310). Samples were gathered on a building 

rooftop 24 hours per day. Used filters were carefully packed 

and stored at -20°C until extraction, at which time they 

were cut into pieces (4×4 cm), soaked in sterilized water, 

and sonicated for 45 minutes. Water-extracted samples were 

then collected and frozen at -80°C. Frozen PM
2.5

 suspensions 

were vacuum freeze-dried (Gydevang 17-19 DK-3450; Heto-

Holten, Allerød, Denmark), collected, and stored at -20°C. 

Table 1 Primer sequences

Genes Forward primer Reverse primer

Actb (mouse) AACCCTAAGGCCAACCGTGAAA GATGGCGTGAGGGAGAGCATA

IL6 (mouse) CTGCAAGAGACTTCCATCCAG AGTGGTATAGACAGGTCTGTTGG

IL8 (mouse) TGTTGAGCATGAAAAGCCTCTAT AGGTCTCCCGAATTGGAAAGG′

Wnt5a (mouse) CAACTGGCAGGACTTTCTCAA′ CCTTCTCCAATGTACTGCATGTG

ACTB (human) AGAAAATCTGGCACCACACCT GATAGCACAGCCTGGATAGCA

IL6 (human) ACTCACCTCTTCAGAACGAATTG′ CCATCTTTGGAAGGTTCAGGTTG

IL8 (human) ACTGAGAGTGATTGAGAGTGGAC′ AACCCTCTGCACCCAGTTTTC

WNT5A (human) GCCAGTATCAATTCCGACATCG TCACCGCGTATGTGAAGGC
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Prior to delivery to mice or cells, they were resuspended in 

sterile PBS or RPMI 1640 culture medium and sonicated 

for 30 minutes.

Cigarette smoke–extract preparation
CSE was obtained as previously described with few 

modifications.25 In brief, CSE was prepared by bubbling 

smoke from two filtered cigarettes (3R4F) into a 50 mL 

centrifuge tube containing RPMI 1640 culture medium 

(20 mL), aided by vacuum extraction. The extracts obtained 

were sterilized by filtration (0.22 μm) and considered full 

concentrations of CSE.

Statistical analysis
All data are expressed as mean ± SD. Groupwise differences 

were first tested by one-way ANOVA and then Student’s 

t-test. The relationship between Wnt5a mRNA expression 

and proinflammatory cytokines was assessed using Pearson 

or Spearman analysis. Standard software (Prism version 5.0; 

GraphPad Software, San Diego, CA, USA) was used for all 

computations, setting significance at P,0.05.

Results
PM2.5 aggravated smoking-induced 
changes in lungs of mice
To study histological changes produced by PM

2.5
 and smok-

ing separately and together, experimental mice were grouped 

as controls, PM
2.5

, smoking, and PM
2.5

 + smoking. H&E-

stained tissue sections from each group were then examined, 

and the results indicated that separate exposure to PM
2.5

 and 

smoking showed marked tracheal influx of inflammatory 

cells and hyperplasia of airway epithelial cells. Such effects 

were substantially more pronounced in the PM
2.5

 + smoking 

group (Figure 1A–D).

In addition, immunofluorescence results revealed that 

both PM
2.5

 and smoking significantly increased the number 

of Ly6G+ neutrophils and CD3+ lymphocytes that infiltrated 

the trachea, respectively, compared with the control group, 

and the populations of these inflammatory cells increased 

more significantly in the PM
2.5

 + smoking group, suggesting 

that PM
2.5

 promotes smoking-induced airway inflammation 

in mice (Figure S1). While the immunoreactivity of the 

Figure 1 PM2.5 aggravated smoking-induced histological changes and inflammation in lungs of mice.
Notes: (A–D) H&E-stained sections of lung from control, PM2.5, smoking, and PM2.5 + smoking groups (original magnification 200×, bar 100 μm); (E, F) IL6 and IL8 mRNA 
expression in lungs of mice (normalized to β-actin level, n=5 mice/group). Data expressed as mean ± SD. *P,0.05; ***P,0.001.
Abbreviation: PM2.5, particulate matter #2.5 μm.
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proliferation marker PCNA was present in alveolar epithe-

lial cells and small-airway epithelia of the control group, it 

was significantly increased in both the PM
2.5

 and smoking 

groups and increased to an even higher degree in the PM
2.5

 + 

smoking group (Figure S2).

PM2.5 promoted smoking-induced 
inflammation in lungs of mice
As is well known, the release of inflammatory mediators 

by inflammatory cells is crucial for COPD development. 

To investigate the influence of PM
2.5

 on smoking-induced 

inflammation in mice further, we measured expression levels 

of proinflammatory factors (IL6 and IL8) in lungs of mice. 

Likewise, levels of IL6 and IL8 mRNA expression (both 

elevated in the PM
2.5

 and smoking groups individually) were 

upregulated even more so in mice of the PM
2.5

 + smoking 

group (Figure 1E and F). Furthermore, in addition to the 

mRNA levels of inflammatory factors in mouse lung tissue, 

we also collected mouse bronchoalveolar lavage fluid to 

measure the levels of these cytokines. In fact, changes in 

levels of IL6 and IL8 in mouse bronchoalveolar lavage fluid 

were consistent with observed differences in their mRNA 

levels (data to be shown in forthcoming article).

PM2.5 and CSE individually upregulated 
inflammation in 16HBE cells
Prior to addressing the added effect of PM

2.5
 on CSE-induced 

inflammation in vitro, we first showed that PM
2.5

 and CSE 

were separately capable of triggering cellular inflammation 

by exposing 16HBE cells to various concentrations of CSE 

(2.5%, 5%, 10%, or 20%) for 24 hours or to 10% CSE for 

various periods (6 hours, 12 hours, 24 hours, or 48 hours). 

Levels of IL6 and IL8 in supernatants of cell cultures were 

determined thereafter by ELISA. As shown in Figure 2A 

and B, both cytokines displayed dose- and time-dependent 

upregulation. Similarly, in 16HBE cells at variable PM
2.5

 

Figure 2 PM2.5 or CSE exposure increased production of cytokines in 16HBE cells.
Notes: (A) Cells left unexposed or variably exposed to CSE (2.5%, 5%, 10%, or 20%) for 24 hours; (B) cells left unexposed or variably exposed to 10% CSE (6, 12, 24, or 
48 hours); (C) cells left unexposed or variably exposed to PM2.5 (25 μg/mL, 50 μg/mL, 100 μg/mL, or 200 μg/mL) for 24 hours; (D) cells left unexposed or variably exposed 
to 100 μg/mL PM2.5 (6, 12, 24, or 48 hours). Levels of IL6 and IL8 determined in culture supernatants (ELISA). Data expressed as mean ± SD. *P,0.05; **P,0.01; ***P,0.001.
Abbreviations: PM2.5, particulate matter #2.5 μm; CSE, cigarette-smoke extract.
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exposure (25 μg/mL, 50 μg/mL, 100 μg/mL, or 200 μg/mL) 

for 24 hours or at PM
2.5

 exposure (100 μg/mL) for various 

periods (6 hours, 12 hours, 24 hours, or 48 hours), levels of 

these cytokines surged (Figure 2C and D).

Cytotoxicity induced by exposing 16HBE 
cells to both PM2.5 and CSE
To assess the presumptive cytotoxicity of a combination of 

PM
2.5

 and CSE, the viability of 16HBE cells was examined after 

exposures to 25 μg/mL, 50 μg/mL, 100 μg/mL, or 200 μg/mL 

PM
2.5

 in combination with 10% CSE. As indicated in Figure 3A, 

a dose-dependent decline in cell viability was observed. At 

fixed exposure of PM
2.5

 (100 μg/mL) and CSE (10%), cell 

viability declined .10% compared with controls, so this level 

of exposure was deemed optimal for the following experiment.

PM2.5 exposure enhanced CSE-induced 
inflammation in 16HBE cells
To determine the effects of PM

2.5
 and CSE, 16HBE cells 

were exposed to PM
2.5

 (100 μg/mL), CSE (10%), or PM
2.5

 

(100 μg/mL) + CSE (10%) for 24 hours separately, measuring 

IL6 and IL8 expression levels by ELISA. Compared with 

distinct cytokine increases observed after separate exposure 

to PM
2.5

/CSE, significantly greater upregulation of IL6 and 

IL8 followed combined PM
2.5

 and CSE exposure (Figure 3B 

and C). To confirm these findings, we also measured tran-

scriptional levels of these cytokines at various exposure by 

quantitative reverse-transcription (qRT)-PCR, all proving 

similar to ELISA results (Figure 3D and E).

Wnt5a expression increased in lungs of 
mice in PM2.5/smoking group
Immunofluorescence imaging indicated that levels of Wnt5a 

observed in lungs of mice exposed to a combination of PM
2.5

 

and smoking increased compared with controls and clearly 

surpassed levels found after PM
2.5

 or smoking exposure 

alone (Figure 4A–D). Furthermore, shifts in Wnt5a at the 

transcriptional level corresponded with protein fluctuations 

in mouse lungs (Figure 4E).

Figure 3 PM2.5 aggravated CSE-induced inflammation in 16HBE cells.
Notes: (A) Cell viability assessed after exposure to PM2.5 (25–200 μg/mL) in combination with 10% CSE for 24 hours; (B–E) cells left unexposed or exposed to PM2.5 
(100 μg/mL), CSE (10%), or PM2.5 (100 μg/mL) + CSE (10%) for 24 hours. Levels of IL6 and IL8 determined in culture supernatants (ELISA), as well as levels of IL6 and IL8 
mRNA expression (quantitative reverse-transcription PCR, normalized to β-actin level). Data expressed as mean ± SD. *P,0.05; **P,0.01; ***P,0.001. 25 PS, 25 μg/mL 
PM2.5+10% CSE; 50 PS, 50 μg/mL PM2.5+10% CSE; 100 PS, 100 μg/mL PM2.5+10% CSE; 200 PS, 200 μg/mL PM2.5+10% CSE.
Abbreviations: PM2.5, particulate matter #2.5 μm; CSE, cigarette-smoke extract.
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PM2.5/CSE exposure induced upregulation 
of Wnt5a in 16HBE cells
To study the effect of PM

2.5
/CSE on Wnt5a expression and 

its potential function in airway inflammation, 16HBE cells 

were subjected to various exposure for 24 hours: PM
2.5

 

(100 μg/mL), CSE (10%), or PM
2.5

 (100 μg/mL) + CSE 

(10%). As shown in Figure 4F, transcriptional levels of 

Wnt5a were upregulated markedly in the separate PM
2.5

 and 

CSE groups compared with controls; moreover, expression 

of Wnt5a peaked in the PM
2.5

 + CSE group. Wnt5a protein-

expression levels assessed by Western blot were consistent 

with these results (Figure 4G and H).

Correlations between Wnt5a and 
inflammatory cytokines in both mice 
and 16HBE cells
We evaluated the correlation between Wnt5a mRNA levels 

and airway inflammation in mouse lung tissue, and found that 

a significant and positive correlation was present between 

Wnt5a mRNA and levels of inflammatory genes (Figure S3A 

and B). In addition, a similar correlation was found in 16HBE 

cells (Figure S3C and D). These results suggest that the 

inflammation observed can be attributed to the high expres-

sion levels of Wnt5a in both mice exposed to PM
2.5

/smoking 

and 16HBE cells exposed to PM
2.5

/CSE.

Figure 4 PM2.5 and smoking/CSE exposure upregulated expression of Wnt5a in lungs of mice and 16HBE cells.
Notes: (A–D) Representative immunofluorescence-stained lung sections from control, PM2.5, smoking, and PM2.5 + smoking mouse groups, labeled for Wnt5a (red, original 
magnification 400×, bar 50 μm), using DAPI nuclear counterstain (blue); (E) levels of Wnt5a mRNA expressed in mouse lungs, shown by group (normalized to β-actin level, 
n=5 mice/group); (F–H) cells left unexposed or variably exposed to PM2.5, CSE, or PM2.5 + CSE for 24 hours: Wnt5a transcription (quantitative reverse-transcription PCR; 
normalized to β-actin level) and protein levels (qualitative and quantitative Western blot, β-actin as loading control). Data expressed as mean ± SD. *P,0.05; **P,0.01; 
***P,0.001.
Abbreviations: PM2.5, particulate matter #2.5 μm; CSE, cigarette-smoke extract.
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Wnt5a antagonist downregulated 
expression levels of proinflammatory 
factors in 16HBE cells
To evaluate the role of Wnt5a in airway inflammation, we 

used BOX5, a Wnt5a-derived antagonistic peptide, to block 

endogenous Wnt5a signaling, initially testing its toxicity 

in 16HBE cells. Various doses of BOX5 (100–300 μM) 

showed no obvious toxicity (Figure 5A), so 16HBE cells 

were preincubated with BOX5 (200 μM) or vehicle (PBS) for 

1 hour and with exposure to PM
2.5

/CSE for 24 hours. Super-

natants of cell-culture medium were collected to determine 

levels of inflammatory cytokines by ELISA, whereas total 

RNA was extracted from 16HBE cells for qRT-PCR. As 

depicted in Figure 5B–E, administration of BOX5 appeared 

to attenuate the upregulation of inflammatory cytokines 

induced by PM
2.5

/CSE in 16HBE cells, whether at protein 

or transcriptional level. These results indicated that Wnt5a 

at least partly mediated the upregulation of inflammatory 

cytokines induced by PM
2.5

/CSE.

BOX5 treatment also significantly reduced Wnt5a 

expression in 16HBE cells (Figure 5F–I), implicating Wnt5a 

as a major factor in airway inflammation induced by PM
2.5

/

CSE. In addition, the level of Wnt5a in BOX5 + PM
2.5

 + CSE 

group was downregulated in comparison with that in PM
2.5

 + 

CSE group, which further illustrated the role of Wnt5a in the 

joint effect of PM
2.5

 in combination with CSE (Figure S4).

Downregulation of Wnt5a attenuated 
proinflammatory cytokine secretion via 
ERK pathway in 16HBE cells
To investigate mechanisms further by which Wnt5a modu-

lates airway inflammation related to PM
2.5

/CSE exposure, 

we examined the potential involvement of ERK signaling 

in Wnt5a-regulated inflammation, initially observing ERK-

pathway activity in mice and in 16HBE cells. Expression 

levels of P-ERK1/2 and T-ERK1/2 were determined by 

Western blot. As is illustrated in Figure 6A, the level of 

P-ERK1/2 and the ratio of P-ERK1/2:T-ERK1/2 increased 

Figure 5 Wnt5a antagonist downregulated levels of proinflammatory cytokines and Wnt5a.
Notes: (A) Cell viability measured after exposure to BOX5 at various concentrations (100–300 μM). (B–E) Cells pretreated with BOX5 (200 μM) for 1 hour prior to PM2.5 
(100 μg/mL) or 10% CSE exposure for 24 hours: levels of IL6 and IL8 protein in culture supernatants (ELISA), as well as levels of IL6 and IL8 mRNA expression in 16HBE cells 
(quantitative reverse-transcription PCR; normalized to β-actin level). (F, G) Representative band of Wnt5a on Western blot (β-actin as loading control); (H, I) Quantitative 
Western blot analysis of Wnt5a. Data expressed as mean ± SD. *P,0.05; **P,0.01; ***P,0.001.
Abbreviation: PM2.5, particulate matter #2.5 μm.
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significantly in mice after PM
2.5

 and smoking exposure, 

respectively, becoming even more pronounced after joint 

exposure to PM
2.5

 and smoking. In 16HBE cells, PM
2.5

 and 

CSE exerted similar effects on the ERK pathway (Figure 6B). 

Thereafter, 16HBE cells were preincubated with 200 μM 

BOX5 or vehicle (PBS) for 1 hour, followed by 24 hours’ 

incubation with or without exposure to PM
2.5

/CSE. As shown 

in Figure 6C and D, upregulated phosphorylation of ERK1/2 

(P-ERK1/2) induced by PM
2.5

/CSE was inhibited partly by 

BOX5. These data suggest that in the context of COPD, the 

Wnt5a–ERK pathway takes part in airway inflammation 

triggered by PM
2.5

/CSE. We also observed protein levels of 

other inflammation-related signaling pathways, such as JNK 

and p38MAPK (members of the MAPK family); however, 

preincubation of 16HBE cells with BOX5 alone with or 

without PM
2.5

/CSE did not alter the expressions of these 

genes significantly (data not shown).

Discussion
Our research has shown that exposure to PM

2.5
 or CSE 

causes aberrant upregulation of Wnt5a in both in vivo 

mouse and in vitro human cell models. Upregulated Wnt5a 

Figure 6 Expression levels of P-ERK1/2 and T-ERK1/2 analyzed by Western blot.
Notes: (A) Mice left unexposed or variably exposed to PM2.5, smoking, or PM2.5 + smoking for 10 months (n=5 mice/group); (B) cells left unexposed or variably exposed to 
PM2.5 (100 μg/mL), CSE (10%), or PM2.5 (100 μg/mL) + CSE (10%) for 24 hours; (C, D) cells preincubated with BOX5 (200 μM) or vehicle (PBS) for 1 hour, then exposed or 
unexposed to PM2.5/CSE for 24 hours. Data expressed as mean ± SD. *P,0.05; **P,0.01; ***P,0.001.
Abbreviations: PM2.5, particulate matter #2.5 μm; CSE, cigarette-smoke extract.
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then promotes inflammatory cytokine production via ERK-

pathway activation. After combined exposure to PM
2.5

 and 

CSE in vivo and in vitro, such effects were more pronounced. 

It is thus evident that PM
2.5

 inhalation promotes and aggra-

vates CSE-induced airway inflammation via the Wnt5a–ERK 

pathway, making Wnt5a a potential therapeutic target for 

combating airway inflammation in the context of COPD.

A key characteristic of COPD is the presence of chronic 

inflammation.26 Consequently, IL6 has become a prognostic 

biomarker in patients with this disease.27 As a member of the 

CXC chemokine family, IL8 is also linked to the development 

of COPD, high levels materializing in bronchoalveolar lavage 

fluid and sputum samples of affected patients.2,27 Reports have 

already indicated that expression levels of IL6 and IL8 may 

be upregulated in patients with COPD.28,29 Therefore, we 

selected both as inflammatory markers for the present study. 

In our experiments, IL6 and IL8 levels were upregulated in 

the lungs of mice subjected to long-term smoking exposure. 

Protein- and mRNA-expression levels of these cytokines 

were also heightened in 16HBE cells, showing dose- and 

time-dependent elevations in response to CSE. This evidence 

further supports the concept that chronic airway and systemic 

inflammation is ongoing in COPD related to CSE.30,31

Epidemiological studies have also demonstrated that 

patients with COPD are more susceptible to ambient air pol-

lutants, such as PM
2.5

, although the basis has never been fully 

explained.32 The relatively small diameter yet substantial 

density of PM
2.5

 enables breaching of the blood–gas barrier 

and lung parenchyma/airway deposition, causing great dam-

age to bronchial lining cells and alveolar epithelium.33 As in 

other reports, which noted that PM
2.5

 exposure boosts levels 

of inflammatory cytokines to induce airway inflammation,34–37 

we found that PM
2.5

 exposure increased proinflammatory 

cytokine levels of 16HBE cells in dose- and time-dependent 

manners, and experimental mice with COPD showed more 

intense pulmonary inflammation after PM
2.5

 inhalation. 

Similarly, both protein and mRNA proinflammatory cytokine 

levels in cells showed greater gains following combined 

exposure compared to exposure to PM
2.5

 or CSE alone. 

As such, our COPD models induced by CSE were more 

vulnerable to PM
2.5

 exposure, which served to aggravate 

ongoing inflammation.

Wnt5a belongs to the Wnt-secreted glycoprotein family 

and is a prototypic ligand that activates β-catenin-dependent 

or -independent Wnt signaling to regulate cell migration, 

polarity, proliferation, and survival.38 In addition, Wnt5a 

is known to participate in distal lung morphogenesis, 

with homozygous Wnt5a-knockout mice displaying lethal 

pulmonary dysplasia.39 According to previous reports, 

Wnt5a serves as an activator in lung diseases, particularly 

lung cancer,40 and acts as an important proinflammatory 

mediator in chronic inflammatory diseases, such as metabolic 

disorders, atherosclerosis, rheumatoid arthritis, and other 

conditions.41–43 It has been reported that Wnt5a regulates 

fundamental mechanisms that mediate airway smooth-muscle 

contraction, and thus may be relevant to airway hyper-

responsiveness in asthma.44 Furthermore, Wnt5a impairs 

Wnt/β-catenin mediated alveolar epithelial cell repair, and 

inhibition of Wnt5a in vivo attenuates lung-tissue destruction 

and improves lung function in models of COPD.45 A recent 

study has shown that Wnt5a is upregulated by CSE in tandem 

with inflammatory factors in a model of COPD.46 Our data on 

the impact of smoking/CSE in Wnt5a expression are aligned 

with the aforementioned findings.

The present study is the first to demonstrate that PM
2.5

 

may also induce Wnt5a expression at both transcriptional 

and translational levels in mice and 16HBE cells. Further-

more, we found that expression of Wnt5a was significantly 

enhanced by combined PM
2.5

 and CSE exposure, offering 

further proof that Wnt5a is positively regulated by PM
2.5

/

CSE. Meanwhile, the relationship between Wnt5a and 

inflammation due to expression of inflammatory cytokines 

was also established in our study. The obvious correla-

tion between Wnt5a and IL6/IL8 in both mice and 16HBE 

cells proves that overexpressed Wnt5a is closely related to 

airway inflammation in COPD. Finally, BOX5 (a specific 

Wnt5a antagonist) clearly attenuated the upsurge in proin-

flammatory cytokines induced by PM
2.5

/CSE, suggesting a 

Wnt5a-mediated mechanism by which PM
2.5

/CSE exposure 

upregulates inflammatory cytokines in the context of COPD.

As a canonical inflammatory signaling pathway, phos-

phorylation of ERK is critical in inflammation and innate 

immunity.47 Earlier studies have documented ERK phos-

phorylation in mouse lungs and in human airway epithelial 

cells.48,49 PM
2.5

 likely promotes amphiregulin expression 

through the ERK pathway to sustain proinflammatory 

responses in bronchial epithelial cells.50 In our experiments, 

we observed that ERK phosphorylation was separately 

upregulated by PM
2.5

 and smoking in mice, and likewise 

separately regulated by PM
2.5

 and CSE in 16HBE cells, con-

sistent with previous data, and again, we noted more robust 

activation of ERK by combined exposure.

Some researchers have found that ERK may serve as 

a Wnt5a repressor in gastric cancer cells,51 whereas other 

sources have cited Wnt5a activation of ERK signaling in 

mouse cardiac fibroblasts and in human dental pulp cells.52,53 
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At this juncture, there have been no reports on the relationship 

between Wnt5a and ERK-pathway activation in the setting of 

airway inflammation. The present efforts are the first to docu-

ment that BOX5 administration downregulates phosphoryla-

tion of ERK in 16HBE cells, implicating Wnt5a as a modulator 

of airway inflammation that is induced by PM
2.5

/CSE exposure 

in COPD, at least in part in an ERK-dependent manner.

Limitations
Our study had certain limitations, the first being that in our 

time-consuming animal model, BOX5 (a Wnt5a-derived 

N-butyloxycarbonyl hexapeptide [Met-Asp-Gly-Cys-Glu-

Leu]) was not administered to confirm the effects of Wnt5a 

in animals.54 However, this is precisely our next pursuit. 

In addition, primary bronchial epithelial cells should ideally 

be used for experimental in vitro studies. Because of technical 

limitations and the reality of growth retardation for primary 

cells in culture, we used the human bronchial epithelial cell 

line 16HBE, and cannot exclude the possibility of differences 

due to altered sensitivity.

Conclusion
In the course of this study, we used mice and human cells to 

confirm the role of the Wnt5a–ERK pathway in CSE-induced 

airway inflammation aggravated by PM
2.5

 exposure. PM
2.5

 

appears to enhance Wnt5a expression, which positively regu-

lates secretion of inflammatory cytokines via ERK-pathway 

activation. Moreover, BOX5 (a Wnt5a antagonist) efficiently 

attenuated airway inflammation due to PM
2.5

/CSE through 

Wnt5a–ERK signaling blockade (Figure S5). As such, the pres-

ent study has fully elaborated the relationship between PM
2.5

, 

smoking, and airway inflammation in the course of COPD. 

By exploring the regulatory potential of BOX5 in terms of the 

Wnt5a–ERK pathway, novel therapeutic strategies may emerge 

to combat the inflammation of COPD at a molecular level.
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Figure S1 PM2.5 aggravated smoking-induced inflammatory cell infiltration in lungs of mice.
Notes: (A–L) Representative double immunofluorescence–stained lung-tissue sections from control, PM2.5, smoking, and PM2.5 + smoking groups, labeled for Ly6G+ 
neutrophils (red, A–D), CD3+ T lymphocytes (green, E–H), and composite images (I–L; original magnification 400×, bar 50 μm), using DAPI nuclear counterstain (blue).
Abbreviation: PM2.5, particulate matter #2.5 μm.

Figure S2 PM2.5 aggravated smoking-induced hyperplasia of alveolar epithelial cells and small-airway epithelia in lungs of mice.
Note: (A–D) Representative immunohistochemistry-stained lung sections from control, PM2.5, smoking, and PM2.5 + smoking group, labeled for PCNA (brown, original 
magnification 200×, bar 50 μm).
Abbreviation: PM2.5, particulate matter #2.5 μm.
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Figure S3 Correlation between levels of Wnt5a and inflammatory factors (IL6 and IL8) in mice and 16HBE cells.
Notes: (A, B) Correlation between levels of Wnt5a and IL6/IL8 in mice (n=5 mice/group); (C, D) correlation between levels of Wnt5a and IL6/IL8 in 16HBE cells. Data 
represent the relative mRNA expressions of Wnt5a and inflammatory factors in mice or cells. Pearson or Spearman analysis was used to calculate correlation (R)- and P-values.
Abbreviations: PM2.5, particulate matter #2.5 μm; 16HBE, 16 human bronchial epithelial cells.

Figure S4 Expression levels of Wnt5a analyzed by Western blot.
Notes: (A, B) Cells preincubated with BOX5 (200 μM) or vehicle (PBS) for 1 hour, then exposed or unexposed to PM2.5 (100 μg/mL) + CSE (10%) for 24 hours (qualitative 
and quantitative Western blot, β-actin as loading control). Data expressed as mean ± SD. *P,0.05; **P,0.01.
Abbreviations: PM2.5, particulate matter #2.5 μm; CSE, cigarette-smoke extract.
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Figure S5 Wnt5a in regulation of airway inflammation induced by PM2.5 and smoking/CSE.
Abbreviations: PM2.5, particulate matter #2.5 μm; CSE, cigarette-smoke extract.
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