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Purpose: Alumina substrates are one of the commonly used scaffolds applied in cell culture, 

but in order to prevent formation of biofilm on the alumina substrate, these substrates are modi-

fied with carbon nanotube.

Methods: The alumina substrate was made by a two-step anodization method and was then 

modified with carbon nanotubes by simple chemical reaction. The substrates were character-

ized with FTIR, SEM, EDX, 3D laser scanning digital microscope, contact angle (CA) and 

surface free energy (SFE). To determine how this modification influences the reduction of 

biofilm, biofilm of two various bacteria, Escherichia coli (E.coli) and Staphylococcus aureus 

(S. aureus), were investigated.

Results: The biofilm on the modified substrate decreased due to the presence of carbon nano-

tubes and increased antibacterial properties. Dental pulp stem cells (DPSCs) were cultured onto 

flat alumina (FA) and nanoporous alumina-multiwalled carbon nanotubes (NAMC) substrates 

to examine how the chemical modification and surface topography affects growth of DPSCs. 

Conclusion: Cell attachment and proliferation were investigated with SEM and Presto Blue 

assay, and the findings show that the NAMC substrates are suitable for cell culture. 

Keywords: alumina scaffold, dental pulp, biofilm, adhesion, proliferation

Introduction
The first goal of tissue engineering is the development of materials that retain or better 

the tissue function.1,2 Selection of proper cells, 3D substrates, and induction of suitable 

signal for regeneration tissues are important principles of tissue engineering. Thus, stem 

cells (SCs) are the first step for research in this field.3,4 Fetal and mature SCs, which are 

derived from adult differentiated somatic cells, have been examined in literature.5,6 Dental 

pulp SCs (DPSCs) are another alternative of SCs that can simply be obtained. Dental 

pulp is connective tissue that contains blood vessels, veins, mesenchymal cells, lym-

phatic vessels, nerves, and intercostal fluid.7,8 DPSCs are useful in bone regenerative 

therapy. This merit is due to high proliferation, mineralization ability, self-renewal 

potential, low immunogenicity, and a multipotent differentiation capacity.9–14 DPSCs 

have higher angiogenic, neurogenic, and regenerative potential compared with bone 

marrow SCs,15 which makes them an appropriate SC source for tissue repair and cel-

lular therapies. DPSCs are a good option for regenerative therapy, because they can 

be easily expanded to produce the required number of cells for the production of graft 

materials.16 These cells can be simply obtained, in comparison with bone marrow SCs, 

because exfoliated deciduous teeth and impacted third molar teeth are often extracted for 

clinical or orthodontic reasons.9,17–20 Dental SCs are known to differentiate into various 

cell lineages, such as osteoblasts, chondrocytes, adipocytes, odontoblasts, neural cells, 

Correspondence: Amir Razmjou
Department of Biotechnology, Faculty 
of Advanced Sciences and Technologies, 
University of Isfahan, Isfahan, Hezar jarib 
St., Isfahan 8174673441, Iran
Tel +98 313 793 4401
Email a.razmjou@ast.ui.ac.ir 

Mehrorang Ghaedi
Department of Chemistry, Yasouj 
University, Pasdaran St., Yasouj 
7591874831, Iran
Tel +98 917 122 4331
Email m_ghaedi@mail.yu.ac.ir 

Journal name: International Journal of Nanomedicine
Article Designation: Original Research
Year: 2019
Volume: 14
Running head verso: Alizadeh et al
Running head recto: Alizadeh et al
DOI: 189730

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S189730
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:a.razmjou@ast.ui.ac.ir
mailto:m_ghaedi@mail.yu.ac.ir


International Journal of Nanomedicine 2019:14submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1908

Alizadeh et al

and myocytes, among others8,21,22 DPSCs offer regenerative 

potential of various damaged or lost tissues and organs, includ-

ing dentin, pulp, periodontal tissue, bone, neuronal tissue, 

blood vessels, muscle, cartilage, hair follicle, and cornea.23 

Cell-scaffold interactions, cell response, activity, attachment, 

morphology, and proliferation rely on the properties of culture 

environment of cells.24 Surface wettability and roughness are 

important factors that could influence protein attachment and 

cell response.25,26 It is reported that cells sometimes grow bet-

ter on hydrophilic surfaces and sometimes on hydrophobic 

surfaces.25 Biocompatible nanoporous alumina (NA) sub-

strates with high porosity and nano-sized pores are suitable 

substrates for the cultivation type of cells. The porous nature 

of these substrates allows the storage of nutrients on both 

adjacent cells.27 Biofilm is a serious problem in biomedical 

applications. Biofilm can grow on medical devices implanted 

in the body, such as artificial heart valves, artificial joint, or 

catheters, and leads to severe infections. When the surface of 

the alumina substrate is refined, the biofilm is decreased and 

its biomedical applications are increased.28 Swan et al dem-

onstrated that NA with pore size of 72 nm was favorable for 

osteoblast adhesion.29 Song et al proved that NA was able to 

promote the adhesion and proliferation of mesenchymal SCs.2 

These reports indicated that NA could be used as an ideal cell 

culture scaffold in tissue engineering.

In this research, the substrate surface of alumina has been 

modified with carbon nanotubes (CNTs), which prevents 

bacterial adhesion and enhances cell culture. CNTs possess 

sheets of graphite, which has high mechanical strength, 

flexibility, and electrical conductivity when rolled into a 

cylinder, which can be contributed to the hexagonal structure 

and configuration of π electrons.30 CNT, with increasing 

roughness and hydrophilicity, provides a suitable surface 

for cell culture. Also, CNT tends to bind with proteins of 

the extracellular matrix, like fibronectin and vitronectin, so 

it controls cell behavior.31 So far, CNT has been a subject 

of studies for culture of various SC lines, such as neural, 

embryonic, and mesenchymal SCs.31–35 For the first time, 

we study the response of DPSCs cultured on a substrate of 

alumina-CNTs, in comparison with flat alumina (FA), and 

evaluate the effects of hydrophilicity and topography on 

linkage and the increase of cells on the substrate.

Materials and methods
Materials
Crystal violet and aluminum foil (99.99% Al) were bought 

from Cib biotech Co (Tehran, Iran) and Kingcheng (Beijing, 

China), respectively. Oxalic acid, phosphoric acid (85%), 

perchloric acid (70%), hydrochloric acid (37%), nitric acid 

(63%), sulfuric acid, hydrogen peroxide (30%), ethanol 

(95.5%), methanol (95%), acetone, chromic oxide, sodium 

hydroxyl, copper chloride (II), Coomassie Brilliant Blue 

G-250, and dimethyl sulfoxide were purchased from Merck 

Co. (Darmstadt, Germany). NaH
2
PO

4
, Na

2
HPO

4
, BSA, MTT 

reagent, enzymes, Hank’s Balanced Salt Solution (HBSS), 

alpha-minimal essential medium (αMEM), and FBS were 

bought from Sigma Aldrich (Darmstadt, Germany). Multi-

walled CNTs (MWCNTs) were obtained from CheapTubes 

(Cambridgeport, VT, USA). FA was obtained from Alfa 

Aesar (Ward Hill, MA, USA) and studied. Presto Blue (PB) 

was purchased from Thermo Fisher Scientific (Waltham, 

MA, USA). Two strains of bacteria containing Escherichia 

coli (ATCC: 25922) and Staphylococcus aureus (ATCC: 

25923) were provided by Pasteur Institute (Tehran, Iran) 

for biofilm formation.

Preparation of nanoporous alumina-
multiwalled carbon nanotubes (NAMC) 
substrate
Ordered NA substrates were fabricated by two-step anodiza-

tion method.36 High-purity Al foils (99.99%) were annealed 

in air at 600°C. Then, the aluminum discs were exposed to 

ultra-sonication in acetone and water. The cleaned aluminum 

discs were electropolished in HClO
4
 and C

2
H

5
OH in the ratio 

of 1:4 at 20 V power supply (MEGATEK, 0–250 V, 0–30 

mA) for 3 minutes. Afterward, the first anodization was 

accomplished using solutions of oxalic acid (0.3 M) and 

phosphoric acid (0.2 M) at 100 V and 25°C for 1 hour. The 

first anodic layer was removed by phosphoric acid (6%) and 

chromic acid (1.8%) at 65°C. The next step of anodization 

was done using the same electrolyte and voltage as the first 

step for 5 hours. The residual aluminum was removed by a 

H
2
O-HCl–CuCl

2
 solution. The barrier layer was eliminated 

with 5% H
3
PO

4
. The alumina substrates were immersed 

in hydrogen peroxide solution (30%), then placed in an 

ultra-sonicator at 80°C for 2 hours and rinsed with deion-

ized H
2
O. The specimens were put in an oven controlled at 

150°C for 2 hours. MWCNT was activated in the presence 

of conventional treatment agents, like concentrated HCl 

(37%) and HNO
3
 (63%), for 24 hours. This treatment led 

to the appearance of functional groups, including hydroxyl 

and carboxylic acids. In the next step, the mixture assembly 

(15 mg of COOH-MWCNT) was thoroughly dispersed in dis-

tilled water under sonication. Thereafter, drops of MWCNT 
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dispersion were poured on scaffold surface and dried at the 

room temperature.

Substrate characterization
Functional groups of the substrates were determined by 

Fourier-transform infrared spectroscopy (FTIR) (FTIR-8300 

Shimadzu Co. Tokyo, Japan) analysis using a KBr disk. The 

samples were fixed on the holder, and the transmittance 

spectrum from 400 to 4,000 cm−1 was scanned.

The existence of elements in the substrate and mor-

phology of substrates were analyzed by Energy-dispersive 

X-ray spectroscope (Hitachi S3400) and scanning electron 

microscope (SEM; JEOL JSM-6510LV). The surface 

roughness of the substrates was characterized by a 3D 

laser scanning microscope (LSM) (OLS  4000, Olympus 

Corporation, Tokyo, Japan). Wettability of the substrates 

was examined by evaluate of water contact angle (WCA) 

using a Dataphysics OCA 15 plus (Filderstadt, Germany). 

The surfaces of the substrate samples were characterized 

using sessile drop technique and Gaosuo software. The 

average of six CAs was obtained. H
2
O, C

3
H

8
O

3
, and CH

3
NO 

with specified factors (Table S1) were applied to compute 

the surface free energy (SFE) of the samples by Van Oss 

method.37,38

Biological tests
Protein adsorption assay
The strength and type of cellular attachment to the surface 

rely on the binding of proteins. The species adsorption on 

the scaffolds was studied by Bradford protein assay. NAMC 

and FA substrates were held in a 1 mg/mL BSA for 4 hours. 

Then, the residual absorbance was acquired at 555 nm with a 

UV-visible spectrometry (V-570 Jasco Co., Hachioji, Tokyo, 

Japan) after removing the samples. The quantity of the 

adsorbed BSA on the samples was evaluated according to 

Razmjou et al.39,40 In the Bradford method, to determine the 

protein of a solution, the standard curve must be drawn with 

certain concentrations of protein solution.

In the Bradford method, to determine the protein content 

of a solution, the standard curve must be drawn with certain 

concentrations of bovine serum albumin (BSA). The light 

absorption of each sample is determined using a UV-visible-

spectrometer at 595 nm. To measure the concentration of 

protein on the scaffolds, each sample is placed in a 50-mg 

BSA solution in 50 mL phosphate buffer. Then, 100 μL 

of solution and 5 mL of Bradford reagent are mixed. The 

resulting solution is vortexed and the absorption determined 

at 595 nm. The absorbance number is placed in the standard 

curve equation and the concentration of protein is obtained 

on each sample.39,40

Bacteria adsorption assay
The biofilm formation on the substrates was examined by 

using E. coli and S. aureus as model microorganisms. The 

bacterial strains were cultured overnight in a Muller Hinton 

broth medium (MHBM) at 37°C with 150 rpm. The overnight 

bacterial suspensions were diluted with fresh and sterilized 

MHBM to determine the concentration of 1.5×108 CFU/mL 

by measuring the absorbance at 625 nm.41 The substrate 

samples were sterilized with C
2
H

5
OH 75% and dried. Then 

the substrates were immersed inside the tubes containing 

bacterial suspension and incubated at 37°C for 10 days. After 

10 days, 2 mL CH
3
OH (99%) and then 2 mL crystal violet 

(0.3%) was added. After 5 minutes, incubation scaffolds 

were washed by MilliQ-water. At the end, the substrates 

were analyzed by SEM.

Flow cytometry
Flow cytometry was applied to study the impact of the modi-

fication on the integrity of cell membranes. Cell particles 

and cell adhesion were also analyzed via flow cytometry 

method. A bacterial suspension of 1.5×108 CFU/mL was 

prepared. The scaffolds were sterilized; then they were 

placed in a plate containing bacterial suspension over-

night at 37°C. Then, the samples and fresh MHBM were 

sonicated for 30 seconds to create a bacterium of optimal 

concentration. To determine the live and dead cells, 5 µL of 

propidium iodide (PI) (1 mg/mL) was added to a combina-

tion of the sample (50 µL) and the deionized water (5 mL). 

After 10 minutes incubation in the dark, the levels of bac-

terial adhesion were investigated with the flow cytometry 

technique (BD Biosciences, San Jose, CA, USA) and were 

interpreted by Flowjo software.42

DPSCs culture
DPSCs were taken from the pulp tissue for evaluation of cell 

culture on the specimens. For this, impacted third molars 

were rinsed with PBS, including streptomycin and penicillin, 

then cut into small fragments in a sterile dish. An enzyme 

solution containing dispase and collagenase I in HBSS was 

mixed with the tissue for 1 hour at 37°C. αMEM enriched 

with FBS and antibiotic (antibiotic/antimycotic 100X [Sigma, 

St Louis, MO, USA] contains 10,000 units penicillin, 10 mg 

streptomycin, and 25 µg amphotericin B per mL.) was added 
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to cell suspension and incubated. The fourth passage of cells 

was used for experiment. The substrates were sterilized with 

75% ethanol, then washed with PBS for 15 minutes and dried. 

Smooth aluminum was applied as a control. The cell suspen-

sion, in an amount of 2×105 cells in 100 µL culture media, 

were cultured onto the substrates and incubated for 2 hours.

The cells were isolated from the tissue of patients without 

knowing their identities.

Cell adhesion
The morphology and attachment of cells on the substrates 

were investigated by SEM. For this purpose, cells were 

fixed in glutaraldehyde 2.5% and subsequently in 2% 

osmium tetroxide for 2 hours. After rinsing with buffer, 

dehydration with alcohol of different percentages (30%, 

50%, 70%, 80%, 90%, and 100% for 5–15 minutes each) 

and air drying, substrates were assessed under SEM (JEOL 

JSM-6510LV).

Cell proliferation
The measurement of cell proliferation with PB reagent was 

performed at 1 and 7 days. In brief, scaffolds were rinsed with 

PBS, the reagent was added to 10% of the culture medium and 

incubated at 37°C. A total of 100 µL samples of the culture 

medium were eliminated and transferred to a 96-well plate, 

and the proliferation was determined using a microplate 

reader (Synergy HTX, BioTEK, Winooski, VT, USA).

Statistical analysis
Data of experiments were shown as average ± SD. To com-

pare the results of groups, t-test statistical analysis was done. 

Cell adhesion is qualitative, and it was performed at two time 

points with two samples for each group. Cell proliferation 

was performed at two time points with six samples per group.

Results and discussion
Substrate characterization
Figure 1A shows FTIR spectrum of the control sub-

strate. Adsorption peaks around 1,625 and 3,450 cm−1 

are indicative of bending and stretching vibrations of the 

O–H groups.43 The specific peaks at 515–730 cm−1 show 

the Al–O–Al bond.44 Figure 1B shows the peaks at 2,924 

and 2,854 (C–H), 1,630 (C=C) and 1,620 (COO-) cm−1.45,46 

The carboxylates groups of the MWCNT are bonded to the 

hydroxyl alumina.47,48 Figure 2A–D shows SEM images 

and data EDAX of the FA and NAMC substrate. Figure 2A 

and B shows EDAX data of FA and NAMAC. EDAX data 

shows the existence peaks O (0.50 keV) and Al (1.50 keV) 

for FA and C (0.27 kev), O (0.50 keV), and Al (1.50 keV) 

for NAMC. Figure 2C shows SEM image of FA, which was 

without pores. In Figure 2D (insertion), the SEM studies of 

alumina approximately show uniform nonporous structure 

after modification by MWCNT (Figure 2D), probably via 

hydrogen bond among alumina and MWCNT leading to a 

change in porosity and pore diameter that hinders subse-

quent penetration of species. As expected, such noticeable 

changes in morphology under constructed scaffold are 

promising and good indicator for successful modification 

of alumina scaffold. This will be confirmed in the next 

section. Surface roughness affects the adsorption of the 

proteins, along with the cell initial attachment, response, 

and proliferation. The cellular response is due to protein 

adsorption and signal induction. The type and strength of 

the cell attachment rely on the properties of the scaffold, the 

absorbed proteins, and the proteins produced by the cell.49–51 

The roughness of the scaffolds was studied by 3D LSM. 

3D surface topographies and surface profiles of the FA and 

NAMC are shown in Figure 3A–D. The surface roughness 

of substrates in this work is between 3.0 and 10.0 nm for 

FA and 87.0 and 125 nm for NAMC. The modification of 

alumina nanopore by MWCNT would introduce structures 

with nano-roughness that, according to Wenzel, would 

increase surface roughness, shifting a hydrophilic surface 

toward a superhydrophilic surface.52 Surface wettability is 

an important factor that can determine the protein adsorp-

tion and cell response. Surface chemistry is important 

Figure 1 Fourier-transform infrared spectrum of (A) flat alumina and (B) 
nanoporous alumina-carbon nanotubes.
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in determining the wettability of surface. The WCA and 

SFE are applied to study substrate surface wettability. The 

WCA is expressed in degrees (θ) and is determined by the 

interaction of adhesive and cohesive forces at two phases of 

liquid–vapor interface. A water droplet follows the profile 

of the specimen, as said by Wenzel.53

	 Cos w  Cos θ θ= r e � (1)

In equation, where θ is apparent CA and θe is the CA 

on the flat smooth surface, and the roughness factor “r” is 

the ratio of the actual solid/liquid contact area to its vertical 

projection.54 In Formula 1, the increment of nano-roughness 

can alter a hydrophilic surface to superhydrophilic.55 In this 

study, the WCA was 49° and 10° for FA and NAMC, respec-

tively (Figure 4). The higher hydrophilicity of the NAMC 

substrate can be attributed to the modification of substrate 

by hydrophilic MWCNT that creates hydrophilic groups 

on the surface and increases nano-roughness. Studies show 

that the modification increases the SFE from 110.26 for FA 

to 259.52 (mN/m) for NAMAC, which could be related to 

hydroxyl on the NAMC surface. Scaffolds with less WCA 

and higher SFE have fewer interactions with the microorgan-

ism. Since hydrophilic surfaces have repulsive forces on the 

foulant absorption, they will have a better anti-biofouling 

performance.

Protein adsorption on the substrates
In this study, adsorption of protein on substrates was exam-

ined through static BSA adsorption test. Substrate of NAMC 

showed lower protein adsorption compared with substrate 

of FA, which may lead to a reduction of biofilm. Protein 

adsorption for FA and NAMC substrates is 689.54 µg⋅mL−1× 

cm−2 and 96.38 µg⋅mL−1× cm−2, respectively. This can be 

due to more nano-roughness in NAMC substrate, which 

increases its hydrophilicity. The water barrier mechanism, 

due to nanoscale roughness, inhibits direct impact between 

the rough surface and the proteins, thereby, leading to lower 

Figure 2 EDAX data of (A) FA and (B) NAMC; scanning electron microscope image of surface of (C) FA and (D) NAMC.
Abbreviations: EDAX, Energy-dispersive x-ray spectroscope; FA, flat alumina; NAMC, nanoporous alumina-multiwalled carbon nanotubes.
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Figure 3 3D Laser scanning microscope showing surface profiles of flat alumina (A and B) and nanoporous alumina-multiwalled carbon nanotubes (C and D).

Figure 4 Average of water contact angle of (A) flat alumina and (B) nanoporous alumina-multiwalled carbon nanotubes.

protein adsorption for NAMC.56–58 Lower protein adsorp-

tions could be attributed to less attachment of bacteria and 

reduction of biofilm.59 Before the cellular deposition, the 

types and amounts of proteins adsorbed on the surfaces 

facilitate cell attachment to their substratum. BSA is more 

favorably adsorbed onto smooth substratum. BSA strongly 

binds to surfaces of FA, and preadsorption of BSA onto FA 

substrate inhibits more cell attachment.26
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Figure 5 Fourier-transform infrared spectrum of (A) FA-bacteria, (B) FA, (C) 
NAMC-bacteria and (D) NAMC.
Abbreviations: FA, flat alumina; NAMC, nanoporous alumina-multiwalled carbon 
nanotubes.

Figure 6 SEM image from (A) surface of FA-E.coli-S.aureus after biofilm assay, (B) surface of virgin FA, (C) FA-E.coli and FA-S.aureus and (D) NAMC after biofilm assay.
Abbreviations: E. coli, Escherichia coli; FA, flat alumina; NAMC, nanoporous alumina-multiwalled carbon nanotubes; S. aureus, Staphylococcus aureus.

Bacterial attachment
E. coli and S. aureus are utilized to study the formation of 

biofilm on the surfaces selected. The substrate of NAMC 

significantly reduces the bacterial attachment. FTIR results 

(Figure 5) of FA-E.coli-S.aureus (A) and NAMC-E.coli-S.

aureus (C) in comparison to FA (B) and NAMC (D) without 

bacteria show which bacteria were absorbed on the substrate 

of FA and NAMC. The characteristic peaks at 3,100–3,400 

cm−1 (NH
2
, OH stretching), 2,854 and 2,925 (CH stretching), 

1,650–1,660 (−NH
2
), 1,520 (−NH), and 1,030–1,150 cm−1 

(C=O, P=O, P−O) confirm which bacteria absorbed on the sub-

strates of FA and NAMC. Figure 6A (FA-E.coli-S.aureus) and 

6C (FA-E.coli and FA-S.aureus) are compared to FA without 

bacteria (Figure 6B), an SEM image shows that biofilm did 

form on the surface of FA substrate. BSA proteins are further 
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attached to the smooth surface;26 they may remain trapped and 

spend a longer dwelling time inside the pore. This will provide 

an opportunity for other proteins to enter inside the pore, result-

ing in a compaction effect and a significant reduction in the 

mean protein–protein distance, thereby increasing nucleation 

and growth of proteins.60 In Figure 6D, the SEM image of 

NAMC does not contain biofilm. Increasing nano-roughness 

and hydrophilicity could diminish the interaction between the 

scaffold and the microorganism, resulting in the decreased 

biofilm. Also, materials that are carbon-based are able to 

penetrate through the bacterial cellular membrane, damaging 

its integrity.55,61–69 In NAMC substrate, bacteria are absorbed 

and CNTs damage their membrane wall, thereby preventing 

the formation of biofilm. But bacteria absorbed, accumulated, 

and formed biofilm in the substrate of FA. Figure 7 indicates 

the finding of flow cytometry assay for the FA (a) and NAMC 

(b) scaffolds for E. coli. The results indicate that the maximum 

dead bacteria were dedicated to NAMC scaffold.

Cell attachment and proliferation
SEM images of cell morphology at 24 hours incubation 

for substrates FA and NAMC are shown in Figure 8A 

and B, respectively. Cells showed almost good spread-

ing on hydrophilic surfaces of NAMC. Cell spreading in 

superhydrophilic scaffolds is more significant than other 

scaffolds.25 SEM images of cell proliferation after 7 days 

incubation for substrates FA and NAMC are shown in 

Figure 8C and D, respectively. After 7 days, the cells 

were proliferating well on substrates NAMC. Cell pro-

liferation increased about tenfold for both surfaces, FA 

and NAMC, after 1 week of culture. Even though the 

cells were rounded on the NAMC surface, they had more 

cytoplasmic extensions, and more networked cells could 

be found in NAMC. The results of viability assay at both 

time points show more cells on the surface of NAMC. 

Figure 9 demonstrates significantly improved fluorescence 

intensity of DPSCs cultured onto the substrate of NAMC 

compared with the substrate of FA at 24 hours and 7 days. 

Statistically significant differences in the results of adherent 

cells at 24 hours and 7 days of incubation were identified 

between two substrates of FA and NAMC, with a value 

of P,0.05. Increasing of surface roughness generates a 

more hydrophilic surface, resulting in decreased albumin 

and BSA adsorption. The review of the past papers shows 

Figure 7 Results of flow cytometry analysis: (A) FA-E. coli, (B) FA-S. aureus, (C) NAMC-E. coli, and (D) NAMC-S. aureus.
Abbreviations: E. coli, Escherichia coli; FA, flat alumina; NAMC, nanoporous alumina-multiwalled carbon nanotubes; PI, propidium iodide; S. aureus, Staphylococcus aureus.
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that the rough surface adsorbed more fibronectin and total 

protein than the flat surface. The enhanced adhesion on 

rough NAMC could be due to increased fibronectin adsorp-

tion onto this substratum.26,34,70,71

Conclusion
In this paper, the impact of surface topography and CNT 

on the cell behavior and proliferation of DPSCs was inves-

tigated. DPSCs can be simply obtained in comparison with 

other SCs. These cells have high proliferative abilities, 

mineralization ability, self-renewal potential, low immu-

nogenicity, and a multipotent differentiation capacity. 

DPSCs are useful in tissue repair, cellular, and regenerative 

therapy. The substrates of nanopore alumina were prepared 

via anodization technique, and then were modified by CNT. 

Figure 8 Scanning electron microscope image of cell culture on (A) FA and (B) NAMC after 24 hours, (C) FA, and (D) NAMC after 7 days and control samples.
Abbreviations: FA, flat alumina; NAMC, nanoporous alumina-multiwalled carbon nanotubes.

Figure 9 Dental pulp stem cells viability cultured onto flat alumina in comparison 
with nanoporous alumina-multiwalled carbon nanotubes after 24 hours and 7 days.
Abbreviations: FA, flat alumina; NAMC, nanoporous alumina-multiwalled carbon 
nanotubes.
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SEM characterization and viability assay demonstrated 

that cell culture increases on the NAMC. The addition of 

MWCNT to the alumina substrate improved the roughness 

and hydrophilicity properties. The combination of MWCNT 

with alumina scaffold improved the anti-biofouling proper-

ties of NAMC. The increased cell culture on rough and 

antimicrobial NAMC could be due to the adsorption of 

fibronectin onto these scaffolds.
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Supplementary material

Table S1 Parameters of acid-base Van Oss method

Liquid SFT (mN/m) σdisperse (mN/m) Acid (mN/m) Base (mN/m)

Milli-Q water 72.8 21.8 25.5 25.5

Glycerol 64.0 34.0 3.9 57.4

Formamide 58.0 39.0 23.2 23.2

Abbreviation: SFT, surface tension.
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