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Abstract: Postprandial hyperglycemia in type 2 diabetes is characterized by impaired insulin 

secretion and action, decreased glucose effectiveness and defective suppression of glucagon 

secretion. Newly available therapies for type 2 diabetes target the pathway of the incretin hormone 

glucagon-like peptide-1 (GLP-1). Oral inhibitors of dipeptidyl peptidase-4 (DPP-4) raise the 

level of endogenous GLP-1 by inhibiting its clearance thereby lowering fasting and postprandial 

glucose concentrations. Unlike compounds which act as agonists of the GLP-1 receptor, DPP-4 

inhibitors are not associated with significant effects on gastrointestinal motility, which led to 

a controversy around the mechanisms responsible for their glucose-lowering effects. Here we 

review the evidence in regards to the mechanisms whereby DPP-4 inhibitors lower glucose 

concentrations. Their effects are most likely mediated by an increase in endogenous GLP-1, 

although additional mechanisms may be involved. The pharmacology, efficacy and safety of 

vildagliptin, a novel DPP-4 inhibitor, are also discussed.
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Introduction
Of the 20.8 million Americans with diabetes, 90%–95% have type 2 diabetes. This 

disorder is primarily characterized by defective insulin secretion and action. Other 

mechanisms that contribute to postprandial hyperglycemia in patients with type 2 

diabetes are an impaired ability of glucose to stimulate its own uptake and suppress its 

own production (glucose effectiveness), defective suppression of glucagon secretion 

and possibly altered gastric motility.

Incretins are gut hormones that amplify insulin release in response to an oral 

glucose load. They include glucagon-like peptide (GLP-1) and glucose-dependent 

insulinotropic polypeptide (GIP). Altered meal-stimulated GLP-1 secretion has 

been reported in people with type 2 diabetes. There is significant heterogeneity in 

these reports, with some studies showing 15%–20% impairment in GLP-1 secretion 

in patients with type 2 diabetes1–5 and others showing enhanced secretion6 or no 

difference in secretion.7 The role of GLP-1 in the pathogenesis of type 2 diabetes 

remains controversial. GLP-1 secretion was found to be reduced in subjects with 

impaired glucose tolerance as well as people with impaired fasting glucose, suggesting 

abnormalities of incretin secretion may be present early in pre-diabetes.8 The precise 

role that the alterations in GLP-1 secretion play in the pathogenesis of pre-diabetes 

and diabetes is at present uncertain.

Regardless of whether endogenous incretin secretion is altered, acute exogenous 

GLP-1 administration increases insulin secretion,9 inhibits glucagon release10 and delays 
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gastric emptying,11 all of which result in a glucose-lowering 

effect. Interestingly, pharmacologic doses of exogenous GIP 

have not demonstrated the same insulinotropic potency and 

tend to result in negligible glucose-lowering in people with 

type 2 diabetes.12

The short half-life of GLP-1, due to its rapid degradation 

by the ubiquitous dipeptidyl peptidase-4 (DPP-4) enzyme, 

would require the hormone to be infused continuously to 

achieve therapeutic effect. This limitation to the therapeutic 

use of GLP-1 has been circumvented by the development of 

GLP-1 receptor agonists, resistant to the action of DPP-4, and 

of compounds that inhibit DPP-4, thereby raising endogenous 

concentrations of active GLP-1 and GIP (and perhaps 

other substrates of DPP-4). The arrival of incretin-based 

pharmacotherapy has been heralded by exenatide (a GLP-1 

receptor agonist) and sitagliptin (a DDP-4 inhibitor) both 

US Food and Drug Administration (FDA)-approved for 

the treatment of type 2 diabetes. Other compounds such as 

liraglutide, another GLP-1 receptor agonist and vildagliptin, a 

DPP-4 inhibitor, are expected to become available for clinical 

use in the near future.

Mechanisms of action
Endogenous GLP-1 and GIP are produced by L- and K-cells 

respectively, dispersed in intestinal mucosa. Both GLP-1 

and GIP are physiological substrates for DPP-4, which 

exists both as a cell surface-enzyme present on numerous 

cell types including kidney, enterocytes, hepatocytes, and 

endothelial cells, and as a soluble form in the circulation. 

The importance of DPP-4 in incretin inactivation in vivo was 

established in animal studies where peptide infusions into 

DPP-4 deficient rats resulted in reduced cleavage of intact 

GLP-1 (7–36) amide and GIP (1–42) to metabolites GLP-1 

(9–36) amide and GIP (3–42).13 Human studies confirmed 

that DPP-4 is a principal determinant of circulating half-life 

of GLP-1 and GIP in both normal and subjects with type 2 

diabetes.14,15

Other peptides and chemokines may also be subject to 

cleavage by DPP-4 if they contain alanine or proline at the 

second N-terminal position. Potential substrates include 

substance P, neuropeptide Y, peptide YY, and growth 

hormone-releasing hormone (GHRH). While these may be 

pharmacologic substrates, there is limited evidence that they 

are in fact physiologic substrates, where DPP-4 activity leads 

to biologically significant alterations in the endogenous levels 

of these substances (other than perhaps PYY).16

Its physiologic role in inactivating GLP-1 makes DPP-4 

enzyme a therapeutic target. Animal data suggests significant 

metabolic benefits of DPP-4 inhibition. Mice lacking DPP-4 

entirely were found to be resistant to high-fat diet- induced 

obesity and have lower insulin concentrations with a greater 

glucose-lowering efficacy.17 Diabetic rat models treated with 

a variety of DPP-4 inhibitors demonstrated improved glucose 

tolerance, insulin sensitivity and improved hyperinsulinemia 

in a series of studies.18–21 Islet histology in mice treated with 

DPP-4 inhibitors followed by streptozotocin revealed greater 

β-cell mass suggesting improved β-cell survival.22,23

Human studies show significantly lower fasting and 

post-prandial glucose values in people with type 2 diabetes 

treated with DPP-4 inhibitors compared to placebo-

treated subjects.24–26 DPP-4 inhibitors produce this effect 

by increasing insulin secretion and lowering glucagon 

concentrations. In studies where DDP-4 inhibitors were 

administered over the course of several days or weeks, 

glucose levels were lower but fasting insulin concentrations, 

insulin concentrations after meal ingestion and C-peptide 

concentrations were found to be unaltered.24–26 This implies 

that insulin secretion for a given glucose concentration is 

increased, indicating an improvement of β-cell function. 

Physiologic modeling of postprandial glucose, insulin and 

C-peptide revealed a 50% increase in the insulin secretion 

response to ambient glucose after six weeks of treatment with 

vildagliptin.25 Similar results were obtained with modeling 

β-cell responsivity after a single dose of vildagliptin27 and 

10 days of treatment with vildagliptin.28

The effect of DPP-4 inhibition on islet α-cells may be 

just as important as the effect on β-cells in improving both 

fasting and postprandial glycemia. Most studies have shown 

a decrease in meal-stimulated glucagon concentrations in 

patients treated with DPP-4 inhibitors.24–29 The effect may 

persist well beyond the immediate post-prandial period, 

lasting as long as 12 hours.27 Subjects with a more marked 

reduction in the glucagon response to meal ingestion seemed 

to have the largest reduction in glucose.25,26

Lower glucagon concentrations result in a decreased 

rate of endogenous glucose production (EGP) after a 

meal. In a single-dose administration study of vildagliptin 

which used a double tracer method, EGP suppression was 

statistically greater within 60 minutes of meal ingestion in 

vildagliptin-treated subjects compared to a placebo. The 

difference became progressively larger with time: EGP was 

25% lower within four hours and 59% lower at 14 hours 

post-meal.27 The enhanced suppression of EGP was noted 

to correlate with the increment in insulin to glucagon ratio. 

Similar findings of a reduction in post-prandial endogenous 

glucose level were made in a study where participants were 
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treated with vildagliptin for six weeks.26 In our own study 

of vildagliptin administration to people with type 2 diabetes 

for 10 days, we did not observe a statistically significant 

difference in either fasting or post-prandial EGP.24 However, 

since glucose itself stimulates its own uptake and decreases 

glucagon production, comparable rates of endogenous 

glucose production at a lower plasma glucose level in the 

vildagliptin group, suggests that there is a net suppressive 

effect of vildagliptin on EGP.

The mechanism by which DPP-4 inhibition results in 

a lower glucagon secretion has not been established. One 

possibility is a direct inhibitory effect of GLP-1 on the α-cells. 

However, a study where glucagon levels were measured 

during a hypoglycemic clamp showed a 38% increase 

in glucagon response to hypoglycemia in vildagliptin-

treated subjects compared to the placebo group.30 In this 

same group of subjects, a standard meal resulted in a 41% 

decrease in postprandial glucagon compared to placebo. 

This suggests that DPP-4 inhibition produces an increased 

responsiveness of α-cells, rather than a unilateral inhibitory 

effect. An intriguing possibility is that the α-cells are more 

responsive to insulin in the presence of DPP-4 inhibition. In 

subjects receiving vildagliptin, intravenous administration of 

insulin five hours post-meal ingestion resulted in a marked 

suppression of glucagon to a nadir, which was not seen in 

the presence of placebo.28

It has also been proposed that DPP-4 inhibition alters 

insulin action and glucose effectiveness. Some31,32 but not 

all studies33 have shown increased glucose effectiveness 

when GLP-1 is administered in pharmacologic doses. 

Therefore, it is not an unreasonable expectation that similar 

effects may be seen with DPP-4 inhibition which increases 

endogenous levels of GLP-1. However, we observed no 

change in glucose effectiveness and insulin action after 

10 days of treatment with vildagliptin.28 In the same study, 

the glucose-lowering effects of exogenously-administered 

insulin (a model-independent measure of insulin action) 

was unchanged by vildagliptin. In contrast, a study where 

subjects were treated with vildagliptin for six weeks and a 

euglycemic hyperinsulinemic clamp was used to measure 

insulin-stimulated systemic glucose utilization, found the 

latter to be slightly but significantly higher with vildagliptin 

treatment.26 This however may be a reflection of decreased 

glucotoxicity and lipotoxicity associated with a longer 

duration of DPP-4 inhibitor therapy. In another short-term 

study, where a single dose of vildagliptin was administered, 

there was no improvement in glucose disposal,27 which is 

consistent with our findings.

Unlike GLP-1 and exenatide which delay gastric emptying 

when administered in pharmacologic doses, DPP-4 inhibition 

has little effect on gastrointestinal motility. Our study of 

people with type 2 diabetes treated with vildagliptin did not 

show a difference in gastric emptying,24 gastric volume or 

satiation.34 This is congruent with the observation that unlike 

the GLP-1 analogue exenatide, the DPP-4-inhibitors do not 

increase the frequency of gastrointestinal side-effects such 

as prandial fullness, nausea or vomiting.

The absence of effect of DPP-4 inhibition on gastric 

emptying raises the question whether all therapeutic actions 

of DPP-4 inhibitors are mediated by GLP-1. Indeed, there 

has been some controversy with regards to the mode of 

action of  DPP-4 inhibitors.35,36 Although all studies of  DPP-4 

inhibition demonstrate an increase in the level of circulating 

GLP-1, the magnitude of this change is arguably small.35 

The infusion of an equivalent amount of GLP-1 has little 

insulinotropic activity in healthy subjects and subjects 

with type 2 diabetes.37 However, GLP-1 concentration in 

the systemic circulation may be of a lesser physiologic 

relevance than the portal circulation concentrations and the 

local concentration in the lamina propria of gastrointestinal 

mucosa. Higher local and portal concentrations of GLP-1 

may activate afferent sensory nerves of the gut leading to 

increased vagal stimulatory activity to the pancreas.36 The 

potential role of this neural pathway is suggested by the 

finding of GLP-1 receptor expression in the nodose ganglion 

cells,38 as well as by an increase in vagal trunk activity seen 

after intraportal administration of GLP-1.39

The same parasympathetic nervous activation mechanism 

may explain the absence of effects of DPP-4 inhibitors on 

gastrointestinal motility. In a study during which GLP-1 

was infused intravenously in people with type 2 diabetes, 

glucose-lowering was observed with all doses, but gastric 

emptying was inhibited in a dose-dependent manner.40 This 

suggests that higher GLP-1 concentrations may be needed 

to produce effects on the afferent sensory neuron receptors 

of the gastrointestinal tract that result in slowing of intestinal 

motility.

Since DPP-4 inhibitors are weight-neutral and have no 

significant gastrointestinal effects it has been suggested 

that this may be explained by altered concentrations of 

peptides other than GLP-1, particularly NPY and PYY. 

NPY is an abundant neuropeptide in the central and 

peripheral nervous system, involved in the control of 

feeding and energy homeostasis. PYY is produced by 

endocrine cells of the small intestine and colon in response 

to a meal and has several inhibitory functions. Both are 
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substrates of DPP-4 enzyme and their truncation by the 

enzyme reduces their activity on Y1 receptor located in 

the cerebral cortex while preserving agonist activity on 

Y2 and Y5 receptors.41

In contrast, studies in mice with combined genetic 

disruption of both GIP and GLP-1 receptors (double incretin 

receptor knockout) DIRKO mice provide evidence that GIP 

and GLP-1 are the principle peptides responsible for the 

glucose-lowering effects of DPP-4 inhibitors. When these mice 

were treated with vildagliptin for eight weeks, there was no 

improvement in insulin secretion and no lowering of blood 

glucose, whereas these effects were present in the wild-type 

control group.42 Other DPP-4 inhibitors were similarly 

ineffective in lowering blood glucose after an oral glucose 

challenge in DIRKO mice.43

In summary, it seems that DPP-4 inhibitors lower glucose 

concentrations through their effects on insulin and glucagon 

secretion. There is no consistent evidence that they improve 

insulin action or glucose effectiveness. Gastric emptying 

is not inhibited. These effects are most likely mediated 

by an increase in endogenous GLP-1, although additional 

mechanisms may be involved.

Pharmacology
The pharmacokinetics of vildagliptin have been studied in 

healthy subjects and people with type 2 diabetes.44,45 Oral 

doses of 25–100 mg administered once or twice daily were 

used. Vildagliptin is rapidly absorbed and is not subject 

to significant first-pass metabolism, resulting in 85% oral 

bioavailability.44 Administration of vildagliptin with food 

has no clinically relevant effect on bioavailability.46 Maximal 

concentration occurs one hour after administration regardless 

of the dose. Its elimination half-life in plasma is short 

(average 2.8 hrs), yet its effects on DPP-4 inhibition are long-

lasting with 86% and 95% 24-hour inhibitory effect at 25 mg 

twice daily and 100 mg twice daily doses, respectively.45 

This is likely related to the extensive distribution of the 

drug into the tissue: the volume of distribution in the steady 

state is 71 L.47

Vildagliptin undergoes hydrolysis in the liver, with a 

smaller (20%) contribution from the DPP-4 enzyme itself.44 

The principle hydrolysis reaction yields the major carboxylic 

metabolite which is inactive. This does not involve the p450 

system, making the potential for drug–drug interactions low. 

When vildagliptin was studied specifically in combination 

with commonly used antihypertensive medications 

(amlodipine, valsartan, and ramipril) no significant 

interactions were found.48 Final elimination of vildaglipitin 

metabolites is via the kidney, where one third of the drug is 

excreted in an unchanged form.44

Efficacy
A number of studies investigated the efficacy of vildagliptin in 

the treatment of drug-naïve patients with type 2 diabetes.49–54 

Mostly, these were six months in duration, with several 

studies spanning more than 12 months.49,50,52 Total doses of 

50 mg or 100 mg daily were used, administered on a once 

or twice daily schedule. Hemoglobin A
1C

 (HbA
1C

) reduction 

from baseline ranged from 0.2 to 1.4%. The reduction was 

greatest in patients with a higher baseline HbA
1C

. Thus, in 

a 52-week trial of vildagliptin at a 50 mg daily dose where 

patients had a baseline HbA
1C

 of 6.7, there was only a 0.2% 

reduction in HbA
1C

 from baseline.49 However, in trials where 

baseline HbA
1C

 was higher, greater effect of vildagliptin on 

HbA
1C

 was observed. For example, in the trial comparing 

vildagliptin to metformin as initial monotherapy for type 2 

diabetes, there was a 1.0% reduction from a baseline HbA
1C

 

of  8.7% achieved on vildagliptin 100 mg daily.52 Similarly, a 

trial comparing acarbose to vildagliptin 50 mg twice daily as 

initial therapy in drug-naïve patients with a baseline HbA
1C

 

of 8.6%, a reduction of 1.4% was seen.55

In determining the potential therapeutic niche of vildagliptin, 

a number of questions arise. Will vildagliptin become a first-

line agent in the treatment of type 2 diabetes? Metformin, the 

current first-line therapy, has a long, well-established track 

record of efficacy and safety. A 52-week trial comparing met-

formin (1000 mg twice daily) with vildagliptin (50 mg twice 

daily) in drug-naïve patients with type 2 diabetes, showed 

that the reduction in HbA
1C

 was significantly greater in the 

metformin group (1.4% reduction) compared to vildagliptin 

(1.0% reduction).52 Thus, noninferiority of vildagliptin to 

metformin was not established. The superiority of the metfor-

min in reducing HbA
1C

 was primarily driven by the subgroup 

of patients with HbA
1C

  8.0%. In contrast, in patients with 

HbA
1C

  8.0, changes from baseline HbA
1C

 were similar in 

metformin and vildagliptin treatment groups. Metformin also 

led to an average weight loss of approximately 2 kg, whereas 

vildagliptin was weight-neutral. Gastrointestinal side effects 

were twice as prevalent with metformin as with vildagliptin, 

leading to a higher discontinuation rate. Thus, for patients 

unable to tolerate metformin as first-line therapy due to gastro-

intestinal adverse effects, vildagliptin may provide a treatment 

alternative, and for patients with baseline HbA
1C

  8.0% there 

may not be an efficacy trade-off in this substitution.

Does vildagliptin have disease-modifying properties to 

justify its use in preventing the progression of type 2 diabetes? 
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A 56-week extension of a previously mentioned 52-week trial 

of vildaglipitin in drug-naïve subjects with type 2 diabetes49 

proposed that vildagliptin attenuates the progressive deterio-

ration in β-cell function.50 However, the results were modest 

at best. Although HbA
1C

 did not change significantly from 

baseline (6.6% in the vildagliptin-treated subjects) over the 

two-year treatment period; this was primarily driven by the 

treatment effect in the first year. In the second year, HbA
1C

 

increased significantly, albeit this increase was less than in 

the placebo group (0.2% increase for vildagliptin and 0.5% 

for placebo). A four-week washout period at the end of the 

study suggested that the effects on β-cell function and HbA
1C

 

may be maintained. However, the short duration of follow-up 

after the discontinuation of vildagliptin and lack of statistical 

robustness (p = 0.058 for between-group differences in the 

measure of β-cell function after washout) diminish the 

clinical significance of these findings.

Can vildagliptin be safely and effectively added as 

a second treatment agent and what advantages does it offer 

relative to other therapeutic options? A common scenario is 

failure to achieve target HbA
1C

 on metformin monotherapy. 

In these patients, a sulfonylurea or thiazolidinedione is 

commonly added to improve glycemic control. In a 52-week 

trial where patients inadequately controlled on a maximum 

dose of metformin were randomized to receive glimepiride 

(mean dose 4.5 mg daily) or vildagliptin (50 mg twice 

daily), noninferiority of vildagliptin to glimepiride was 

demonstrated.56 Comparable HbA
1C

 reduction was seen in 

both groups (-0.9% in patients with baseline HbA
1C

  8%) 

and a similar proportion of patients (54%–55%) in each 

group achieved HbA
1C

  7%. Notably, in the vildagliptin 

treatment group, a greater proportion of patients achieved 

target HbA
1C

 without hypoglycemia (50.9% vs 44.3% in 

the glimepiride group). In marked contrast to glimepiride 

group, there were no severe hypoglycemic episodes among 

vildagliptin-treated patients and no discontinuation of therapy 

due to hypoglycemia. Another advantage of vildagliptin 

over glimepiride was that the former did not result in a 

weight gain, whereas glimepiride-treated subjects gained 

on average 1.5 kg.

Other possible clinical scenarios include inadequate 

glycemic control on monotherapy with either a sulfonylurea 

or a thiazolidinedione. Studies suggest that the addition 

of vildagliptin to glimepiride or pioglitazone results 

in a significant proportion of patients achieving target 

HbA
1C

  7%.57,58 When added to glimepiride 4 mg daily, 

a 50 mg dose of vildagliptin daily was similar to 100 mg 

daily in efficacy of glycemic control, with 21% of patients 

attaining goal HbA
1C

.57 50 mg dose was associated with no 

weight gain and less hypoglycemia than the 100 mg dose. 

When added to pioglitazone 45 mg daily, 100 mg dose of 

vildagliptin confers an efficacy advantage with 36% of 

patients reaching HbA
1C

 goal compared to 29% of patients 

treated with the 50 mg dose.58 However, this is at the expense 

of an average 1.3 kg weight gain, which was not observed 

at the 50 mg dose. Interestingly, peripheral edema occurred 

more frequently in patients receiving vildagliptin added to 

pioglitazone than those receiving placebo with pioglitazone, 

but the frequency was unrelated to vildagliptin dose.

Addition of vildagliptin to an insulin program was 

examined in a 24-week trial that enrolled patients with a 

mean HbA
1C

 of 8.4, despite taking an average of 82 units of 

insulin daily.59 Vildagliptin 50 mg twice daily added to the 

insulin program produced a reduction of mean HbA
1C

 by 

0.3% relative to the placebo group. The overall effect was 

largely driven by patients older than 65 years who on average 

were taking less insulin (66 units daily). Insulin titration was 

permitted, leading to an increase in the insulin dose in both 

vildagliptin-treated and placebo-treated patients. Between the 

two groups, the difference in the insulin dose increase was 

not statistically significant. Nevertheless, vildagliptin-treated 

subjects experienced approximately 40% fewer hypoglycemic 

episodes and no severe hypoglycemia, leading the authors to 

speculate that DPP-4 inhibition may restore α-cell pancreatic 

function thereby improving counter-regulatory glucagon 

secretion. One theoretically-appealing regimen is to add 

vildagliptin to a 24-hour insulin such as glargine. However, 

at present, clinical trials are needed to examine the efficacy 

of this particular combination regimen.

Patients who may benefit from DPP-4 inhibitors in general 

and vildagliptin in particular are the elderly. Diabetes manage-

ment in this group is complicated by the frequent presence 

of renal impairment and other comorbidities. Efficacy and 

safety data pooled from five trials of vildagliptin that included 

subjects older than 65 years, suggests that vildagliptin is 

effective at lowering HbA
1C

 in this population and may in 

fact lead to a greater decrease in fasting plasma glucose and 

a small, but statistically significant weight loss.60 There was 

no increase in drug-related adverse effects among the elderly 

when compared to younger patients, even though two-thirds 

of the older patients had a mildly impaired renal function. 

Overall rates of hypoglycemia were low (0.4%) and all the 

episodes were mild in severity. Thus, vildagliptin represents 

a promising option in the diabetes management of the older 

patients, but more dedicated long-term studies of this particu-

lar population are needed.
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Safety and tolerability
In the efficacy trials previously described, vildagliptin was 

generally well tolerated. Incidence of hypoglycemia was 

low and the hypoglycemic episodes that occurred were mild. 

Notably, when used in combination with insulin, vildagliptin 

resulted in a significant reduction in the frequency of 

hypoglycemic events compared to the combination of 

insulin and placebo.59 Effects on bodyweight were neutral 

and not statistically different from placebo. Gastrointestinal 

effects such as diarrhea, nausea, and abdominal pain were 

at least two-fold less frequent with vildagliptin than with 

metformin.52

A meta-analysis that combined available data for 

vildagliptin and sitagliptin found an increased risk of 

nasopharyngitis (risk ratio 1.0–1.4), urinary tract infection 

(risk ratio 1.0–2.2), and headache (risk ratio 1.1–1.7).61 

An increased risk of headache was more evident with 

vildagliptin. Notably, gastrointestinal side effects were not 

increased relative to placebo.

The small increase in the risk of infection, although 

not statistically significant across all studies, may reflect 

the role of the DPP-4 enzyme in the regulation of immune 

function. Animal models suggest DPP-4 is important in 

the maintenance of the appropriate ratio of CD4+ T cells 

to natural killer cells in the spleen and in the circulation.62 

Several chemokines that attract monocytes, lymphocytes, 

and natural killer cells are potential substrates for DPP-4.63 

Cleavage by DPP-4 could activate chemokines and alter 

immune signaling, and DPP-4 inhibition may theoretically 

impair chemotaxis and result in an increased susceptibility 

to infection.

Conclusions
DPP-4 inhibitors are members of a relatively new class of 

pharmacotherapy for type 2 diabetes. They improve glycemic 

control by enhancing β-cell responsiveness to ambient 

glucose and lowering post-prandial levels of glucagon. These 

effects are primarily mediated by decreased GLP-1 clearance 

resulting in higher concentrations of GLP-1, especially 

in the portal circulation. Other potential mechanisms of 

action are currently the subject of investigation. DPP-4 

inhibitors effectively reduce HbA
1C

 with a low incidence 

of hypoglycemia. Other features include weight neutrality, 

infrequent gastrointestinal side effects and safety even 

when renal impairment is present. These attributes could 

make these agents particularly useful in the treatment of 

elderly patients. Long-term outcome studies with a focus 

on micro- and macrovascular complications are needed to 

further define the role of DPP-4 inhibitors in the treatment 

of type 2 diabetes.
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