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Background: Data derived from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions 

(CORAL) study were analyzed in an effort to employ machine learning methods to predict the 

composite endpoint described in the original study.

Methods: We identified 573 CORAL subjects with complete baseline data and the presence or 

absence of a composite endpoint for the study. These data were subjected to several models including 

a generalized linear (logistic-linear) model, support vector machine, decision tree, feed-forward 

neural network, and random forest, in an effort to attempt to predict the composite endpoint. The 

subjects were arbitrarily divided into training and testing subsets according to an 80%:20% dis-

tribution with various seeds. Prediction models were optimized within the CARET package of R.

Results: The best performance of the different machine learning techniques was that of the 

random forest method which yielded a receiver operator curve (ROC) area of 68.1%±4.2% 

(mean ± SD) on the testing subset with ten different seed values used to separate training and 

testing subsets. The four most important variables in the random forest method were SBP, serum 

creatinine, glycosylated hemoglobin, and DBP. Each of these variables was also important in 

at least some of the other methods. The treatment assignment group was not consistently an 

important determinant in any of the models.

Conclusion: Prediction of a composite cardiovascular outcome was difficult in the CORAL 

population, even when employing machine learning methods. Assignment to either the stenting 

or best medical therapy group did not serve as an important predictor of composite outcome.

Clinical Trial Registration: ClinicalTrials.gov, NCT00081731

Keywords: chronic kidney disease, cardiovascular disease, glomerular filtration rate, hyperten-

sion, ischemic renal disease, renal artery stenosis

Introduction
We have known for some time that atherosclerotic renal artery stenosis (ARAS) increases 

the risk of kidney function decline leading to chronic kidney disease (CKD), cardio-

vascular disease, and death.1–3 However, the effect of renal artery revascularization by 

stenting on renal and cardiovascular outcomes is inconsistent. Specifically, two large 

randomized controlled trials, namely the ASTRAL and Cardiovascular Outcomes in 

Renal Atherosclerotic Lesions (CORAL) studies, have demonstrated virtually identical 

outcomes in patients treated with medical therapy alone or medical therapy plus stenting.4,5 

That said, it is very clear that patients may have very different responses to renal artery 

stenting, leading many clinicians to believe that prediction of responses to renal artery 

stenting may be possible. One of the challenges for the completion of the CORAL study 
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was the difficulty of convincing physicians at participating 

centers that there was, in fact, equipoise regarding the utility 

of stenting across the varied clinical presentations of ARAS. 

While convincing the physicians of equipoise was difficult, 

careful analysis of the CORAL data set to date has not yielded 

clinical scenarios where medical therapy plus stenting was 

either markedly better or worse than medical therapy alone.

On this background, there are a number of machine 

learning methods which can be applied to clinical data sets. 

A few studies have recently reported on the utility of these 

methods for predicting renal outcomes in the classic MDRD 

study.6 To the best of our knowledge, neither CORAL nor 

ASTRAL data sets have been analyzed with machine learn-

ing approaches. With the idea that these machine learning 

methods might discern patterns which are opaque to routine 

clinical judgment, the following reanalysis of the CORAL 

data set was undertaken.

Methods
CORAL trial
CORAL is a prospective, international, multicenter clinical 

trial that randomly assigned 931 participants with ARAS who 

received optimal medical therapy to stenting vs no stenting. 

Enrollment began on May 16, 2005 and concluded on January 

30, 2012 with follow-up until September 28, 2012, at which 

time study objectives were accomplished and statistical power 

was sufficient for the primary trial outcome analyses. The 

study protocol adhered to the principles of the Declaration of 

Helsinki and was approved by the institutional review boards 

(IRBs) or the ethics committees at each participating site. A 

list of these IRBs can be found in the IRB supplement. All 

participating subjects provided written informed consent. 

Participants with ARAS were randomized in a 1:1 ratio to 

medical therapy plus stenting or medical therapy alone. Nei-

ther participants nor the investigators or the study coordina-

tors were blinded to group assignment. Both groups received 

anti hypertensive therapy with a stepwise approach to achieve 

the blood pressure target, starting with an angiotensin recep-

tor blocker or an angiotensin-converting-enzyme inhibitor.

The primary endpoint for CORAL, as well as for the 

current study, was the first occurrence of a major cardiovas-

cular or renal event – this was a composite of death from 

cardiovascular or renal causes, stroke, myocardial infarction, 

hospitalization for congestive heart failure, progressive renal 

insufficiency or need for renal replacement therapy. Detailed 

study entry criteria and main outcomes of this trial have been 

published.5 Patients with renal artery stenosis of at least 60% 

were eligible if they had hypertension while receiving two or 

more antihypertensive agents or had an estimated glomerular 

filtration rate (eGFR) <60 mL/min/1.73 m2. Angiograms were 

analyzed for verification of stenosis by the Angiography Core 

Lab for the study at the University of Virginia.

Statistical analyses
All analysis was performed using the open source program 

R.7 Although 931 patients were present in the initial data 

set, many of these patients had missing values (especially 

baseline laboratory values). The data were cleaned by exclud-

ing variables with large numbers of missing values (>40% 

missing values). Variables with more moderate amounts of 

missing values that had numeric data had the average value 

placed into missing value categories (<20% missing values). 

Missing non-numerical data (eg, race, gender, smoking) 

caused us to drop the subjects from further analysis. Analysis 

of 573 subjects with complete records was then performed. 

The R code was employed to clean these data as shown in 

Supplementary material 1. Parameters used for subsequent 

analysis are shown in Box 1. Before analyzing the data set 

without missing values, multiple methods of imputation for 

both missing categorical and continuous data were employed 

and yielded results were similar to the results of analysis of 

the cleansed data (data not shown).

Logistic regression and support vector 
machine
We used a generalized linear (logistic regression) model our 

default8 using only baseline variables for the prediction of 

composite endpoint outcomes. In addition, we examined the 

utility of a support vector machine (SVM) which involves 

the multidimensional sorting of data based on the develop-

ment of a hyperplane which best segregates the two classes.8 

Using the CARET package,9 we employed two tuning 

parameters to control the performance of the SVM: kernel 

and C. Kernel is a complex function, which takes input from 

a lower dimension and transforms it to a higher dimension, 

and is useful in a nonlinear separation problem. We used the 

radial kernel option from the CARET package. When radial 

kernel is applied, one additional parameter, Sigma, needs 

to be specified, since higher values of Sigma tend to cause 

an over-fitting problem. The second tuning parameter used 

was C, which is a regularization parameter and specifies the 

penalty for misclassification. Larger values of C indicate a 

larger misclassification penalty, and thus, the optimization 

will choose a hyperplane that separates cases with as small 

a margin of misclassification as possible. Alternatively, a 

smaller value of C would yield a larger-margin separating 
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Box 1 Data used for predictive models.

“Age.at.Enrollment” – age of subject
“Angina Yes/No” – presence of angina by history
“AntiPlatelet.Any.Baseline Yes/No” – use of antiplatelet agents at 
baseline
“Baseline.Systolic.BP” – systolic BP at baseline
“Baseline.Diastolic.BP – diastolic BP at baseline
“BMI” – body mass index
“CKD_EPI.Cystatin.C.GFR.Baseline” – estimation of glomerular 
filtration
Rate with formula including serum creatinine and cystatin C conc.
“CHF Yes/No” – heart failure by history
“CHOL” – plasma cholesterol
“Creatinine.Baseline”- serum creatinine concentration at baseline
“Cystatin.C.Baseline” – serum cystatin C concentration at baseline
“Diabetes.Mellitus.HCRI Yes/No” – presence of diabetes based on 
HCRI criteria
“GenderMale” – male gender
“HBA1C” – percent of glycosylated hemoglobin
“Height..ins.” – height in ft./in.
“Hb” – blood hemoglobin concentration
“HDL” – high-density lipoprotein

“HTN.Total.Meds.Baseline” – number of antihypertensive meds at 
baseline
“Hyperlipidemia Yes/No” – presence of hyperlipidemia at baseline
“LDLC” – low-density lipoprotein cholesterol
“MI Yes/No” – history of MI by history
“Potassium.Baseline” – serum potassium concentration at baseline
“Premature.Art.Dz Yes/No” – whether patient had accelerated 
vascular disease
“Protein” – urinary protein concentration at baseline
“PVD Yes/No” – presence of peripheral vascular disease
Race – Ethnicity
“RaceAsian”
“RaceBlack or African American” “RaceNative Pacific Islander” 
“RaceWhite” “Hispanic-.-Latino”
“Smoking Yes/No” – presence of smoking at baseline
“TIA...Stroke Yes/No” – history of either a transient ischemic episode 
or a cerebrovascular accident
“Total.Meds.Overall.Baseline” – total number of medications at 
baseline
“Treatment_Assignment – medical or stenting assignment
“Weight..lbs.” – weight in lbs.

Abbreviations: MI, myocardial infarction; MI, myocardial infarction; CKD, chronic kidney disease; conc., concentration; HCRI, Harvard Clinical Research Institute.

hyperplane, even if it misclassifies more points compared 

with smaller-margin hyperplane. The best combination of 

C and Sigma values is determined using cross-validation.10 

Sigma and C values were optimized within the CARET pack-

age, and values of 1e-3 and 32 were used thereafter.

Random forest
The third method we applied is the random forest, which 

employs decision trees to construct a predictive model using 

a set of binary rules applied to calculate a target value.11 It 

can be used for both classification and regression. The deci-

sion tree approach utilized three or more nodes. Random 

forest uses a tree-based resembling method for reducing bias 

and combines (average) the results from many decision tree 

models obtained by bootstrap samples. There are two tuning 

parameters for the random forest: the number of trees (ntree) 

we would like to average and the number of variables (mtry) 

randomly sampled as candidates at each split in each tree. 

We examined the performance of decision trees with the 

RPART package and random forests with the randomForest 

package.12,13 With the random forest technique, ntree was set 

at 1,000 and mtry was optimized at 9.

Neural network
We also tried a feed-forward neural network.14 Neural 

network passes information through multiple layers of 

processors. Similarly, neural network takes input from the 

data forming the bottom layer, processes it through multiple 

neurons from multiple hidden layers, and returns the result 

forming the top layer. The outputs of nodes in one layer are 

inputs to the next layer where the inputs to each node are 

combined using a weighted linear combination. Three tuning 

parameters are needed: one is the number of hidden layers, 

the second one is the number of nodes in each hidden layer, 

and the third one is the decay parameter. The decay param-

eter restricts the weighting from being too large. Different 

feed-forward neural network architectures were explored 

using the nnet and neuralnet packages.15 We found optimal 

performance with one hidden layer containing nine hidden 

neurons with a decay value of 0.24 after initial exploration.

Model comparisons
The CARET package was used for comparison of the mature 

models employing ten folds and three repeats.9,16 Other pack-

ages within R were used for different specific tasks (eg, nnet 

for construction of the neural network and random forest 

[randomForest] for constructing random forests).7,11,15–24 All 

numerical data were centered and scaled prior to analysis with 

all of the above methods. The R code used for these analyses 

is shown in Supplementary material 2.

Training and test sets
In the first phase, we varied the tuning parameters on a train-

ing subset with the CARET package. For all analyses, three 
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repeats of the ten folds were used. For the SVM, the Sigma 

and C values were varied from 0.1 to 1. Once these parameters 

were optimized for the different methods, we used different 

seed values to split the training and testing sets (80% train-

ing:20% testing). We then employed the strategy of three 

repeats of the ten-folds with CARET on the different training 

subsets achieved, varying the seed to initiate randomization to 

divide the set into training and testing subsets. Areas under the 

curve for the receiver operator curve (ROC) were improved 

by ~5%–7% by the inclusion of these baseline laboratory 

values (data not shown).

Statistical comparisons of ROC values determined with 

ten different seed values for splitting training and testing sets 

were performed on data obtained both with the training and 

testing sets. The overall data sets were compared with one-

way ANOVA and individual group means compared using 

unpaired t-test with Holm–Sidak correction for multiple 

comparisons.7

Results
The results of the training and testing subsets are shown in 

Table 1. Although the methodologies were quite different, it 

was clear that all the machine learning methods except the 

simple decision tree yielded very similar ROC areas and 

accuracy values. A comparison of the ROC curves from one 

analysis which illustrates this is shown in Figure 1.

Representative confusion matrices are shown in Table 2. 

Clearly, the SVM method was very much slanted toward 

negative values. Balancing the training set with outcomes 

avoided that solution which approached the trivial, but did 

not improve overall accuracy (data not shown). The other 

methods yielded more balanced results with training set 

chosen randomly. The balance between sensitivity and 

specificity was probably the best with the neural network 

model (Table 2), although the random forest method 

yielded the highest accuracy in most of the simulations 

(Table 1).

Examining the factors emphasized by the machine learn-

ing methods, it is worthwhile to note that, while different mea-

surements were emphasized by the different techniques, the 

treatment assignment was not considered a strong predictor 

by any model (Table 3). This supports the overall conclusion 

of the CORAL study that stenting did not add materially to 

medical therapy in the avoidance of composite cardiovascular 

outcomes in ARAS. In contrast, the baseline SBP as well 

as estimates of renal function appeared to be consistently 

featured by the different models as top predictors of adverse 

outcomes. This is also consistent with the CORAL findings 

that, although the treatment groups were similar at baseline 

with regard to SBP and measures of renal function, higher 

SBP and lower eGFR were prevalent in subjects who experi-

enced a composite endpoint event. While there may be some 

correlation among estimates of renal function, creatinine was 

consistently chosen as a top predictor of adverse outcomes by 

the models, while eGFR, based on the CKD-epidemiology 

collaboration cystatin C equation, was selected by only one 

model as the fourth in importance.

Discussion
We attempted to apply machine learning methods to develop 

a strategy for predicting outcomes in atherosclerotic renal 

artery disease. The CORAL data set was used as the substrate 

for these methods.

Although we found that some classification methods out-

performed others, the results were somewhat disappointing 

with ROC values generally <0.7. We would emphasize that 

these results were somewhat inferior to what we saw when 

a similar suite of machine learning methods were applied 

to the modification of diet in renal disease (MDRD) data 

set. Although the MDRD data set was somewhat larger, we 

expect that the clinical course of the subjects studied in the 

MDRD (patients with advanced CKD) was somewhat easier 

Table 1 ROC values achieved with training and testing sets

Method ROC (training), % ROC (testing), %

GLM 62.8±1.3 62.7±3.7
SVM 63.1±1.3 65.3±4.1
RPART 52.4±1.5 53.0±1.2
nnet 59.8±1.7 63.1±3.2
RF 67.7±1.9 68.1±4.3
Statistical comparison of training ROC

GLM nnet RF RPART
nnet <0.01      
RF <0.01 <0.01    
RPART <0.01 <0.01 <0.01  
SVM NS <0.01 <0.01 <0.01
Statistical comparison of testing ROC

GLM nnet RF RPART
nnet NS      
RF <0.01 <0.05    
RPART <0.01 <0.01 <0.01  
SVM NS NS NS <0.01

Notes: Results expressed as mean ± SD of n=10 trials with different seed values 
used to split CORAL data set into training and testing subsets. Statistical comparison 
of both training and testing ROC by ANOVA showed it to be highly significant. 
Comparison of group means using Holm–Sidak correction for multiple comparisons 
shown with significance reported as NS, P<0.05, and P<0.01 levels.
Abbreviations: CORAL, Cardiovascular Outcomes in Renal Atherosclerotic 
Lesions; GLM, generalized linear method; NS, nonsignificant; ROC, receiver operator 
curve; nnet, neural network; RF, random forest; RPART partition; SVM, support vector 
machine.
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Figure 1 Representative ROCs generated with different models with a seed of 2. Red is generalized linear, green the support vector machine, blue the decision tree, orange 
the neural network, and purple the random forest model.
Abbreviation: ROC, receiver operator curve.
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Table 2 Confusion matrices in different models

Method True neg (n) False pos (n) False neg (n) True pos (n) Sens (%) Spec (%) Acc (%)

GLM 68 29 15 14 33 82 65
SVM 81 39 2 4 9 98 67
RPART 72 35 11 8 19 87 63
nnet 60 24 23 19 44 72 63
RF 80 30 3 13 30 96 74

Notes: Results selected from analysis performed with seed 2 chosen to generate training and testing sets. Sens refers to sensitivity at detecting a composite outcome (true 
pos/[true pos + false neg]). Spec refers to specificity at excluding a composite outcome (true neg/[true neg + false pos]), and Acc refers to the accuracy of the assignment. 
Although results are only shown with seed 2, results were very similar with different seeds, varying only by a few percentage points.
Abbreviations: GLM, generalized linear method; neg, negative; pos, positive; nnet, neural network; RF, random forest; RPART partition; SVM, support vector machine.

Table 3 Top four important variables with different models

Method 1 2 3 4

GLM SBP Chol Htn Meds Potassium
SVM SBP Creat Cyst C eGFR
RPART SBP Protein HbA1c Diabetes
nnet LDL TIA DBP Creat
RF SBP Creat HbA1c DBP

Notes: Data derived from seed =2. Similar results with different seeds for all models.
Abbreviations: Chol, cholesterol; Creat, creatinine; eGFR, estimated glomerular 
filtration rate; GLM, generalized linear method; HbA1c, glycated hemoglobin; Htn, 
hypertension; LDL, low-density lipoprotein; nnet, neural network; RF, random forest; 
RPART partition; SVM, support vector machine; TIA, transient ischemic attack.

to predict than that of the CORAL patients.5,6 This showed, 

the random forest approach generally outperformed the 

other methods, with the SVM having particular problems in 

identifying patients who achieved composite endpoints when 

trained with the unbalanced training set. The decision tree 

also performed quite poorly, and we would emphasize that 

this machine learning method most closely mirrors human 

decision making with a limited number of measurements used 

for categorization. This latter point along with the absence 

of the treatment assignment on the top predictor lists sadly 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nephrology and Renovascular Disease 2019:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

54

Chen et al

supports the contention that the prediction of outcomes in 

patients with atherosclerotic renal artery disease based on 

baseline clinical parameters is not trivial, and that stenting 

does not materially affect outcomes in either the overall popu-

lation or any clearly defined subset based on these baseline 

clinical parameters.

In the current analysis, urinary protein derived from the 

baseline urinalysis was used in our machine learning methods 

rather than urinary albumin creatinine ratio as reported by 

Murphy et al,25 as there were fewer missing values. Urinary 

protein was not a consistently important predictor in any of 

the models (Table 3). On this note, SBP and creatinine were 

commonly included as important factors in the models stud-

ied. However, treatment group assignment was not, underlin-

ing the ineffectiveness of stenting to improve outcomes in 

this population.
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detailed on the BioLINCC website.
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Supplementary materials

Supplementary material 1: Data 
import and cleaning
setwd(“C:/Users/shapiroj/Dropbox/Current Stuff/work”)

library(dplyr)

dat <- read.csv(“temp_coral_v3c.

csv”,stringsAsFactors=FALSE,na.string=c(“”,NA,” 

“,”U”,”Unk”))

dim(dat)

dat1 = dat[,!apply(is.na(dat), 2, all)]   # automatically get 

rid of empty cols at the end

dim(dat1)

# get rid of time to event days and make outcome yes or no

k1 = ncol(dat1)-1;k1

colnames(dat1)[k1] <- “output1”

temp = dat1[,k1]

dat1[temp==1,k1] <- “yes”

dat1[temp==0,k1] <- “no”

dat1[,k1] <- factor(dat1[,k1])

dat2 <- dat1[,-ncol(dat1)]    # get rid of last Days.to.Prim.

Endpoint

keep <- (apply(dat2,2,function(x) sum(is.na(x))) < 400)

sum(keep)

dat_temp = dat2[,keep]

dat1=dat_temp

# merge the clinical and laboratory data

cc=colnames(dat1)[1]

# add in labs

x1=read.csv(“TG.csv”)

x2=read.csv(“CHOL.csv”)

x3=read.csv(“HBA1C.csv”)

x4=read.csv(“HDL.csv”)

x5=read.csv(“LDL.csv”)

x6=read.csv(“Hb.csv”)

# create final dataset

dat1=full_join(x1,dat1, by=cc, copy=T)

dat1=full_join(x2,dat1, by=cc, copy=T)

dat1=full_join(x3,dat1, by=cc, copy=T)

dat1=full_join(x4,dat1, by=cc, copy=T)

dat1=full_join(x5,dat1, by=cc, copy=T)

dat1=full_join(x6,dat1, by=cc, copy=T)

# clean up memory

rm(x1)

rm(x2)

rm(x3)

rm(x4)

rm(x5)

rm(x6)

# average in missing numerical data to reduce missing 

values

vv=c(2:8,12:14,16:21,26,28)

#

mm=NULL

for(j in 1:length(vv)){

mm[j]=mean(dat1[,vv[j]],na.rm=T)

}

for(i in 1:length(vv)){

dat1[,vv[i]][is.na(dat1[,vv[i]])]=mm[i]

}

#sum(!complete.cases(dat3))

z=dat1[complete.cases(dat1),]

z=z[,-1]

z=z[complete.cases(z),]

Supplementary material 2: 
Some variations used, version to 
determine variable importance as 
well as area under the curve (AUC) 
for receiver operator curve (ROC) 
and confusion matrix generation
library(ROCR)

library(pROC)

library(rpart)

library(caret)

library(nnet)

library(C50)

library(ggplot2)

library(randomForest)

# Could be run as a loop, but to avoid crashing, I ran them 

individually

# kk=NULL

# #run simulations and save data

# kk=c(2,14,25,33,57,61)

sink(“VIP_coral”,append=FALSE)

print(“VIP_coral”)

sink()

# seed value set for 61 below, could have been a loop

kk=61

set.seed(kk)

ind = sample(2, nrow(z), replace = TRUE, prob = c(0.8, 0.2))

trainset = z[ind == 1,]

testset = z[ind == 2,]
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control = trainControl(method = “repeatedcv”, seeds=c(539, 

704, 483, 253,  63, 887, 105,  65,  62, 343, 633, 870, 457, 

422,  53, 189, 605, 628, 950, 781, 981, 284, 498, 198, 822, 

150,  55, 166,  99, 874, 431), number = 10, repeats = 3, 

classProbs = TRUE, summaryFunction = twoClassSummary)

glm.model = train(output1 ~ ., data = trainset, method 

= “glm”, metric = “ROC”, trControl = control, 

preProc=c(“center”,”scale”))

t=varImp(glm.model)

sink(“VIP_coral”,append=TRUE)

print(“glm”)

print(t)

sink()

tunGrid_svm=expand.grid(sigma=1e-3, C=32)

svm.model = train(output1 ~ ., data = trainset, method = 

“svmRadial”,metric = “ROC”, tuneGrid=tunGrid_svm, 

trControl = control, preProc=c(“center”,”scale”))

t=varImp(svm.model)

sink(“VIP_coral”,append=TRUE)

print(“svm”)

print(t)

sink()

rpart.model = train(output1 ~ ., data = trainset, method 

= “rpart”, metric = “ROC”, trControl = control, 

preProc=c(“center”,”scale”))

t=varImp(rpart.model)

sink(“VIP_coral”,append=TRUE)

print(“rpart”)

print(t)

sink()

tunGrid=expand.grid(size=c(9),decay=c(0.24))

nnet.model = train(output1 ~ ., data=trainset, method = 

“nnet”, metric=”ROC”, trace=FALSE, trControl=control, 

tuneGrid=tunGrid, preProc=c(“center”,”scale”))

t=varImp(nnet.model)

sink(“VIP_coral”,append=TRUE)

print(“nnet”)

print(t)

sink()

tunegrid=expand.grid(.mtry=9)

rfor.model = train(output1 ~ ., data=trainset, method = 

“rf ”, metric=”ROC”, trControl=control,tuneGrid=tunegrid, 

preProc=c(“center”,”scale”))

t=varImp(rfor.model)

sink(“VIP_coral”,append=TRUE)

print(“rfor”)

print(t)

sink()

 
# make ROC comparisons

glm.probs = predict(glm.model, testset[,! names(testset) 

%in% c(“output1”)], type = “prob”)

svm.probs = predict(svm.model, testset[,! names(testset) 

%in% c(“output1”)], type = “prob”)

rpart.probs = predict(rpart.model, testset[,! names(testset) 

%in% c(“output1”)], type = “prob”)

nnet.probs=predict(nnet.model,  testset[,! names(testset) 

%in% c(“output1”)], type = “prob”)

rfor.probs=predict(rfor.model,  testset[,! names(testset) 

%in% c(“output1”)], type = “prob”)

windows()

glm.ROC = roc(response = testset[, c(“output1”)], 

predictor = glm.probs $yes, levels = levels(testset[, 

c(“output1”)]))

plot(glm.ROC,add=F, col =” red”)

svm.ROC = roc(response = testset[, c(“output1”)], 

predictor = svm.probs $yes, levels = levels(testset[, 

c(“output1”)]))

plot(svm.ROC, add = TRUE, col =”green”)

rpart.ROC = roc(response = testset[, c(“output1”)], 

predictor = rpart.probs $yes, levels = levels(testset[, 

c(“output1”)]))

plot(rpart.ROC, add = TRUE, col =”blue”)

nnet.ROC=roc(response = testset[, c(“output1”)], predictor 

= nnet.probs $yes, levels = levels(testset[, c(“output1”)]))

plot(nnet.ROC, add = TRUE, col =”orange”)

rfor.ROC=roc(response = testset[, c(“output1”)], predictor 

= rfor.probs $yes, levels = levels(testset[, c(“output1”)]))

plot(rfor.ROC, add = TRUE, col =”purple”)

#make confusion matrix

print(“glm”)

glm.pred=predict(glm.model,testset[,!names(testset)%in% 

c(“output1”)])

t=table(glm.pred,testset[,c(“output1”)])

tt=confusionMatrix(glm.pred,testset[,c(“output1”)])

print(tt)

print(“svm”)

svm.pred=predict(svm.model,testset[,!names(testset)%in% 

c(“output1”)])

t=table(svm.pred,testset[,c(“output1”)])
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tt=confusionMatrix(svm.pred,testset[,c(“output1”)])

print(tt)

print(“rpart”)

rpart.pred=predict(rpart.model,testset[,!names(testset)

%in% c(“output1”)])

t= table(rpart.pred,testset[,c(“output1”)])

tt=confusionMatrix(rpart.pred,testset[,c(“output1”)])

print(tt)

print(“nn”)

nnet.pred=predict(nnet.model,testset[,!names(testset)

%in% c(“output1”)])

t= table(nnet.pred,testset[,c(“output1”)])

tt=confusionMatrix(nnet.pred,testset[,c(“output1”)])

print(tt)

print(“rfor”)

rfor.pred=predict(rfor.model,testset[,!names(testset)%in% 

c(“output1”)])

t=table(rfor.pred,testset[,c(“output1”)])

tt=confusionMatrix(rfor.pred,testset[,c(“output1”)])

print(tt)
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