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Abstract: Malaria, the exterminator of ~1.5 to 2.7 million human lives yearly, is a notorious 

disease known throughout the world. The eradication of this disease is difficult and a challenge 

to scientists. Vector elimination and effective chemotherapy for the patients are key tactics to 

be used in the fight against malaria. However, drug resistance and environmental and social 

concerns are the main hurdles in this fight against malaria. Overcoming these limitations is the 

major challenge for the 21st-century malarial researchers. Adapting the principles of nano-

biotechnology to both vector control and patient therapy is the only solution to the problem. 

Several compounds such as lipids, proteins, nucleic acid and metallic nanoparticles (NPs) have 

been successfully used for the control of this lethal malaria disease. Other useful natural reagents 

such as microbes and their products, carbohydrates, vitamins, plant extracts and biodegradable 

polymers, are also used to control this disease. Among these particles, the plant-based particles 

such as leaf, root, stem, latex, and seed give the best antagonistic response against malaria. In the 

present review, we describe certain efforts related to the control, prevention and treatment of 

malaria. We hope that this review will open new doors for malarial research.

Keywords: malaria, vectors, chemotherapy, drug resistance, nano-biotechnology

Introduction
Malaria is the most significant and malicious of all the parasitic human diseases. 

The causal agent of malaria is the single cell protozoa called Plasmodium. Protozoal 

vector-borne diseases are the most common infections in developing regions and result 

in more than a million deaths from malaria every year worldwide.1,2 According to the 

WHO, malaria is one of the world’s most lethal diseases which caused 214 million 

new infections and nearly 438,000 malaria-associated deaths in 2015 worldwide.1,3,4 

More than 216 million people are still infected by the malarial parasite each year.5 

Although the disease is widespread, it is most severe in tropical and subtropical 

regions. In 2006, ~400,000 cases of malaria were registered in hospitals across the 

Amazon basin region of Brazil. Due to the overuse of antimalarial drugs, in particular 

chloroquine, the parasite has developed a variety of resistance mechanisms against 

antimalarial drugs. Among these Plasmodium spp., Plasmodium falciparum has now 

become drug resistant and there has been a global resurgence in malaria in recent 

years. Nowadays, its derivatives are considered to be a first-line antimalarial drug;6–8 

however, the parasite is rapidly showing resistance to it.9–11

Four strategies help in controlling malaria. The first one is to eradicate the mos-

quitoes’ breeding grounds. The second, indoor residual spraying (IRS), has been 

proven useful in malaria control. Third, there is the use of chemically treated bed 

nets. The fourth option is effective chemotherapy for infected individuals.12 The first 
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three options were the most effective control tactics against 

Anopheles mosquitoes to prevent the spread of malaria. 

Over several decades, the use of chemical compounds, ie, 

phenols, Paris Green, mercuric chloride, cresols, naphtha-

lene, Bordeaux mixture, rosin fish oil soap and many others 

as conventional pesticides, was considered reliable sources 

to control malaria.13 The first synthetic organic insecticide, 

dichlorodiphenyltrichloroethane (DDT), was synthesized in 

the 19th century, and this invention was the primary method 

for vector control.14 The application of IRS, such as DDT and 

other insecticides, initially eradicated the female mosquitoes 

responsible for malaria with great success.15 The application 

of these insecticides, however, has decreased the annual 

parasite index (API) drastically throughout the world. The 

reduction in API has stimulated the WHO to develop and 

implement various control strategies.16 Many researchers are 

involved in controlling and targeting the adult female at its 

larval stages. The chemicals that effectively target the adult 

female mosquitoes are Paris Green (copper acetoarsenite)17 

and petroleum oils.18 Many other larvicides, ie, synthetic 

pyrethroids,19 and many organophosphates20 were rarely 

exploited against the adult female during this time. The syn-

thetic pyrethroids, although effective, are at the same time 

extremely lethal to aquatic nontarget organisms, mostly fish.21 

The persistent and toxic effects of the applied insecticides 

were serious impediments to apply these chemicals against 

malaria. The rise of insecticide-resistant mosquito strains is 

another major challenge.22

The World Health Assembly (WHA) resolution called for 

approving and implementing alternate measures in managing 

malaria through ecologically friendly insecticides rather than 

through ecologically unfriendly insecticides. The integrated 

vector management (IVM) approach was adopted which 

seeks to control the female mosquitoes, either at the imma-

ture larval stages or at the mature adult stages by exploiting 

biological agents, by using biological tools such as viruses, 

bacteria, fungi, oomycetes, azolla (aquatic fern), and through 

natural predators.23,24 Although this was seen as the best 

strategy, very soon various ecological, environmental, social 

and economic concerns were raised.25 Using the products 

of these organisms against mosquitoes was an alternative 

biological control strategy; hence, its low availability,26 high 

cost27 and the incidence of resistance to larvicides of mosquito 

larvae are the main concerns to be noted.28 The application 

of a versatile type of biologically synthesized nanoparticles 

(NPs) introduced a novel scope of research to study for their 

utility against mosquitocidal activities in the hope that these 

NPs make the mosquito body more susceptible due to their 

biogenic nature as well as being eco-friendly with a minimal 

dosage and host specificity.29

Nano-biotechnology
New multifunctional gadgets and schemes for higher bio-

chemical evaluation with outstanding qualities, such as better 

sensitivity, specificity and a higher rate of recognition, have 

been produced through the utilization of molecular biology 

with engineering. The word “nano” is a Greek word which 

means small or dwarf. Similarly, NPs can be defined as the 

particles, which range in size from 1 to 100 nm in either direc-

tion, and can be considered to be up to several 100 nm.2,30 

Actually, NPs are aggregates of atoms, ions and molecules. 

In other words, the term “nano” is used to represent one 

billionth of a meter as 10−9 m. Similarly, the concept of 

nanotechnology was first introduced by professor Norio 

Taniguchi in 1974, and after that the field of nanotechnology 

has received remarkable attention, especially since the 

1980s.1,2,31,32

Nano-biotechnology is, therefore, a combination of both 

engineering and molecular biology. Nanotechnology has 

revolutionized the world with nano-objects which include 

nanotubes, nano-channels (Figure 1), NPs, nano-pores 

and nano-capacitors.33 These nano-objects have significant 

analytical applications in the world. Nano-biotechnology 

can also be defined as the junction of nanotechnology and 

biotechnology, which intends to create, improve, and utilize 

nanoscale structures for advanced biotechnology.34 The 

significant study of nanotechnology is the amalgamation of 

various types of NPs in different sizes, shapes and chemical 

compositions with precise discrepancies. In recent years, the 

production of noble metal NPs, ie, gold, silver, palladium, 

platinum and zinc from natural sources has procured signifi-

cance and consideration due to the required need to develop 

eco-friendly sociable technologies in the material.35,36 The 

potential advantages of nano-biotechnology emerged when 

NPs were biosynthesized using naturally found organic 

compounds such as vitamins, proteins, lipids, carbohydrates, 

botanical extracts, biodegradable polymers and microorgan-

isms. These developments cause the production of a few 

inorganic NPs, mostly metal NPs (Figure 2), several metal 

oxides and salts. Many of the aforementioned raw materials, 

including plant-based materials, can be exploited to bio-

synthesize large-scale NPs which would certainly be the 

best eco-friendly candidates.37 Various plant parts, ie, leaf, 

root, latex, seed, and stem have been currently utilized to 

biosynthesize metal NPs. The polyphenols present in the 

plant parts play a key biochemical role in the biosynthesis of 
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these metal NPs. These polyphenols are widely distributed 

in the kingdom plantae. The advantages of the biosynthesis 

of NPs over other chemicals are that it is robust, ecological, 

recyclable, reproducible, cost-effective and eco-friendly.38 

Microbes, such as fungus, bacteria and others can also be 

utilized to biosynthesize NPs, but the speed of biosynthesis is 

relatively slower. Moreover, NPs which are limited in shape 

and size are produced from microbes as compared with plant-

based materials. Recently, fungi have drawn more attention as 

the best candidates for the biosynthesis of AgNPs.39 Anyway, 

biological materials produce eco-friendly NPs rather than 

artificially synthesized NPs. More importantly, the routes 

Figure 1 Different aspects of nano-biotechnology.

Figure 2 Biological synthesis of metallic NPs.
Abbreviations: EDX, energy-dispersive X-ray; FTIR, Fourier-transform infrared; NPs, nanoparticles; SEM, scanning electron microscope; TEM, transmission electron 
microscopy; UV, ultraviolet; vis, visible; XRD, X-ray diffraction.
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related to biological-based materials are safe, and there 

are not any toxic chemicals involved which can affect the 

producer’s health.40 Furthermore, the mechanisms of these 

bio-reductive variations in the catalytic actions of substances 

received through these routes are genuinely precious.

Here, we report on recent developments in this area rel-

evant to NPs and nano-drops for the treatment and prevention 

of malaria. We also discuss further developmental pathways 

and the emergence of order in this somewhat chaotic, yet 

promising, new field.

Nano-biotechnology applied to the 
treatment of malaria
Nano-biotechnology is the ultimate solution to fight sev-

eral parasitic diseases such as schistosomiasis, lymphatic 

filariasis, soil transmitted helminthiasis, parasitic zoonoses, 

onchocerciasis, African trypanosomiasis, leishmaniasis 

ectoparasitic skin infections, chagas diseases and others such 

as malaria, tuberculosis dengue, buruli ulcer and leprosy. 

Nano-biotechnology works to eradicate malaria by providing 

satisfactory therapeutic approaches to vector elimination, as 

well as directly targeting the parasite. The following are some 

nano-biotechnological efforts that help in the easy and safe 

treatment of malaria.

Lipid-based NPs
The use of liposomes for the treatment of malaria and 

leishmaniasis was reviewed over 20 years ago.41 In general, 

liposomal formulation seems superior when compared with 

treatments with the free drug. There are several examples 

which illustrate that, upon targeting a high amount of drugs 

to the infected tissues, consequently the toxicity of the drug 

is dramatically reduced. Moreover, the effectiveness of the 

remedy is improved with the aid of enhancing the dose rather 

than increasing the dosage supplied to patients because of 

the safety profile of liposomal formulations. Considering 

malaria as a case study where the parasites are commonly 

positioned in red blood cells (RBCs).

Consequently using nanotechnology can lessen the 

toxicity of the drug molecules. Furthermore, some studies 

have to remain in the or have to engage with infected RBCs.34 

The administration of the antimalarial drug with liposomes 

targeted to infected RBCs with a tagged antibody against 

infected erythrocytes surface antigens on the chloroquine 

liposomes against drug-resistant Plasmodium berghei, pre-

sented a cure of 75%–90% in infected mice.42 Artesunate 

liposomes were used to reduce the dosing frequency by using 

a low release for 24 hours43 and with encapsulated beta-

artemether for a malaria-resistant treatment.37 Artemether 

and lumefantrine co-loaded into small lipid nano-drops 

has a higher efficacy and can easily access the target site.44 

Recently, it has been reported that altimeter alone loaded into 

lipid NPs is more efficient for the treatment of meningeal 

malaria in animal models.45

Different kinds of liposomes, either encapsulated or cou-

pled with recombinant human tumor necrosis factor against 

experimental cerebral malaria (ECM) induced in P. berghei 

K 173-infected mice were also proven to be efficient.38 This 

review showed that liposome coupled with a human necrosis 

factor was more efficient than its free form in preventing 

ECM-associated mortality by suppressing mice parasitemia.

Liposomes with a Plasmodium amino acid sequence 

were effective against P. berghei-infected mice. The peptide 

which contained a conserved region I as well as a consensus 

heparin sulfate proteoglycan-binding sequence attached to 

the distal end of a lipid Y polyethylene glycol bio-conjugated, 

was incorporated into phosphatidylcholine liposomes.39 

Moreover, mice immunization with RTS, S malaria antigen 

encapsulated in liposomes containing lipid A-induced high 

levels of antibody and cytotoxic T cell immune response in 

comparison with non-fusion RTS, S.40 Recently, a vaccine 

based on an RTS, S antigen has been successfully used in 

preventing malaria in African children.46

Poly ethylene glycol (PEG)-coated halofantrine loaded 

poly-d,l-lactic acid (PLA) nano-capsules were studied against 

malaria, and the reduction in its cardiotoxicity was evaluated 

in mice infected with P. berghei. In the experiment, NPs of 

primaquine on poly (diethylmethylidene malonate) were 

assessed in mice infected with P. berghei which demonstrates 

a higher increased life span (ILS) index for primaquine-loaded 

NPs.47 The same molecule was encapsulated in albumin 

and gelatin NPs of different sizes47 for liver targeting. Very 

recently, primaquine was formulated in lipid nano-emulsion 

(10–200 nm) and was very effective as an antimalarial agent 

against P. berghei infection in Swiss albino mice.48

Chloroquine phosphate, an antimalarial drug, was encap-

sulated in gelatin NPs and swelling-controlled delivery was 

demonstrated in a physiological medium (pH 7.4), while 

a lower release was observed in the acidic pH range.49 

Transferrin-conjugated solid lipid NPs (SLNs) were studied 

with the target of reaching the brain for cerebral malaria treat-

ment. This study demonstrated significantly enhanced brain 

uptake of quinine compared with the unconjugated SLNs or 

drug solution.50 Currently, the anti-plasmodial (antimalarial) 

biological properties of violacein were turned into validated 

in vitro and in vivo.51

In a study, the NP violacein was investigated against 

Plasmodium chabaudi taking the mouse as a model animal 
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and an increment of the anti-plasmodial activity was found on 

a daily basis. However, noninfected mice procuring the same 

doses of violacein did not exhibit any significant change in 

anti-plasmodial activity. Similarly, in vitro assays against the 

P. falciparum revealed that violacein is 300 times more effec-

tive than the commonly found antimalarial drug quinine.52

Currently, the effects of antimalarial drugs loaded into 

immunoliposomes targeted with the packed red blood cells 

(pRBC)-specific monoclonal antibody have been studied.53 

More recently, Urbán et al54 encapsulated chloroquine and 

fosmidomycin in the liposomes and observed that immuno-

liposome encapsulation of chloroquine and fosmidomycin 

improves by tenfold the efficacy of antimalarial drugs.

Nucleic acid-based nano-therapy 
of malaria
MicroRNAs are small regulatory noncoding RNAs that are 

involved in targeting and silencing genes. These microRNAs, 

although they are physiological regulators, can be used 

as therapeutic agents for many diseases.55 These microRNAs 

have played a satisfactory role in preventing malaria. An effort 

has been made which showed that P. falciparum has a sus-

ceptibility to antisense oligonucleotide NPs (ODN-NS).56

This fascinating method generally utilizes antisense 

oligodeoxy (OD) N-chitosan particles which are 50 mm 

in size. These particles increase the antisense ODN inter-

nalization by P. falciparum infected erythrocytes through 

erythrocyte permeation pathways that target the Plasmodium 

topoisomerase II gene.57 ODN chitosan NPs, both negatively 

and positively charged surfaces as well as free antisense 

ODNs in a concentration of 0.5 µM, exhibited a sequence-

specific inhibition compared with sense sequence controls. 

The major difference between the ODN–chitosan NPs and 

free ODNs is specificity. ODN–chitosan NPs were found to 

be more sequence specific in their antisense effect than free 

ODNs. ODN–chitosan NPs were found to be more sequence-

specific inhibitors in their antisense effect as compared with 

free ODNs. Similarly, the negatively charged surface of 

ODN–chitosan NPs showed the pronounced effect of about 

87% on the P. berghei growth while the positive charged 

surface showed 74% and free ODNs were 68%. It was the first 

report which demonstrated the susceptibility of P. falciparum 

to these microRNAs.58

Protein-based nano-therapy for malaria
Presently, work is going on to make protein-based nanocar-

riers for antimalarial drug delivery. The only option until 

now is the use of a collagen denatured biodegradable and 

biocompatible protein called gelatin.59 Gelatin is a compound 

where amide groups rarely make the gelatin positively 

charged having an isoelectric point.60 Furthermore, gelatin 

is a pharmaceutical adjuvant and approved plasma expander 

due to its safety record.61 Due to its gelling quality, it can 

be utilized in cosmetic products and also as a food additive. 

Among the natural polymers which are used in pharmaceu-

tical nanotechnology research, gelatin has a key role in the 

nano-delivery system for bioactive compounds. The loading 

of drugs then proceeds via polyion complexation between 

drug molecules and surface-charged groups on the gelatin.60 

The gelatin NPs were obtained by a double dissolution pro-

cess which may then be stabilized by a suitable cross-linking 

agent and can be used for the optimal delivery of chloroquine 

at a physiological pH.49 However, satisfactory antimalarial 

activity and safety have not been seen.

Recently, nano-protein adjuvants have been used to carry 

malaria-specific antigens to the target receptors successfully. 

These adjuvants in conjugation with specific antigens rang-

ing in size from 16 to 73 nm diameter upon injection into 

the mice showed a better immune response against malaria 

as compared with antigens alone.62 However, the extrinsic 

protein adjuvants have a limited use due to their low compat-

ibility with target vaccine/antigens.63

More recently, Kaba et al64 has developed and designed 

a self-assembling protein nanoparticles (SAPNs) containing 

epitopes from the Plasmodium falciparum circumsporozoite 

protein (PfCSP) and portions of the tool-like receptor 5 

(TLR5) agonist flagellin as an intrinsic adjuvant, which 

was more immunogenic and protective in the mouse model.

Green nano-biotechnology is a future 
promising field for the treatment of 
malaria
The biogenic synthesis of metallic NPs such as silver, gold 

copper and zinc using various biological materials has 

potential antimalarial activities against different Plasmodium 

species (Table 1). Until now, the green NPs such as silver, 

palladium, and platinum have proven more effective in 

controlling mainly the malarial parasites. The biologically 

synthesized silver has a significant role in overwhelming 

malarial production.65 The biologically synthesized NPs 

have tremendous advantages over other methods. These 

NPs are eco-friendly. In green synthesis, health perilous 

stabilizing and reducing agents can be replaced by important 

biomolecules such as carbohydrates, lipids, proteins, which 

are produced by organisms ie, fungi, algae, bacteria, yeast 

and plants. In this section we précis some biological systems 

which are eco-friendly for the synthesis of AgNPs. The syn-

thesis of AgNPs via plants is the most valuable, eco-friendly 
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and cost-effective method.66 Krishnaraj et al67 and Veerasamy 

et al68 used the leaf extracts of the medicinal plants Acalypha 

indica and Garcinia mangostana and synthesized AgNPs in 

the range of 20–30 and 35 nm, respectively. Chandran et al69 

and Li et al70 also used the leaf extracts of the medicinal 

plants Aloe vera and Capsicum annuum for the synthesis of 

AgNPs, respectively.

Additionally, it was found that the biogenic synthesized 

AgNPs from the leaf extract of Euphorbia hirta (40–50 nm) 

showed strong activity.71

Like plants, both Gram-positive and Gram-negative bacte-

ria, have been used for the green synthesis of AgNPs.72 A few 

bacteria have the capability to produce extracellular AgNPs, 

at the same time as others that can synthesize intracellular 

AgNPs. Fascinatingly, some bacteria including Calothrix 

pulvinata, Anabaena flos-aquae,73 Vibrio alginolyticus,74 

Aeromonas spp. SH10,75 Plectonema boryanum UTEX 

485,75,76 and Lactobacillus spp.77 have the potential to produce 

extra- and intracellular AgNPs. Recently, it was demonstrated 

that the Bacillus licheniformis was used for the synthesis of 

AgNPs. Forty- and fifty-nanometer AgNPs were synthesized, 

respectively.78,79 Fungus is also used in an eco-friendly way 

for the synthesis of AgNPs. Recently, two reported fungal 

strains, ie, Penicillium expansum HA2N and Aspergillus 

terreus HA1N, produced 14–25 nm and 10–18 nm AgNPs, 

respectively. Both species showed excellent antifungal 

potential.80 Further studies demonstrated that the biogenic 

synthesized AgNPs from the Aspergillus fumigatus and 

Fusarium oxysporum, size 5–25 and 5–50 nm, respectively, 

had strong potential against fungal strains.81,82 Recently, 

studies showed that algae have also been used for the green 

production of AgNPs. Red aquatic algae were used for the 

production of AgNPs. The Venkatpurwar and Pokharkar83 

reported that the synthesized AgNPs demonstrated strong 

activity against bacteria. Like other biological system, poly-

saccharides have also been extensively used in the production 

of AgNPs.66 The starch solution acts as a reducing/capping 

agent and when treated with AgNO
3
 stable AgNPs in the 

range of 10–34 nm were produced.84 Similarly, gum ghatti 

and gum kondagogu were used as a reducing and a stabilizing 

agent for the green synthesis of AgNPs.85,86

Using gum ghatti, narrow-sized (4.8–6.4 nm) AgNPs 

were produced, whereas gum kondagogu produced (2–9 nm) 

AgNPs.86 It was also found that cellulose also plays an excel-

lent role in the production of AgNPs. While in Ag ion forma-

tion, aldehyde and alcohol functional groups in cellulose play 

a major role in reduction and stabilization.87

Similarly, other biological systems/biomolecules, 

proteins and DNA are also used for the green synthesis of 

AgNPs. Recently, it was demonstrated that the fabrication of 

AgNPs decorated graphene oxide (GO), as an effective anti-

bacterial agent.88 Furthermore, it was found that the synthesis 

of AgNPs decorated on magnetic GO nano carbons (NCs) 

was shown to have a highly effective inhibitory property and 

reusability, even at a very low concentration (12.5 ppm).89

Nano-biotechnology for the control of 
malaria vectors
The investigation into a single control tool for use against 

malaria has been, and could probably remain, the using 

dynamic potency for maximum scientists convoluted in 

malaria research. Although anti-vector measures in malaria 

control need to be the goal for an economic of the transmis-

sion potential ideally to under the crucial stage for sustained 

transmission.90 Nano-biotechnology has the potential to con-

trol the population of malarial vectors by targeting different 

biochemical,91 physiological and molecular92 activities; cur-

rently, we are discussing the role of green nanotechnology 

in mosquito control.

Green nanotechnology as a future 
promising field for controlling malaria 
vectors
The green synthesis of NPs has received tremendous atten-

tion due to its cost-effective and eco-friendly properties.93 

Presently, fungi are being utilized in nanotechnology for the 

production of NPs; synthesis using fungi has shown that this 

environmentally benign and renewable source can be used 

as an effective reducing agent for the synthesis of metallic 

NPs by using a filamentous fungus Cochliobolus lunatic 

which have strong activities against Anopheles stephensi.94 

The extracellular synthesized gold NPs formed by using 

Table 1 Effects of some photosynthetic metallic NPs against 
malaria parasites

Plant species Test NPs Test Plasmodium 
species

References

Andrographis 
paniculata

Silver NPs P. falciparum 108

Catharanthus 
roseus
Linn.

Silver NPs P. falciparum 108

Ashoka and neem Silver NPs P. falciparum 109
Calotropis gigantea Titanium All species of 

plasmodium
110

Euphorbia 
prostrate

Silver – 111

Abbreviations: NPs, nanoparticles; P. falciparum, Plasmodium falciparum.
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Aspergillus niger are highly toxic for malarial vectors. 

However, no side effects were seen in the environment.95 

Similarly, the same author described that Chrysosporium 

tropicum, a pathogenic fungus-mediated silver and gold NPs, 

can kill A. stephensi.95 Many biologically synthesized NPs 

of gold and silver by using soil fungi to kill A. stephensi.96–98 

Many entomopathogenic fungi such as Trichoderma 

harzianum that are used conventionally for the biological 

control of pests can be used to synthesize metallic NPs that 

can kill the malaria vector at any stage of development.99

Despite fungal mediated NPs, bacteria and plants also 

have the ability to stabilize metallic NPs with different bio-

logical activities. Bacteria synthesized NPs of silver, copper, 

gold zinc and cobalt by using Bacillus thuringiensis that can 

be used for the control of malaria vectors in many parts of 

the world.100,101 Over the next 2 decades, the photosynthesis 

of NPs of different metals have gained attention for use as a 

tool for controlling mosquitoes. In the future biosynthesized 

silver NPs (AgNPs), which cause lower ecological dam-

age, will be a potential replacement for synthetic chemical 

insecticides. Hence, the need to use green synthesized NPs 

for the control of mosquitoes causing malaria (Table 2);102 

however, the potential of plants for the biosynthesis of NPs 

against malaria vectors are yet to be fully explored.

Nano-biotechnology in laboratory and 
the market: limitations
Although nano-biotechnology have a promising field to treat 

malaria and control the parasites but, no proper mechanism of 

action of these particles have been illustrated.103 Chemically, 

physically synthesized NPs have their particular dimension 

and structure and can be toxic as a particular matter.104 Thus, 

despite their therapeutic potential these NPs may also affect 

other tissues.105 Most of the nanotechnological approaches 

associated with the delivery of drugs cannot define the cor-

rect concentration of a particular drug and have very short 

term effects. However, currently Bakshi et al106 designed a 

long-acting injectable formulation of atovaquone solid drug 

NPs that have defined concentration and long-lasting effects.

From an entomological point of view, research focused 

on the toxicity of NPs against larval and pupal stages of 

mosquitoes, but there is limited information available about 

the effects of these particles on the adult mosquitoes and 

ovicidal property of these particles.107 Thus, despite exten-

sive research in this field, there are still many puzzles that 

needed to be resolve.

Conclusion
Malaria is still a persistent challenge for modern research. 

In the early 20th century, scientists were trying to describe an 

effective method to eradicate malaria. However, no satisfac-

tory and future promising method was explained due to drug 

resistance, and social and environmental concerns. However, 

for the past 2 decades, the development of advanced tech-

niques in nano-biotechnology, such as the introduction of 

green nanotechnology, designing liposomes, the develop-

ment of tissue-specific nano-pores and nano–bio-circuits 

have opened the door for a safe and eco-friendly therapeutic 

method for malaria. However, more study is needed in the 

field to explore the correct mechanism of action and the 

side effects.
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