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Abstract: Renal insufficiency leads to uremia, a complicated syndrome. It thus becomes vital 

to reduce waste metabolites and regulate water and electrolytes in kidney failure. The most 

common treatment of this disease is either dialysis or transplantation. Although these treatments 

are very effective, they are extremely costly. Recently artificial cells, microencapsulated live 

bacterial cells, and other cells have been studied to manage renal failure metabolic wastes. The 

procedure for microencapsulation of biologically active material is well documented and offers 

many biomedical applications. Microencapsulated bacteria have been documented to efficiently 

remove urea and several uremic markers such as ammonia, creatinine, uric acid, phosphate, 

potassium, magnesium, sodium, and chloride. These bacteria also have further potential as 

biotherapeutic agents because they can be engineered to remove selected unwanted waste. This 

application has enormous potential for removal of waste metabolites and electrolytes in renal 

failure as well as other diseases such as liver failure, phenylketonuria, and Crohn’s disease, to 

name a few. This paper discusses the various options available to date to manage renal failure 

metabolites and focuses on the potential of using encapsulated live cells as biotherapeutic agents 

to control renal failure waste metabolites and electrolytes.

Keywords: renal failure, microencapsulation, artificial cells, oral administration, bacterial cells, 

metabolites, electrolytes, polymeric membrane

Renal failure, waste metabolites, and electrolytes
Kidney disease is among the most common diseases afflicting over 20 million 

Americans. Over 90,000 fatalities occur every year due to kidney diseases. Nearly 

350,000 Americans suffer from end-stage renal disease (ESRD), the final stage in 

chronic renal failure. Each year, the number of patients with chronic kidney failure 

increases by an astounding 11%!

Kidney malfunction results from a reduction in glomerular filtration rate and 

causes an increase in concentration of waste metabolites that are measurable in 

blood.1 For example, in human waste, metabolites such as blood urea nitrogen (BUN) 

increase from 15 mg/dl to 100–300 mg/dl, serum creatinine increase from 1 mg/dl to 

10–25 mg/dl, and considerable amounts of uric acid are also known to accumulate.2–4 

More specifically, in uremia, the concentration of uremic toxins such as ammonia, 

urea, phenols, indoles, and guanidino compounds such as n-methyl guanidine (NMG) 

and guanidino succinic acid (GSA) are significantly altered with accompanying 

abnormalities in acid-base equilibrium, and retention of electrolytes and water reten-

tion.5,6 The accumulation of uremic toxins in patients suffering from renal insuf-

ficiency inhibits various physiologic and biochemical functions thereby manifesting 
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toxic symptoms. For example, hyperammonium can lead 

to mental retardation and, in severe cases, coma.7 Water 

retention causes edema and as the concentration of hydrogen 

ions increases, acidosis develops. If untreated, acidosis 

and uremia can cause coma and eventually result in death. 

Thus, the high concentrations of these substances in have 

to be lowered before their increased level results in severe 

disturbances of metabolic pathways. Thus, as the kidney is 

accountable for the elimination of wastes from the blood, 

any damage, either from an accident or disease that causes 

renal insufficiency in the patient, can lead to a build-up of 

toxic waste in the body. Removing urea and ammonia from 

the plasma is not only necessary in kidney failure,1,8–11 but 

also in other diseases like liver failure.1,8,12,13

Treatment options for managing 
renal failure waste metabolites  
and electrolytes
Effective treatments for renal failure and elucidation of 

uremia have traditionally been dialysis or a kidney transplant. 

Only 15% of the world’s uremic patients can afford dialysis 

treatment, as it is a very expensive, time-consuming, and 

complicated technique.4,14–16 About 80,000 Americans on 

dialysis die of various complications each year. As a result of 

the global shortage of kidney donors for kidney transplants, 

high costs linked with transplant surgery, and high probability 

of organ rejection, most patients worldwide have very few 

options for effective treatment after kidney failure. Over 

27,000 patients are on waiting lists for kidney transplants 

each year and only about 11,000 receive transplants. There is 

great urgency in the quest for an unconventional, affordable 

therapy for patients who cannot afford expensive dialysis 

or kidney transplant to keep them alive. Medical scientists 

are attempting to research and develop an innovative, low 

expense therapy that goes beyond the traditional treatment 

for reinstated kidney function. Several alternatives have been 

considered.4,9,10,17–23

In the past few decades, molecular technology has greatly 

influenced the course of biomedical research. Prospective 

medical applications include discovering the genetic basis 

for certain ailments, gene therapy, and production of effectual 

therapeutic agents. A distinguished researcher, Dr Kolff, 

found that creatinine, uric acid, and other nitrogenous wastes 

can easily be removed from plasma with oral sorbents.20 With 

the use of oral absorbents, the interval between hemodialysis 

treatments could be delayed considerably.21 Some researchers 

have proposed and confirmed the use of the co-immobilized 

enzyme, urease, which breaks down urea into ammonia 

which is then eliminated by adsorbents.9,10,17,18 However, 

some scientists report that the currently available ammonia 

adsorbent does not have adequate adsorbent capacity.16,19

An alternative approach has been suggested that would be 

cheaper and more convenient for the patient: an oral therapy 

containing a combination of adsorbents, osmotic agents, 

and ion-exchange agents.24 Chang examined the potential 

of combining a microencapsulated enzyme, urease, with an 

ammonium ion adsorbent, zirconium phosphate, to remove 

urea in vitro. Urease broke down urea to ammonium ions 

which were then adsorbed onto zirconium phosphate. This 

system had the ability to delay the onset of dialysis therapy in 

patients with partial kidney function and may even decrease 

the treatment times for dialysis in some patients.25 Oxystarch 

and urease–zirconium phosphate have been demonstrated to 

be successful in removing urea and ammonia.2,4 However, 

the amount required is too large to allow for use in routine 

treatment of the patients.26 and also markedly small amount 

of urea removal have been reported in vivo, particularly at a 

neutral pH.6,13,15,19,23,27–30

In another approach, a microencapsulated multienzyme 

system that converts urea and ammonia into essential amino 

acids was investigated.13,18,19,28 However, this encapsulated 

multienzyme system had an inadequate urea and ammonia 

conversion rate.31 Thus, the desire for an efficient system 

for urea and ammonia removal is apparent.32 It is essential 

to develop novel approaches to replace kidney function that 

majority of the world can afford. One prospect involves 

creation of a ‘bioartificial/bionic kidney’ in which normal 

renal function are performed by tissue culture cells implanted 

in a hollow fiber or mesh matrix.33 In spite of great potential 

for the bionic kidney, it, too, will be exorbitantly expensive 

and will require extremely skilled personnel. In a recent 

article in the April 2007 issue of The FASEB Journal, Cody 

Mooneyhan described the use of puffer fish gills to excrete 

ammonia at the molecular level using Rh proteins and 

reported that the protein which excretes ammonia through 

puffer fish gills was found to be similar to human Rh blood 

proteins. Thus, by targeting human Rh proteins, people with 

damaged livers and kidneys can eliminate toxic ammonia 

from their bloodstream.34

Stem cells are unspecialized precursor cells that can 

self-renew and develop into specialized cells. Stem cell 

researchers are working towards the ultimate goal of 

production of a new kidney as a mean of kidney therapy. 

This is a complicated challenge since the kidney is made 

from several specialized cell types, each with its own 
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unique function. Another strand of biotechnology that 

holds promise in the treatment of kidney failure is the use 

of bioencapsulated living cells.35 It is possible to geneti-

cally engineer nonpathogenic bacterial cells for a desired 

metabolic activity and they then serve as outstanding 

therapeutic agents. The idea of administering encapsulated 

bacterial enzymes to break down toxic substances was 

first introduced in Finland in 1978.32,36 In one proposed 

system, selected bacteria converted nitrogeneous waste 

products into nontoxic chemicals that could be recycled 

within the subject.24,37 Thus, several approaches to treat 

renal insufficiency have been proposed.4,13,15,16,23,29,30,38–40 

Some researchers suggest the use of microencapsulated 

urease to convert urea into ammonia that is subsequently 

removed by coencapsulated ammonia adsorbent9,14 or as 

mentioned above, some researchers propose administering 

microencapsulated multienzyme complex to convert urea 

and ammonia into essential amino acids9,15,39,28 or using 

lyophilized urea-utilizing soil bacteria.41,42

Microencapsulated cells have also been reported to be 

successful in other medical complications. For example, 

the microencapsulated islet cells were found to remain 

viable and secreted insulin to regulate glucose levels in 

diabetic rats. This approach prevented immunorejection 

after implantation.43 Similarly, microencapsulated hepato-

cytes have been shown to lower the high serum bilirubin 

level to 6.00 ± 1.00 mg/100 mL twenty days after implanta-

tion in Gunn rats. Analysis showed that this was achieved 

because the implanted encapsulated hepatocytes carried out 

the function of the liver in the conjugation of bilirubin44,45 

and enhanced the survival time of fulminant hepatic failure 

in rats.45 Recent reports by another group also support this 

finding.46 The possibility of using live selected bacteria, 

preferably Bacillus pasteurii or Lactobacillus sporogenes, 

in vivo to treat renal, hepatic and gastrointestinal diseases 

by eliminating toxins and other metabolic waste products 

has been proposed.7 The study also showed that a probiotic 

containing either B. pasteurii and L. sporogenes, or both, 

are capable of increasing survival in otherwise untreated 

uremic rats.

In another approach to alleviate uremia or renal 

insufficiency, a mixture comprising of one or more selected 

bacteria (which converts nitrogenous waste into nontoxic 

compounds in vivo), along with one or more of the following: 

a prebiotic, ammoniaphilic bacteria with high urease activity, 

and/or sorbents with specific adsorption affinities for uremic 

toxins and inorganic phosphate along with a water sorbent 

have been proposed.43 A series of probiotics (foods that 

contain ‘beneficial’ bacteria, such as Lactobacillus), along 

with oral adsorbents like charcoal and locust bean gum, have 

also been explored and tested in subjects as a potential oral 

renal replacement therapy.47

There have been rapid advances in molecular biology 

that have resulted in the use of genetically engineered 

microorganisms for remedial purposes. Genetically 

engineered cells that were incapable of surviving passage 

through the gastrointestinal tract have made it successfully 

to their destination by the use of artificial cell microcapsules. 

Microorganisms can be engineered to remove unwanted 

molecules from the body as they travel through the intestine 

and are finally excreted in the stool without being retained 

in the body. This idea has great prospects and it is likely that 

soon trained bacteria will act as a substitute for the kidney 

and liver and perform most endocrine functions.

Microencapsulated genetically modified cells have been 

reported to have enormous potential for the elimination of 

certain metabolites such as urea in kidney failure, ammonia 

in liver failure, and amino acids such as phenylalanine in 

phenylketonuria and other innate errors of metabolism.48 

In addition, genetically engineered encapsulated Erwinia 

herbicola cells have demonstrated an ability to convert 

ammonia into usable amino acids for the cells before being 

eliminated via the bowel. Microencapsulated genetically 

engineered Escherichia coli DH5 cells have also been shown 

to be effective in removal of urea and ammonia in an in vitro 

system and in a uremic rat animal model.49,50 Despite the 

research in this field, we are still looking for a suitable urea 

and ammonia removal system. The most promising approach, 

using microencapsulated bacterial cells for renal therapy, is 

discussed extensively in this article.

Potential of live free  
and encapsulated cells  
in renal failure
About forty years ago, Malchesky first suggested that certain 

natural strains of microorganisms were exceptionally suc-

cessful in degrading urea in vitro. He also reported that these 

microbes can be trained to enhance their ability to degrade 

urea and other compounds normally excreted in urine.51 Soon 

after, Setala pioneered the notion of oral delivery of lyophi-

lized bacteria harvested from soil.36 These bacteria were 

extremely effective in degrading nonprotein nitrogenous 

compounds in uremic patients.

Later, in the 1990s, Chang established the concept of 

delivery of microencapsulated genetically modified bacteria to 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Biologics: Targets & Therapy 2009:3236

Jain et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

63.0 ± 26 mg/dl, respectively compared to a previous 

concentration of 99.0 ± 46 mg/dl. This reduction of 38% 

and 37%, respectively indicated that B. pasteurii and 

L. sporogenes administered orally as dietary supplements 

could metabolize urea in vitro.7

Alternatively, the use of probiotics in removal of plasma 

urea has also been explored. Suspension of L. delbrueckii 

in uremic plasma reduced the urea nitrogen levels from 

51.5 ± 5.2 mg/dL to 44.3 ± 3.9 mg/dL (p = 0.02) after 24 hours 

in vitro. With microencapsulation of Lactobacillus (inside 

semipermeable alginate–polylysine–alginate polymeric 

membrane [APA]), further lowering of urea nitrogen levels 

was achieved (35.4 ± 0.8 mg/dL, p = 0.03) at 24 hours. It is 

proposed that expression of certain enzymes could be induced 

in L. delbrueckii which can then effectively lower plasma 

urea60 and possibly other waste metabolites in uremia.

Recently, Chang and Prakash proposed the use of 

microencapsulated genetically engineered bacterial cells to 

remove plasma urea and ammonia. In vitro, 40.00 ± 8.60 g 

of APA-encapsulated bacteria were shown to remove 

87.89 ± 2.25% of the plasma urea within 20 minutes and 

99.99% of urea in 30 minutes. Bacterial cells were reported to 

use urea for their metabolic nitrogen requirement and did not 

produce ammonia as a by-product.57 Thus, results demonstrate 

that this biotechnological approach is 10–30 times more com-

petent in eliminating urea and ammonia than the currently 

available traditional approaches.31

In a different study, surgical renal failure induced in rats 

(removal of one kidney and the partial ligation of the other) 

resulted in a substantial increase in blood urea levels without 

noticeable disturbances in water and electrolyte balances. 

A drop in the plasma urea level from 52.08% ± 2.06% mg 

to 9.10% ± 0.71% mg was observed upon daily oral 

administration of log phase microencapsulated genetically 

engineered E. coli DH5 cells for 21 days. The plasma urea 

level was maintained within the normal range during the 

entire treatment period. The urea levels became elevated 

once the treatment was stopped.61,62 It is hypothesized that 

during the passage of microcapsules through the gastroin-

testinal tract, small molecules from the body, such as urea, 

ammonia, amino acids, etc., diffuse into the microcapsules 

where they are metabolized by genetically engineered cells 

for their nitrogen source before being excreted in the stool. 

This results in lowering the high plasma urea level to standard 

levels in uremic rats with induced kidney failure.32 Since 

urea levels returned to pretreatment values upon stopping the 

treatment, it is implied that there is no significant retention 

of E. coli DH5 cells in the intestine.63

degrade nitrogenous waste products in uremic patients in vivo 

as well as in vitro. The procedures for microencapsulation of 

biologically active materials are well recognized and offer 

various biomedical applications.9,11,13,17,22,31,52–54 Thus, the 

possibility of using bacterial cells to treat kidney failure has 

been explored for over four decades. Research in the field 

of artificial cell microcapsules revealed the possibility of 

oral administration of live genetically engineered cells for 

therapeutic functions.32,55 This concept has direct relevance 

for the use of encapsulated bacterial oral therapy in renal 

failure and liver failure,32 physiologically responsive gene 

therapy,56,57 and somatic gene therapy.58,59 Modern techno-

logical advances in molecular biology have resulted in the 

accessibility of nonpathogenic genetically engineered micro-

organisms that can effectively use uremic metabolites for cell 

growth. This paper is an overview of the options available 

to overcome renal sufficiency. One of the options discussed 

extensively is the current research on using microencapsu-

lated bacterial cells such as E. coli DH5 to degrade waste 

metabolites such as urea, uric acid, and creatinine among 

others, as an improved therapy of renal failure. The results 

obtained upon oral administration of microencapsulated 

bacterial cells to degrade such waste metabolites in uremia 

are summarized here.

Potential of encapsulated cells  
in renal failure urea removal
Renal insufficiency results in an elevated plasma urea level. 

Several approaches have been suggested to degrade plasma 

urea. In the 1980s, the novel approach of using encapsu-

lated bacteria was shown to be 10 times more efficient in 

degrading urea than oxystarch. One gram of oxystarch was 

found to adsorb only 103.00 mg of urea at pH 7.4 at a urea 

concentration of 0.02 M.5 Thus, to eliminate 40 g of urea 

from 40 L fluid (100 mg/dL urea), 388.34 g of oxystarch 

was required. Microencapsulated genetically engineered 

bacteria were reported to be 30 times more efficient com-

pared to microencapsulated enzyme urease–zirconium 

phosphate. The encapsulated urease–zirconium-phosphate 

system only eliminated 1.60 mg of urea nitrogen or 33.00 mg 

urea/g of microcapsules.5 Therefore, massive quantities of 

microcapsules containing this system were needed to suc-

cessfully remove 40 g of urea from the body.

Certain bacterial cells are reported to be very effec-

tive in lowering BUN levels in vivo. When partially 

nephrectomized rats were orally given B. pasteurii and 

L. sporogenes, the BUN levels were lowered to 62.0 ± 21 and 
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One can argue about the potential toxicity due to 

the leakage of encapsulated cells during their passage 

through the intestinal tract. In the in vivo studies, the oral 

administration of both free and encapsulated bacteria to 

uremic rats lowered systemic urea from the initial 52.08 

(SD = 2.37) mg/dl to 10.58 (SD = 0.85) mg/dl. However, 

the free E. coli DH5 cells were found to be retained in the 

intestine and when the treatment ceased, the free bacteria 

were still able to lower systemic urea.62 Unlike free bacteria, 

microencapsulated bacteria were excreted in the stool. The 

results showed that, even if all the E. coli DH5 cells leaked 

out, there would be no negative effect on the growth and/or 

survival of the renal failure rats.64 It is reported that uremic 

rats survived longer when they received encapsulated E. coli 

DH5 cells.64,65

Potential of encapsulated cells  
in renal failure ammonia removal
The fate of ammonia during urea removal by daily administration 

of microencapsulated genetically engineered bacteria has 

also been examined. The blood ammonia levels that were 

always present in the range of 539 ± 51 µM decreased 

significantly to 144 ± 24.70 µM.32 In vitro, 40.00 ± 8.60 g 

of APA-encapsulated bacteria have been reported to lower 

ammonia from 975.14 ± 70.15 µM/L to 81.151 ± 7.37 µM/L 

in 30 min.31 The most recent studies in uremic rats also 

showed a reduction of other waste metabolites such as, uric 

acid, creatinine, potassium, and phosphate.55,66,67

Potential of encapsulated cells  
in renal failure creatinine removal
High level of plasma creatinine occurs in renal insufficiency, 

uremia, and other diseases. Serum creatinine levels were 

reported to be lowered in rats fed with B. pasteurii and 

L. sporogenes from 0.9 ± 0.25 mg/dl and 0.9 ± 0.2 mg/dl, 

respectively compared to a previous concentration of 

1.5 ± 0.56 mg/dl. A substantial reduction of approximately 

40% in both groups was observed. These results indicate that 

B. pasteurii and L. sporogenes administered orally as dietary 

supplements metabolize creatinine in vitro.43

Daily administration of microencapsulated genetically 

engineered E. coli DH5 cells have resulted in lowering 

plasma creatinine in vitro and in vivo. Results demonstrated 

that these artificial cells were able to lower plasma creatinine 

in vitro from 21.80 ± 1.10 mg/dl to 19.34 ± 0.60 mg/dl in three 

hours.67 It would be interesting to see if the creatinine levels 

were elevated again upon cessation of the oral treatment.

Potential of encapsulated cells  
in renal failure uric acid removal
Increase in systemic uric acid occurs in renal insufficiency. 

Recently, a proposal was put forth to use artificial cells 

containing microencapsulated genetically engineered E. coli 

DH5 cells for lowering uric acid in vitro and in vivo. Results 

show that genetically engineered bacteria have the ability 

to significantly lower uric acid from 84.80 ± 3.40 mg/dl 

to 9.32 ± 0.05 mg/dl in vitro. They were also capable of 

lowering uric acid levels from the plasma of the experimen-

tal animals from the control levels of 71.00 ± 27.49 mg/dl to 

20.33 ± 17.92 mg/dl in vivo.55 Continued daily oral adminis-

tration reduced the plasma uric acid concentration to normal 

range in uremic rats during the entire test period. Its potential 

in the removal of uric acid may have significance in uremia.

Potential of encapsulated cells  
in removal of other renal failure 
waste metabolites
Lowering of plasma magnesium, phosphate, sodium, chlo-

ride, uric acid, cholesterol, and creatinine is essential in 

uremia and other diseases.5,68 Microencapsulated genetically 

engineered microorganisms have been prepared that can 

remove waste metabolites such as potassium, phosphate, 

magnesium, sodium, chloride, uric acids, cholesterol, creati-

nine, and bilirubin in vitro. This has a significant implication 

in the use of oral microencapsulated genetically engineered 

microorganisms in uremia. These artificial cells were effec-

tive in removing the majority of waste metabolites from the 

plasma as summarized in Table 1. Further studies will reveal 

whether administration of the microencapsulated E. coli 

cells will cause a similar reduction of the above mentioned 

electrolytes and waste metabolites in vivo. This has exciting 

implications for the use of genetically engineered cells in 

a number of medical applications. However, encapsulated 

E. coli DH5 cells could not efficiently remove creatinine 

from the plasma. After 24 hours of incubation with encap-

sulated bacteria, 83.31% ± 2.40% plasma creatinine was 

found remaining.69

All of the uremic metabolites tested, urea, cholesterol, 

uric acid, potassium, phosphate, magnesium, chloride, 

sodium and to a certain extent creatinine, are lowered to 

within normal levels without elevation of ammonia. The 

effectiveness of this approach was explored by studying 

the survival and growth of the renal failure rats receiving 

microcapsules containing genetically engineered E. coli 

DH5 cells. In this respect, untreated uremic control animals 
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progressively more viable prospect because of the increasing 

advancement in genetic engineering and molecular biology. 

There has been an extensive growth in technical research 

in molecular biology leading to the generation of many 

genetically engineered microorganisms with unique and 

exceptional abilities. Microorganisms have been easily 

manipulated to overproduce enzymes and peptides and 

some have been engineered to metabolize large amounts of 

unwanted metabolites.

Recently, Prakash and Chang31,32,71 have reported oral 

administration of microencapsulated genetically engineered 

E. coli cells containing the Klebsiella aerogenes urease 

gene that causes the overexpression of the urease enzyme 

efficiently removes urea from the reaction media. Micro-

encapsulated genetically engineered E. coli cells have the 

competence of efficiently removing urea without any increase 

in the ammonia levels in the medium.69 Using a single pool 

model, 40 g of microencapsulated genetically engineered 

E. coli cells could lower urea in 40 liters of the body water 

from 100 mg/dl to 1.60 mg/dl within 30 minutes. Also, 

40 g of this microorganism was shown to lower ammonia 

in 40 liters of body water from 758.00 µM/l to 90.42 µM/l 

in as little as 20 minutes. Extrapolated results imply that 

the ability of microencapsulated bacteria to degrade urea 

is adequate to eliminate urea during renal insufficiency.72 

Analogous reductions in blood levels of other metabolites 

have also been reported, implying that the DH5 cells have the 

capacity to regularize levels of several elevated metabolites 

during renal failure.32,58,73 Detailed studies have been done on 

the optimization of procedural parameters for encapsulation 

of bacterial cells in the APA membrane and the profiles of 

genetically engineered microencapsulated bacteria to effec-

tively remove urea and ammonia and the efficacy of urea and 

ammonia removal in vitro.31 In addition to its potential use 

in uremia, the removal of waste metabolites such as urea, 

ammonia, uric acid, bilirubin, and others are also required in 

other medical conditions such as liver failure.43

died during the study period of 21 days, whereas the treated 

animal continued to survive and grew at about the same 

rate as normal animals.64 Another alternative to the oral 

administration of microencapsulated genetically engineered 

cells has been proposed by some researchers: the long-term 

implantation of cells. This can be an effective therapy for 

various conditions but will take numerous years to perfect. 

In the meantime, several researchers are looking into other 

approaches for a more immediate clinical application. For 

example, Aebischer’s group suggested the ingenious use of 

capillary fibers to encapsulate cells that has permitted his 

group to insert these subcutaneously into the cerebrospinal 

fluid on a short-term basis.70 The capsules can be replaced as 

needed,70 and, so far, no immunological sensitivity to the cap-

sules is obvious. This approach evades the problems posed by 

permanent or long-term implantation of microcapsules. The 

oral administration of microencapsulated genetically engi-

neered cells obviates the problems of implantation. However, 

it can be used only for diseases where waste metabolites can 

be eliminated from the gastrointestinal tract, such as in liver 

or kidney failure and in some innate errors of metabolism 

such as phenylketonurea.48 Evidently, the clinical use of 

microencapsulated genetically engineered cells could require 

a combination of different approaches, including implanta-

tion, subcutaneous insertion, and oral administration, to treat 

different conditions.63

Immobilized bacteria have demonstrated an unlimited 

capacity to deplete cholesterol levels in vitro.57 However, 

for practical applications, suitable bacteria with an enhanced 

ability to degrade cholesterol are desirable. There is a strong 

possibility that this method may become accessible in the 

near future with the help of genetic engineering. Research 

in other systems such as using bioencapsulated hepatocytes 

has shown promising results and demonstrated the feasibility 

of using this for cell therapy.57 Further enhancement in 

biocompatibility may allocate this approach to be used 

for cell and gene therapy in humans. This is becoming a 

Table 1 removal of electrolytes by microencapsulated genetically engineered E. coli DH5 cells in vitro69

Metabolites Concentration at 0 hours Concentration at 24 hours

Potassium 5.80 ± 0.40 meq/l 3.50 ± 0.03 meq/l (p  0.001)

Phosphate 2.20 ± 0.9 mg/dl 1.49 ± 0.03 mg/dl (p  0.005)

Magnesium 0.90 ± 0.04 mg/dl 0.66 ± 0.09 mg/dl (p  0.005)

Sodium 172 ± 11.00 meq/l 129 ± 6.12 meq/l (p  0.001)

Chloride 137 ± 6.60 meq/l 107 ± 2.00 meq/l (p  0.005)

Uric acid 84.80 ± 3.40 mg/dl 8.80 ± 3.12 mg/dl (p  0.001)

Cholesterol 1.86 ± 0.10 mmol/l 1.37 ± 0.06 mmol/l (p  0.005)
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O’Loughlin and colleagues have recently undertaken 

a study to demonstrate the competence of a combination 

of genetically engineered bacteria to lower elevated levels 

of metabolites such as urea and uric acid. Two strains of 

genetically modified bacteria, one expressing enzyme 

‘urease’ to degrade urea and the other expressing enzyme 

‘uricase’ to degrade uric acid, were prepared, combined and 

encapsulated in APA microcapsules for oral administration. 

Within 24 hours, 5 mL of these capsules were capable of 

successfully eliminating 95% of the urea and over 99% of 

the uric acid in vitro from a 100 mL solution formulated to 

mimic the concentration of these solutes in a hemodialysis 

patient.74 This approach could potentially serve in conjunc-

tion to maintenance dialysis in patients with chronic renal 

failure. However, reduction of urea concentration in vivo 

required coadministration of an ion-exchange resin to adsorb 

ammonia. Reduction of uric acid concentration in vivo 

was very efficient and did not require the administering 

Table 2 Potential of using cells as a mode of therapy for renal failure and other diseases

Renal failure markers and disease  
conditions

Cell types Potential mode  
of therapy

Reference

Urea in renal failure, amyotrophic lateral sclerosis Free live E. coli DH5 Oral 58, 62

Microencapsulated genetically 
engineered bacteria

Oral 31, 49, 57, 63, 66, 71, 73, 74

Microencapsulated E. coli DH5 Oral 62

E. coli with Klebsiella aerogenes 
expressing urease

Oral 72

Soil bacteria Oral 41, 42

Encapsulated genetically modified 
xenogenic cells

intrathecal delivery 70

Selected probiotic (B. pasteurii, 
L. sporogenes), ammoniaphilic bacteria

Oral 7, 43, 50

Probiotic microencapsulated  
L. delbrueckii

Oral 50, 65

Microencapsulated multienzyme 
complex

Oral 9, 15, 28, 39

Ammonia in renal failure and liver disease Microencapsulated multienzyme 
complex

Oral 9, 15, 28, 39

Soil bacteria Oral 41, 42

Microencapsulated genetically 
engineered bacteria

Oral 31, 32, 43, 49, 50, 57

Microencapsulated E. coli DH5 Oral 57, 71

Uric acid in renal failure Microencapsulated genetically 
engineered bacteria

Oral 43, 66, 69, 74

Microencapsulated E. coli DH5 Oral 55, 66, 67

Creatinine in renal failure and other diseases Microencapsulated genetically 
engineered bacteria

Oral 66, 69

L. sporogenes, B. pasteurii Oral 43

Microencapsulated E. coli DH5 Oral 55, 66, 67

Other metabolites; potassium/phosphate/ 
magnesium/sodium/chloride in uremia and other 
diseases

Microencapsulated genetically 
engineered microorganisms

Oral 69

Nonprotein nitrogenous compounds in uremia Lyophilized soil bacteria Oral 41, 42

insulin in diabetes Microencapsulated islet cells implantation 43

Serum bilirubin in fulminant hepatic failure rats encapsulated hepatocytes implantation 44–46

Microencapsulated genetically 
engineered microorganisms

Oral administration 43, 55, 66, 67, 69

Toxins and other metabolic wastes in renal, hepatic 
and gastrointestinal diseases

Live selected bacteria: B. pasteurii 
and L. sporogenes

Oral administration 7
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of ion-exchange resin. Oral delivery of a combination of 

genetically engineered bacterial cells should be further 

investigated as a valuable accessory to dialysis and/or to 

immunosorption for the treatment of uremia74 in chronic 

kidney failure models.

O’Loughlin and colleagues pioneered the approach of 

using a combination of enzymes in a single delivery vehicle 

to degrade multiple uremic toxins in a nonbacterial system. 

An alginate microcapsule was developed that contained 

three enzymes, urease, uricase, and creatininase, which are 

capable of effectively degrading urea, uric acid, and creati-

nine, respectively, and are significantly elevated in patients 

with renal insufficiency. The microcapsules were evaluated 

both in vitro and in vivo in a rodent model. In vitro, 5 mL of 

the capsules equipped with a few milligrams of the enzymes 

within 24 hours effectively degraded 100% of the uric acid, 

97% of the urea, and 70% of the creatinine in a 100 mL for-

mulated solution that mimicked the concentration of these 

solutes in uremic plasma. In vivo experiments involved a 

chemically induced acute renal failure rat model to evalu-

ate the ability of encapsulated enzymes along with an oral 

sorbent (ion-exchange resin) to degrade uremic toxins.75 

This approach has the potential to be extended to a bacterial 

system and has considerable prospect of being to be used in 

conjunction therapy in the treatment of ESRD.

Oral administration of encapsulated 
cells live cells as potential renal 
failure kidney substitute
It has recently been demonstrated that daily oral administra-

tion of artificial cells microcapsule containing a genetically 

engineered microorganism has potential as a renal failure 

kidney substitute. Furthermore, these genetically modified 

bacteria also have the ability to remove potassium, phosphate, 

uric acid, and other waste metabolites from uremic plasma. 

Future research may lead to the efficient and effective use 

of microencapsulated genetically modified bacteria as thera-

peutic agents.58

The accessibility of an oral bacterial therapy has the 

potential to save over 400,000 lives worldwide each year. 

Research has demonstrated that these microencapsulated 

genetically engineered bacteria are much more successful in 

removing ammonia than any method currently available.31,32,75 

If further detailed investigation convinces us about the 

efficacy and safety of this approach for urea removal, it 

might be possible to use this technology to remove waste 

metabolites such as urea, ammonia, creatinine, and uric acid 

in uremic patients with chronic renal failure. Because of 

these encouraging results, further research will concentrate 

on experimental design to use the concept of oral administra-

tion of genetically engineered bacterial cells in combination 

with other technologies for in vivo use. Thus, this approach 

will complete the currently available oral therapy for uremia 

using adsorbents, ion-exchange resins, and osmotic agents. 

The oral administration approach might therefore also be 

applicable for the removal of ammonia in other diseases such 

as chronic liver failure.

The use of microencapsulated bacterial cells has potential 

application not only in renal insufficiency, innate errors of 

urea metabolism, but also in liver insufficiency and gastro-

intestinal disorders and diseases.43 The feasibility of oral 

administration of polymeric artificial cells containing geneti-

cally engineered cells for the specific removal of undesirable 

amino acids in some innate errors of metabolism as in phe-

nylketonurea48 has been reported. Further detailed studies on 

efficacy and safety are required before this promising new 

approach can be fully recognized and applied.

Microencapsulated genetically modified cells can be 

administered orally to a subject with uremia to alleviate the 

symptoms of uremia. Depending on the extent of renal dam-

age in the patient suffering from uremia, with this oral therapy 

the patient either will not require dialysis, require dialysis less 

frequently, and for shorter periods, or maybe will not require 

initiation of dialysis as early as would be needed without 

treatment. In initial stages of ESRD, before fluid retention, 

genetically modified bacterial cells can be administered 

orally alone. However, in later stages with fluid retention in 

patients, the oral approach could be combined with minute 

quantities of an oral osmotic agent such as mannitol,24 to 

remove about a liter of fluid per day. Recent demonstrations 

have implied that daily dialysis avoids large fluctuations in 

the systemic waste metabolites. This oral approach could 

be used as in combination with standard dialysis to prevent 

large fluctuations in the systemic waste metabolites. The 

swift and proficient removal of uric acid may have added 

potential applications in hyperuricemia, such as in gout and 

in chemotherapy.66 Future studies will unveil the potential use 

of encapsulated genetically engineered bacteria for removal 

of urea and ammonia in biotechnology, chemical engineering, 

and biomedical applications.31

Will a combination of microencapsulated E. coli DH5 

cells to deplete urea, and oral adsorbents and osmotic agents 

to regulate water, electrolytes, and other uremic waste 

metabolites remove the need for dialysis entirely in patients 

with kidney failure?63 Will the oral administration of these 
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genetically modified bacterial cells to uremic patients result 

in decreased frequency of dialysis or perhaps even decreased 

dialysis treatment times?51 Further research could conceiv-

ably produce an alternative treatment of chronic renal failure 

and provide an insight for the future direction of this emergent 

and highly prospective technology. This also has potential 

applications in cell and gene therapy.57

Conclusion
Kidney failure leads to uremia, a complicated syndrome 

associated with increased levels of unwanted metabolites 

and electrolytes.3–5 It becomes essential to remove waste 

metabolites and regulate water and electrolytes in patients 

with renal insufficiency. Standard treatment by dialysis or 

transplantation is very effective but is extremely expensive and 

unaffordable by the majority of the world. Researchers of other 

approaches including absorbents, are faced with one major 

challenge, the need to remove large amounts of urea, ammonia, 

and other waste metabolites and electrolytes.4–6,16,19,22,23,28,76 

Currently, artificial cells are being investigated with great 

optimism for use in the replacement of cell and even organ 

functions, especially related to metabolic functions in the 

treatment of diseases such as diabetes, liver failure, and 

kidney failure. When artificial microencapsulated cells are 

given by implantation,13,36,77–80 The problem of retention in the 

body is eliminated due to the use of polymeric membranes. 

Orally administered microencapsulated live cells warrants 

investigation as a supplement to the routine dialysis system 

to avert large fluctuations in the systemic waste metabolites 

and electrolytes. Further detailed analysis, particularly on 

safety studies are vital. If proven safe, this approach of using 

microencapsulated live cells will be an economical means 

for managing renal failure redundant waste metabolites and 

electrolytes.
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