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Abstract: Alzheimer’s disease (AD) will affect around 115 million people worldwide by the year 

2050. It is associated with the accumulation of misfolded and aggregated proteins (β-amyloid and 

tau) in the senile plaques and neurofibrillary tangles found in the brain. Currently available drugs 

for AD only temporarily alleviate symptoms and do not slow the inevitable progression of this 

disease. New drugs are required that act on key pathologies in order to arrest or reverse cognitive 

decline. However, there has been a spectacular failure rate in clinical trials of conventional small 

molecule drugs or biological agents. Targeted nanoliposomes represent a viable and promising 

drug delivery system for AD that have not yet reached clinical trials. They are biocompatible, 

highly flexible, and have the potential to carry many different types of therapeutic molecules 

across the blood–brain barrier (BBB) and into brain cells. They can be tailored to extend blood 

circulation time and can be directed against individual or multiple pathological targets. Modi-

fications so far have included the use of brain-penetrating peptides, together with Aβ-targeting 

ligands, such as phosphatidic acid, curcumin, and a retro-inverted peptide that inhibits Aβ 

aggregation. Combining several modifications together into multifunctional liposomes is cur-

rently a research area of great interest. This review focuses on recent liposomal approaches to 

AD therapy, including mechanisms involved in facilitating their passage across the BBB, and 

the evaluation of new therapeutic agents for blocking Aβ and/or tau aggregation.

Keywords: amyloid, blood–brain barrier, cell-penetrating peptides, neurofibrillary tangles, 

senile plaques, tau

Introduction
Alzheimer’s disease (AD) affects 36 million people worldwide, and this number is set 

to rise to over 115 million by 2050, as populations age.1 AD is a neurodegenerative dis-

order that severely affects the functioning of the brain, triggering widespread neuronal 

and synaptic loss, memory impairment, and cognitive and behavioral disturbances.2 

A major hypothesis regarding the underlying cause of AD is that the progressive accu-

mulation of protein aggregates in the brain leads to neurodegeneration and dementia3 

(see Karran and de Strooper4 for a critical review). These protein aggregates include 

extracellular senile plaques, containing the β-amyloid (Aβ) peptide, and neurofibrillary 

tangles (NFTs), consisting of intra-neuronal paired helical filaments (PHFs) composed 

of hyper-phosphorylated tau protein.5 Aβ spontaneously and progressively aggregates 

to form oligomers and amyloid fibrils, with oligomers being a strong candidate for 

inducing synaptic damage and memory deficits in AD.6 However, AD is likely to be a 

multifactorial disorder, with many mechanisms, including NFT formation, contribut-

ing to neuronal cell damage.

It is well established that Aβ and tau underlie the neuropathology of AD, but 

many aspects of the neuropathogenesis of this disease remain unanswered. There is 
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good evidence that aggregation and accumulation of these 

molecules induce membrane damage and oxidative damage 

through an increase in free radical production and promotion 

of pro-inflammatory processes.7–9 NFT formation is also likely 

to interfere with axonal transport systems. The drugs currently 

available for the treatment of AD (acetylcholinesterase inhibi-

tors [AChEIs] and the NMDA antagonist memantine) do not 

target any of these underlying disease mechanisms10 and do 

not slow down the long-term progression of the disorder. 

Instead, they provide only temporarily improved cognition by 

counterbalancing neurotransmitter disturbances, in addition 

to having many limitations and side effects.11 It is therefore 

essential to develop alternative therapies, with minimal 

adverse side effects, which aim to prevent, slow or reverse 

the neurodegeneration responsible for AD. Unfortunately, 

clinical trials on 200 drugs, with different molecular targets, 

have so far failed to find a therapeutic approach that arrests 

or reverses cognitive decline in patients with AD.12–14

Any effective treatment for AD would most likely require 

the therapeutic agent concerned to be transported across the 

blood–brain barrier (BBB),15 which prevents access to the 

brain of around 98% of potential neuropharmaceuticals.16 

Liposomes are a biocompatible and highly flexible drug 

delivery system, with the potential for carrying many dif-

ferent types of bioactive molecules across the BBB. The 

therapeutic potential of liposomes was recognized shortly 

after their development in 1961, but only recently they 

have been considered as a suitable vehicle for the delivery 

of drugs that act on the central nervous system (CNS).17,18 

Their physiological composition facilitates numerous modi-

fications, in comparison with other nano-carriers. Simple 

“non-targeted” liposomes can carry a drug cargo into the 

brain (eg, via the olfactory route, see “Intranasal delivery” 

section), but modified “targeted” liposomes are required for 

effective delivery across the BBB and can also be designed 

to interact with specific molecular targets relevant to the 

treatment or prevention of AD. Liposomes can incorporate 

hydrophilic or lipophilic/hydrophobic therapeutic agents, 

where hydrophilic drugs are entrapped in the aqueous core, 

and lipophilic compounds are contained in the hydrophobic 

region of the lipid bilayer.19 Moreover, various types of 

therapeutic agent can be attached to the surface of the lipo-

somes. These various configurations can be combined to give 

a targeted multi-drug delivery system, which is particularly 

relevant for the treatment of any multifactorial disease. These 

attractive properties of liposomes have provoked an interest 

in their development as a possible new and effective therapy 

for AD. This narrative review presents our own perspective 

on recent and promising liposome approaches to AD therapy, 

including mechanisms involved in facilitating their passage 

across the BBB, and the evaluation of new therapeutic agents 

for blocking Aβ and/or tau aggregation.

The BBB
The BBB is a metabolic and transport barrier that protects 

the brain from harmful stimuli. It comprises brain capillary 

endothelial cells that are attached to each other through tight 

junctions, resulting in restricted paracellular transport.20,21 

Degrading enzymes are also present at the BBB, which 

can destroy molecules during their attempted passage into 

the brain.22 However, specific mechanisms are in place for 

the BBB transport of molecules that are essential for brain 

function,23 and these can be exploited for therapeutic drug 

delivery.

Early strategies for BBB transportation
Passive diffusion permits the passage of some small lipo-

philic compounds across the BBB, such as certain amino 

acids, nucleosides, and small peptides. An early strategy 

utilized this simple mechanism by developing small lipo-

philic drugs that might pass through the endothelial cells. 

However, this excluded the vast majority of potential thera-

peutic molecules. A second approach was to develop small 

water-soluble drugs, in order to facilitate BBB transport via 

the paracellular hydrophilic diffusion pathway. However, 

most of these potential molecules could not penetrate past 

the tight endothelial cell junctions.24

Alternatives
Intracerebral or intracerebroventricular injection of drugs 

provides a strategy that avoids the BBB, but these procedures 

are highly invasive, and so are not widely used. Drugs admin-

istered by any peripheral route (eg, orally or by intravenous 

injection) will encounter the BBB.25 Alternative methods, 

such as bypassing the BBB by delivery through the olfactory 

region (eg, as a nasal spray) have some potential.26–28 Another 

strategy looks to utilize existing active BBB transport mecha-

nisms, namely carrier-mediated transcytosis (also known 

as transporter-mediated transcytosis), receptor-mediated 

transcytosis, cell-mediated endocytosis, and adsorptive 

transcytosis (Table 1).29

Liposomal approaches 
to AD therapy
Several different types of nanoparticles (eg, solid lipid, mag-

netic, dendrimers, and liposomes) are under development 
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Table 1 Transport mechanisms for BBB transit and brain delivery

Transport mechanism Explanation Examples

Carrier-mediated  
transcytosis

Some essential materials required in the brain have specific  
transporters for active uptake across the BBB. Drugs can  
exploit these transporters for brain delivery

Glutathione46

Glucose49

Receptor-mediated 
transcytosis

Receptors on the BBB endothelium can bind specifically  
with corresponding ligands and trigger internalization. Drugs  
can incorporate these ligands, or their modified forms, for  
enhanced brain penetration

Transferrin receptor104

Insulin receptor105

Lactoferrin receptor106

Cell-mediated endocytosis Endocytosis into endothelial cells can deliver drugs across the  
BBB. This mechanism is almost unique to the action of CPPs  
which exhibit various features to trigger transportation, and  
they are often highly positively charged

TAT64

Penetratin107

Polyarginines108

Adsorptive transcytosis Adsorptive-mediated targeting utilizes a modified, positively  
charged biological macromolecule for interaction with the  
negatively charged BBB, based on electrostatic attraction

Cationized bovine serum albumin109

Cationized immunoglobulins/monoclonal 
antibodies105

Abbreviations: BBB, blood–brain barrier; CPPs, cell-penetrating peptides; TAT, transactivator of transcription of human immunodeficiency virus.

as possible vectors for AD therapy. A popular strategy is 

to aim for optimum brain selectivity by targeting receptors 

or transporters that are highly expressed at the BBB, and 

improving stability, for example, by using non-natural amino 

acids in the case of peptide drugs, so that they are resistant to 

proteolysis.30 A second route considers intranasal administra-

tion of the active compounds, without any BBB interruption. 

Recent studies have begun to focus on liposomes as a possible 

carrier of drugs for the treatment of AD.31–33

BBB transport
Possible mechanisms for the transport of liposomes across 

the BBB have been highly debated.25 An initial theory was 

that the phospholipid bilayer of the liposomes on its own 

might facilitate transportation across various biological 

membranes, including the BBB, but this simple mechanism 

proved to be ineffective. Modifications proposed for enhanc-

ing the transport of liposome carriers across the BBB utilize 

the existing active transport mechanisms, involving absorp-

tive, carrier- or receptor-mediated transcytosis.34 Absorptive 

methods take advantage of the BBB’s negative charge. Cat-

ionic liposomal drug vehicles have been developed that can 

trigger cell internalization through electrostatic interactions. 

However, the nonspecific uptake of the cationic liposomes 

by peripheral tissues and their binding to serum proteins has 

meant that a toxic dose would often be required to reach 

therapeutic efficacy,35 thus limiting therapeutic potential. 

Carrier-mediated transcytosis utilizes nutrients capable of 

passing across the BBB, such as glucose and glutathione 

(GSH), that can be attached to the surface of liposomes 

and facilitate translocation.19 Ultimately, receptor-mediated 

transcytosis has great potential for success, since there are 

possibilities to target one or more of the many different recep-

tors at the BBB by using their respective ligands. Yet there 

is still substantial interest in direct penetration of the BBB 

membrane, which has been achieved largely through the use 

of cell-penetrating peptides (CPPs) (Figure 1).

Intranasal delivery
A second route involves the intranasal administration of 

liposomes. This strategy avoids the BBB by offering direct 

nose-to-brain absorption through the olfactory and trigeminal 

nerves. Liposomal encapsulation of compounds can result in 

improved penetration via this route, by protecting them from 

degradation and facilitating their transport across the mucosal 

barrier. A recent study has demonstrated effective administra-

tion of a liposome-encapsulated “β-breaker” peptide, known 

as H102, using this strategy.27 Results showed satisfactory 

drug concentrations in the brain, with limited toxicity. Thus, 

the intranasal route offers a promising alternative to BBB 

transport and delivery.

Vesicle optimization
Liposome size
Liposome size, as well as lipid composition, affects their 

circulation in the bloodstream and uptake into the brain.36,37 

Brain delivery requires liposomes to be roughly nano- or 

microsized and consists of one or more lipid bilayers sur-

rounding an aqueous core. Only certain sizes will allow pas-

sage across the BBB for neurotherapy (such as in AD) and so 

small vesicles (100 nm and less) are often preferred. There 

are studies, however, that have shown that liposomes from 

100 to 140 nm have certain advantages, such as a longer half-

life in blood circulation and avoidance of plasma proteins. 
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Large nano-liposomes (250 nm in diameter) are cleared twice 

as fast as 100 nm liposomes.38 Yet, liposomes 100 nm and 

smaller have more limited storage capacity, leading to poor 

encapsulation efficiency.39 A consideration of size should be 

made based on factors such as their therapeutic application, 

encapsulation efficiency, and stability.

Lipid composition
Phospholipids commonly used in liposomes include synthetic 

lipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

and ethyl-phosphatidylcholine, or natural lipids such as 

phosphatidylcholine (PC), sphingomyelin (SP), and leci-

thin (LC). Natural lipids are at risk of contamination from 

viruses, prions, or toxins, especially if they are isolated 

from a mammalian source, for example, bovine brain. They 

are, however, cheaper in large-scale production, use fewer 

solvents and other chemicals in their extraction, and are more 

readily accepted by regulatory authorities, especially when 

derived from a non-animal (eg, plant) source. Cholesterol is 

often added to liposomes during assembly, which not only 

maintains the stability of membranes in vivo and in vitro 

but also reduces permeability and alters the structure and 

function of the vesicles.40

Aβ has been shown to insert preferentially into any 

anionic phospholipids incorporated into liposomes, which 

could have a protective effect, by removing toxic Aβ.41,42 The 

majority of treatments aimed at AD have used PEGylated 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG 

2000 (DSPE) to improve circulation time (see “Stealth lipo-

somes” section), although wheat germ agglutinin, chitosan, 

silk fibroin, and polyvinyl alcohol have also been used to 

achieve similar “stealth” properties.

Figure 1 Promising liposomal BBB transport mechanisms.
Notes: Receptor-mediated transcytosis exploits receptors highly expressed at the BBB (eg, transferrin receptor). Receptor ligand binding triggers internalization and 
brain delivery. A relatively new mechanism, direct penetration, involves internalization primarily exhibited by CPPs (eg, TAT). Positively charged amino acids (+++) permit 
endocytosis by interacting with the negatively charged endothelial cell membrane (− − −). Once in the brain, multifunctional liposomes can be directed at an appropriate 
target (eg, at Aβ or tau) for AD therapy.
Abbreviations: BBB, blood–brain barrier; CPPs, cell-penetrating peptides; Aβ, amyloid-β; AD, Alzheimer’s disease; TAT, transactivator of transcription of human 
immunodeficiency virus. 
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Liposome modifications
Liposomes can be functionalized in various ways in order 

to realize their potential as a therapeutic carrier (Figure 2). 

Modification can involve the attachment of molecules to the 

exterior, or the encapsulation of molecules internally, either 

in the aqueous core or lipid bilayers.19 Figure 2 considers 

possible modifications to liposomes that are particularly 

relevant for the treatment of AD.

Stealth liposomes
Simple liposomes are covered by plasma proteins (eg, fibrino-

gen, immunoglobulins, and complement proteins) when 

in circulation, so that a “protein corona” is formed around 

them. This leads to the activation of phagocytic systems and 

removal of these liposomes from the bloodstream.43 In order 

to improve their pharmacokinetic profile and allow longer 

time-periods in circulation, so-called “stealth” liposomes 

were developed, with polyethylene glycol (PEG), or another 

polysaccharide, incorporated into one of the lipid components 

of the liposomal membrane. PEG has high hydration, and 

this increases hydrodynamic volume and allows the forma-

tion of a water cloud around the polymer. Any hydrophilic 

molecule bound covalently to PEG also exhibits these 

properties, providing increased solubility and resistance to 

interaction with plasma proteins. Subsequently, PEGylated 

liposomes in circulation are less prone to formation of a 

protein corona, allowing dramatically improved circulation 

times. However, there is no certainty that these liposomes 

will be transported across the BBB. To provide this, fur-

ther modifications are required, often involving the use of 

PEGylated lipids for attachment of suitable components to 

the liposome surface.44

BBB transport
GSH
The transport of liposomes across the BBB can be facilitated 

by the attachment of appropriate molecules to the lipid 

surface. One of these is GSH, an endogenous tripeptide and 

antioxidant found in almost every cell in the human body. 

Due to its essential protective role in the brain, GSH is trans-

ported actively across the BBB, via a sodium-dependent GSH 

transporter that is highly expressed on the BBB epithelium. 

However, the exact mechanism of action of this transporter 

remains unclear.45–47 “G-Technology®” is a strategy involving 

Figure 2 Promising liposomal modifications for AD therapy.
Notes: These modifications improve their stability and bioavailability, aid BBB transportation, and engage therapeutic targets relevant to treatment of AD. Stability – (a) 
PEGylation. BBB transportation – (b) glutathione, (c) surface antibody, (d) PEG-peptide, (e) PEG-antibody, (f) lactoferrin, (g) glucose, (h) wheat germ agglutinin, (i) PEG-
mApoE, (j) transferrin. Targeting systems for AD – (k) phosphatidic acid, (l) PEG-curcumin, (m) lipophilic peptide, (n) lipophilic drug, (o) hydrophilic peptide, (p) hydrophilic 
drug, (q) nucleic acid.
Abbreviations: AD, Alzheimer’s disease; ApoE, apolipoprotein E; BBB, blood–brain barrier; PEG, polyethylene glycol.
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PEGylated liposomes with glutathione (GSH-PEG)-mediated 

delivery across the BBB into the brain, and this has shown 

some success in double transgenic APPswe/PS1ΔE9 (APP/

PS1) mice,47 but receptor saturation limits this system’s 

effectiveness.48 Additional research is required to enhance 

this strategy further.

Glucose
In a similar way to GSH, there are carrier-mediated transport 

mechanisms in place to facilitate the transport of glucose 

across the BBB, and the incorporation of glucose onto the 

liposome surface can enhance BBB delivery.30 Glucose-

modified PEGylated liposomes prepared with various PEG 

chain lengths have been tested for BBB penetration in mice. 

Results show that liposomes with shorter PEG chain lengths 

have little evidence of brain penetration, because the glu-

cose cannot interact effectively with the BBB surface, and 

therefore cannot utilize the glucose transporter. Longer PEG 

chain lengths are highly flexible and are able to fold back on 

themselves in such a way that the ability to cross the BBB 

is also impaired. Liposomes prepared with medium length 

PEG chains attached to glucose can cross the BBB more 

effectively.49 Thus, liposomal preparations with medium 

length PEGylation are likely to be the most effective method 

for utilizing glucose to enhance BBB transport.

Transferrin (Tf)
Tf is the most commonly targeted receptor (TfR), due to its 

localization on BBB endothelia. This localization is likely to 

be due to Tf’s essential role as an iron-binding blood plasma 

glycoprotein that controls the level of free iron and oxida-

tive stress in the brain, as well as in other tissues.50 Fishman 

et al demonstrated that Tf could cross the BBB via receptor-

mediated endocytosis,51 and more recent studies have shown 

that liposomes modified with Tf can also penetrate the 

BBB in  vitro.52,53 However, TfR-mediated endocytosis of 

liposomes is limited due to endogenous Tf competing for 

binding to the TfR.54 This issue can in part be resolved by 

using antibodies that bind with higher affinity than Tf to TfR, 

thus avoiding this competition. Still, Tf is likely to be most 

effective as part of a highly functionalized liposome, where 

multiple modifications allow an additive increase in BBB 

transport; a view supported by recent studies.55,56

Lactoferrin (Lf)
The lactoferrin receptor (LfR), bound by Lf, is also heavily 

overexpressed on the BBB, which has led to the develop-

ment of Lf functionalized liposomes to enhance transport 

into the brain via receptor-mediated endocytosis.57 This 

delivery system has the potential to be particularly efficient, 

as the expression of the LfR on microvessels and neurons is 

increased in AD,58 allowing more effective targeting. Chen 

et al57 investigated the ability of Lf procationic liposomes (Lf-

PCLs) to cross the BBB of rodents, for potential treatment of 

AD. Lf-PCLs become positively charged upon binding to the 

Lf receptor on the BBB epithelium. This allows them to fuse 

more easily with the BBB and overcome disadvantages such 

as non-specific binding and poor stability in circulation.59

mApoE
The ApoE glycoprotein is responsible for the transport and 

delivery of cholesterol and other lipids from the plasma to 

the CNS.60 It contains a peptide binding domain that permits 

BBB transport. A peptide sequence containing this binding 

domain (mApoE) has been used to facilitate BBB transport 

in vitro.61,62 However, the success of this peptide alone to 

facilitate BBB transport is uncertain, as the BBB still limits 

the transport of ApoE, and therefore mApoE, in and out of 

the brain.63 It is likely, therefore, to be used in combination 

with other liposome modifications.

CPPs
In the last 20 years, CPPs have been identified, which are 

able to translocate across biological membranes, including 

the BBB.64 They cross in a non-toxic manner, independent 

of membrane receptors and energy, which could reduce the 

limitations of receptor saturation that have been observed 

with other methods. Most CPPs rely on positively charged 

amino acids interacting with the negatively charged mem-

brane. Arginine and to a lesser extent lysine are particularly 

effective, as they form hydrogen bonds with the negatively 

charged phosphates, which may lead to internalization. 

CPPs with different properties vary in their internalization 

mechanisms (Table 2), but remain similar in their effective 

direct penetration of cell membranes.

Among all CPPs, the HIV-1 tat (TAT) protein has been 

best described and has been used successfully for delivery of 

liposome nanoparticles into the brain.65 TAT triggers steps 

for non-specific endocytotic delivery due to ionic interactions 

between positive charges of the peptide and negative charges 

of the BBB.66 Recent studies have utilized a retro-inverted 

version of TAT, where l-amino acids are replaced with 

d-amino acids, and the sequence is reversed. This reduces 

the potential problems with TAT, such as protease degrada-

tion and poor bioavailability in vivo, but still maintains the 

ability for transport across the BBB.67 Alternative CPPs, such 
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as polyarginines (eg, octa-arginine) and penetratin have also 

shown potential for the delivery of therapeutics directly to 

the brain in SAMP8 mice.68

Multifunctionalized liposomes
Many of the modifications discussed above are likely to 

be more effective as part of a multifunctionalized lipo-

somal system. This will include one or more molecules 

that enhance BBB transport, but most importantly, it will 

allow the incorporation of molecules that permit both BBB 

transport and targeting for AD therapy. The following are 

multifunctionalized liposomal systems that utilize some of 

the modifications discussed above and are in development 

as possible treatments for AD.

Aβ targeting
It is likely that the accumulation and aggregation of Aβ in 

the brain have an important role, directly or indirectly, in the 

induction of synaptic damage and memory deficits in AD.69,70 

The accumulation of Aβ oligomers or fibrils may be caused 

by overproduction, inefficient clearance from the brain, or 

by a combination of both of these. Effective therapeutic 

molecules can have an impact on one of these mechanisms 

to reduce Aβ burden. Many of these molecules on their own 

have low uptake across the BBB, but their incorporation into 

a multifunctionalized liposomal system can help to resolve 

this problem, allowing effective targeting to Aβ.

 mApoE-PA liposomes
Balducci et al71 conducted a key study to look at the ability 

of multifunctional liposomes to target Aβ. These liposomes 

were bi-functionalized with mApoE to enhance crossing 

of the BBB, and with phosphatidic acid (PA), which is a 

high affinity ligand for Aβ.61,71 This bifunctional liposome 

(mApoE-PA-LIP) was able to disaggregate Aβ fibrils in 

vitro, a property that was not exhibited by liposomes mono-

functionalized with either mApoE or PA alone. This syn-

ergistic effect could be due to simultaneous interaction of 

the negatively charged PA phosphate group with positively 

charged amino acid residues on Aβ and of positively charged 

amino acids on mApoE with negatively charged regions of 

Aβ.72 Results from in vivo studies, showing a reduction in 

amyloid plaque load only with mApoE-PA-LIP, are sup-

portive of this idea. However, the uptake of mApoE-PA-LIP 

in the brain was very low, despite the mApoE modification. 

Mancini et al conducted a follow-up investigation on the 

Table 2 Cell-penetrating peptides (CPPs) and their mechanism of internalization

CPP Mechanism Origin References

TAT Non-specific endocytosis HIV-1 66, 67

Penetratin Endocytosis Antennapedia
Drosophila melanogaster

107, 110

Pep-1 Pore formation Chimeric 111

Pep-7 Pore formation CHL8 peptide phage clone 112

pVEC Transporter mediated Murine endothelial cadherin 113

Transportan Endocytosis Galanin-mastoparan 114

Polyarginines Multiple mechanisms Chemically synthesized 108, 115

DPV1047 Energy-dependent mechanisms, independent of GAGs  
(charge interactions, HSPH binding)

Chemically synthesized 116

MPG Pore formation HIV glycoprotein 41/SV40 T  
antigen NLS

117

ARF Endocytosis p14 ARF protein 118

p28 Caveolar-mediated/nonclathrin-caveolar-mediated Azurin 119

BPrPr Macropinocytosis (fluid-phase endocytosis) N terminus of unprocessed  
bovine prion protein

120

VT5 Non-specific endocytosis Chemically synthesized 121

Bac 7 Likely non-specific endocytosis Bactenecin family of antimicrobial  
peptides

122

C105Y Energy-independent process via caveolin- and clathrin- 
independent lipid rafts

α1-Antitrypsin 123

PFVYLI Energy-independent process via caveolin- and clathrin- 
independent lipid rafts

Derived from synthetic C105Y 123
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mechanism behind this therapy, and a strategy known as 

the “sink effect” was proposed, which reduces Aβ burden 

by peripheral administration of a binding agent that draws 

excess Aβ out of the brain (Figure 3).73 The study showed that 

peripheral administration of mApoE-PA-LIP increased the 

level of plasma Aβ without significant amounts of mApoE-

PA-LIP entering the brain. Aβ oligomers were found to be 

transported out of the brain, across the BBB, with mApoE-

PA-LIP acting in the periphery to mediate a fivefold increase 

in this efflux.74

This provides an insight into future therapies that may 

only require sequestration of Aβ in the plasma, without the 

need to cross the BBB. It is evident, however, that this therapy 

might slow down neurodegeneration, but does not eliminate 

the cause of Aβ overproduction. Yet, this bifunctional lipo-

some system provides a valuable insight into future research 

that may effectively prevent amyloid plaque formation.

Curcumin-lipid liposomes
Oxidative damage occurs very early on in course of AD,75,76 

and antioxidants can protect neurons from β-amyloid 

toxicity,77 and so clinical trials involving antioxidants for the 

treatment of AD have been undertaken. So far, these have 

been unsuccessful,78 but the use of curcumin, a turmeric 

derivative, has shown some potential due to its anti-amyloid 

effects.79 This phenolic antioxidant binds to amyloid deposits 

in vitro and in vivo, and it not only disrupts the aggregation 

of the amyloid peptide but also disaggregates pre-formed 

fibrils.80,81 A curcumin analog with a substitution at the C-4 

position has been reported to be more effective in this regard 

than curcumin itself.82

Curcumin has relatively poor bioavailability, hence, lipo-

somal delivery systems for curcumin have been developed 

in an attempt to overcome this.83,84 In the curcumin-lipid 

modified liposome developed by Mourtas et al,84 a PEGylated 

lipid coating provides stealth characteristics and acts as an 

anchor allowing the attachment of anti-transferrin monoclo-

nal antibodies, for mediation of transport across the BBB, in 

addition to a lipid-PEG-curcumin derivative. Results showed 

that this system has high affinity for amyloid plaques and 

reduces amyloid plaque formation in APPswe transgenic 

mice.79 These liposomes may be useful in the future for the 

diagnosis and treatment of AD.

Peptide inhibitor nanoparticles (PINPs)
Austen et al85 showed that a small peptide, named OR2 

(RGKLVFFGR-NH
2
), inhibits the aggregation of Aβ into 

oligomers and fibrils, and blocks the toxic effects of Aβ 

on cultured cells. However, this peptide is sensitive to 

proteolysis and was not designed to cross the BBB.85 To 

improve its stability, a retro-inverso version (RI-OR2) was 

made,86 and this was enhanced further by the addition of a 

retro-inverted version of TAT to RI-OR2, producing RI-

OR2-TAT (Ac-rGffvlkGrrrrqrrkkrGy-NH
2
).67 Following 

its peripheral injection, a fluorescein-labeled version of 

RI-OR2-TAT was found to cross the BBB and bind to the 

amyloid plaques present in the cerebral cortex of APPswe/

PS1ΔE9 transgenic mice. Daily intraperitoneal (ip) injection 

Figure 3 The sink effect strategy.
Notes: Aβ assemblies are in equilibrium between the brain and bloodstream, across the BBB endothelium. It is proposed that mApoE-PA modified liposomes sequester 
soluble Aβ (monomers or soluble oligomers) in the peripheral bloodstream, which is then cleared. This creates an imbalance of soluble Aβ. Transport of Aβ from the brain 
to the blood, across the BBB, is then favored, to restore this imbalance. This reduces Aβ burden in the brain and is coined the “sink effect.”
Abbreviations: Aβ, amyloid-β; mApoE-PA, apolipoprotein-E-phosphatidic acid; BBB, blood–brain barrier.

β β

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

8515

Liposome delivery for Alzheimer’s disease

of RI-OR2-TAT, for 3 weeks, into these mice resulted in sub-

stantial (25%–45%) reductions in brain Aβ oligomer levels, 

amyloid plaque counts, oxidative damage, and inflammatory 

processes. However, RI-OR2-TAT inhibits Aβ aggregation 

only at relatively high concentrations (ie, at a molar ratio 

of RI-OR2-TAT:Aβ of 1:5 at best) and so its therapeutic 

potential is likely to be limited.67

In order to improve RI-OR2-TAT further, it was 

attached to the surface of stealth liposomes by covalent 

linkage to the PEGylated lipid, via an additional cysteine 

residue on the peptide, to produce PINPs (Figure 4).65 

The presence of the liposome carrier greatly improves the 

potency of RI-OR2-TAT, so that a molar ratio of 1:2,000 of 

liposome-linked inhibitory peptide to Aβ now gives ~50% 

inhibition of Aβ aggregation. This great increase in potency 

could be due to a multivalent effect. Many copies of the 

RI-OR2-TAT decorate each liposome, which should allow 

the simultaneous interaction of multiple inhibitory peptides 

with any multimeric form of Aβ, thus increasing efficiency 

as an aggregation inhibitor. EM studies have shown that 

PINPs can attach themselves to the free ends of amyloid 

fibrils (Figure 5),87 apparently terminating fibril growth, 

Figure 4 Targeting strategy with PINPs.
Notes: PINPs transport across the BBB by non-specific endocytosis, triggered by positively charged TAT interaction with the negatively charged membrane. RI-OR2-TAT 
inhibitor acts to prevent the aggregation of Aβ into oligomers and fibrils.
Abbreviations: Aβ, amyloid-β; BBB, blood–brain barrier; PINPs, peptide inhibitor nanoparticles; TAT, transactivator of transcription of human immunodeficiency virus. 
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and possibly preventing the formation of Aβ oligomers 

(the free ends of fibrils act as “factories” for generation of 

oligomeric Aβ).88 Studies in transgenic mice have shown 

that peripheral injection of PINPs protects against memory 

loss in TG2576 mice.65 The TAT region of the inhibitory 

peptide facilitates brain penetration, with a brain:blood ratio 

of around 50% being achieved shortly after intravenous 

(iv) injection. However, most of the dose accumulates in 

peripheral tissues, such as lungs, liver, and spleen, most 

likely due to clearance of liposomes via the reticuloen-

dothelial system, and so it is possible that the “sink” effect 

(see above) could explain some of the in vivo properties of 

PINPs. The effectiveness of these PINPS could be improved 

in future by incorporation of alternative or additional brain 

delivery systems.

Neurotransmission targeting
Synaptic loss and degeneration in AD include the loss 

of brain cholinergic neurons, which results in decreased 

acetylcholine (ACh) levels, reduced ACh receptor (AChR) 

density, and an overall decrease in cholinergic neurotrans-

mission. Many limitations and side effects are associated 

with the existing AChEIs that attempt to rebalance cholin-

ergic neurotransmission in AD. They have poor stability in 

circulation, unpredictable uptake and bioavailability, and 

can cause gastrointestinal complications and, occasionally, 

even esophageal tears.89 They also provide only temporarily 

improved cognition. Yet, it may be worthwhile to improve 

these existing therapies, especially since viable alternatives 

have failed to emerge. Subsequently, studies have investi-

gated the potential use of multifunctionalized liposomes, 

incorporating existing drugs, to treat AD.

Rivastigmine-loaded liposomes
Rivastigmine is a reversible, noncompetitive inhibitor of 

brain acetylcholinesterase (AChE).90 As stated previously, 

oral rivastigmine administration has many limitations, such 

as poor stability and low ability to pass through the BBB. 

An alternative intranasal delivery route has shown some 

potential as an alternative for rivastigmine administration.91 

A study from Yang et al92 has considered whether intranasal 

delivery of liposomes loaded with rivastigmine can enhance 

brain delivery and improve therapeutic effect. These lipo-

somes were modified with a PEGylated derivative of a poly-

arginine CPP (DSPE-PEG-CPP) to increase stability and 

enhance BBB delivery, respectively, in an attempt to improve 

the limitations exhibited by the administration of rivastigmine 

alone. It was found that liposomes improved the therapeutic 

Figure 5 Incubation of PINPs with Aβ.
Notes: Figure shows TEM images of negatively stained PINPs. (A) Individual PINPs before incubation with Aβ. (B) Individual PINPs after incubation with Aβ. (C) and (D) 
PINPs after extended incubation with Aβ bound to amyloid fibrils. Scale bars: A and B 150 nm, C and D 100 nm.
Abbreviations: Aβ, amyloid-β; PINPs, peptide inhibitor nanoparticles; TEM, transmission electron microscope.
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effect of rivastigmine, due to enhanced transcytosis across 

both the BBB and cellular membranes.92

El-Helaly et al94 have reported an alternative modification 

strategy for the intranasal administration of rivastigmine-

loaded liposomes. In order to maintain their stability, a posi-

tively charged inducer called didecyldimethyl ammonium 

bromide was added to these liposomes, leading to electro-

static repulsion and reduced interactions between them. This, 

coupled with the use of a PEGylated lipid, resulted in a highly 

stabile “electrosteric stealth liposome.”93 Results showed a 

fourfold increase in both plasma and brain drug levels, com-

pared to rivastigmine itself. This effect was increased further 

with liposomes bound to Tween 80, a nonionic surfactant 

that has been found to enhance BBB transport.94 Tween 80 

is likely to act as an anchor for apolipoproteins (APO-E and 

APO-B), enhancing BBB transport via receptor-mediated 

endocytosis.95 Further preclinical studies on rivastigmine-

loaded liposomes are required, such as toxicity and dose–

response studies, before they can be considered as suitable 

for therapeutic use.

Liposomes with multiple 
therapeutic targets
Liposomes have great potential for modification, includ-

ing the development of multifunctional liposomes directed 

against more than one therapeutic target. In the case of AD, 

one of the legitimate goals would be to target the formation 

of both Aβ plaques and tau tangles. Theoretically, it is pos-

sible to conceive of a multifunctional liposome that also 

incorporates other therapeutics, such as those directed at the 

ACh system, neuroprotectants, autophagy, anti-inflammatory 

agents, or antioxidants.

Wheat germ agglutinin-conjugated 
liposomes
The multifunctional liposomes produced by Kuo et al aim to 

improve the overall neuronal survival in AD by inhibiting the 

phosphorylation of p38 and c-Jun N-terminal kinase (JNK), 

two key members of the mitogen-activated protein kinase 

(MAPK) family, in neurons damaged by the accumulation 

of Aβ (Figure 6).42 Study of this kinase cascade is essential 

Figure 6 Cell survival and apoptotic pathway in AD therapy.
Notes: Action of WGA-CRM-CL/LIPs: Curcumin inhibits phosphorylation of JNK and p38, preventing downstream phosphorylation of tau serine 202, leading to prevention 
of apoptotic neurodegeneration. NGF binds TrkA and mediates MAPK phosphorylation cascade and recruitment of CREB, enhancing overall cell survival.
Abbreviations: CL, cardiolipin; CREB, cAMP response element binding protein; CRM, curcumin; JNK, c-Jun N-terminal kinase; LIPs, liposomes; MAPK, mitogen-activated 
protein kinase; NGF, neuronal growth factor; TrkA, tyrosine kinase receptor type-1; WGA, wheat germ agglutinin; AD, Alzheimer’s disease.
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for the understanding of AD progression, since MAPK-

catalyzed phosphorylation events in the brain have a key 

role in the downstream activity of cellular components (eg, 

phosphatases, kinases) that impact on apoptosis and overall 

neuronal survival. It would also provide valuable insight into 

possible future therapies.

The key constituents of this multifunctional liposome 

(coined WGA-CRM-CL/LIP) are curcumin (CRM), nerve 

growth factor (NGF), cardiolipin (CL), and wheat germ 

agglutinin (WGA). In addition to acting as an Aβ aggregation 

inhibitor, curcumin alters the expression of phosphorylated 

p38 (p-p38) and phosphorylated c-Jun N-terminal kinase 

(p-JNK), key players in the apoptotic pathway. NGF pro-

motes the activity of tyrosine kinase receptor type 1 (TrkA), 

which is involved in slowing down neuronal apoptosis. In 

order to enhance the targeting of apoptotic neurons sur-

rounding Aβ, CL was included, as it has a strong affinity 

for Aβ. In this case, both PEGylation and WGA provided 

an additional novel dual functionalization, with the aim of 

improving delivery across the BBB.42

WGA-CRM-CL/LIPs reduced Aβ “plaque” deposition in 

AD model SK-N-MC cells and increased the percentage of 

healthy neurons with cholinergic activity in a Wistar rat AD 

model (established by injection of Aβ into CA1 neurons). 

Additionally, curcumin mediates downstream inhibition of 

tau phosphorylation at serine 202, which is a key site for 

axonogenesis (Figure 6).96 While the therapeutic potential 

of this inhibition is unclear, this is an illustrative method 

of targeting and altering tau phosphorylation, while also 

targeting and reducing Aβ burden. The authors suggest that 

WGA-CRM-CL/LIP should have little effect on a healthy 

brain, since it is not in an inflammatory state and that this 

type of AD therapy would most likely be given to patients 

in the later stages of AD.42

Aβ targeting nanosweepers
Luo et al97 have developed “nanosweepers” (M

3
) that not 

only capture extracellular Aβ and direct it into cells but also 

upregulate autophagy and digestion of Aβ. The nanosweep-

ers are composed of a cationic chitosan core with PEGylated 

GKLVFF (that can co-assemble with Aβ) and Becln-1 (that 

induces autophagy to degrade Aβ). They work by capturing 

and co-assembling with extracellular Aβ, inhibiting toxic Aβ 

formation, then specifically directing Aβ into cells and acti-

vating autophagy. This strategy has been shown to degrade 

insoluble Aβ from a level of 1,539 down to 914 ng/mg, and 

soluble Aβ from 585 to 190 ng/mg, in APPswe/PS1dE9 

transgenic mice, and also increase neuronal cell viability. 

M
3
 is a multifunctional peptide-polymer that could provide 

a novel therapeutic approach for the treatment of AD, by 

clearance of Aβ.97 By design, it is not a good aggregation 

inhibitor and could be useful in combination with additional 

therapies.

Future prospects
The majority of studies employing liposomal carrier systems 

to target the CNS are still restricted to early experimental 

work on cell and animal models, or follow on preclinical 

development, with none so far entering human clinical trials. 

Further investment and research is required to develop and 

optimize these carrier systems for AD therapy, since many 

of the studies considered in this article report promising find-

ings, with a drive toward early clinical testing. A reoccurring 

problem is that some of the modifications on their own do not 

allow sufficient penetration through the BBB, or adequate tar-

geting for AD therapy. Since liposomes have great potential 

for heavy functionalization, future steps should incorporate 

several different modifications into the same liposomes that 

can work together in synergy.

Furthermore, current systems in development have tended 

to target only Aβ, due to its fundamental role in AD, yet 

liposomes have the potential to be adapted to incorporate 

a therapeutic cocktail of molecules that aid BBB transport 

and are able to treat multiple areas of AD pathology. Fur-

ther studies could prevent the formation of tau tangles, by 

using an anti-tau antibody, or tau-directed peptides, or small 

molecule inhibitors, in addition to preventing formation 

or dissolution of amyloid plaques, and targeting of phos-

phorylation cascades. A therapeutic system that can target 

Aβ, tau, neuronal survival, and apoptosis, and cholinergic 

neurotransmission, for example, could become the gold 

standard treatment for AD; liposomes are certainly a good 

candidate for the development of such a therapy. CPPs have 

great potential for AD therapy, yet their non-specific uptake 

by peripheral tissue limits their use. TAT peptide, which 

is derived from HIV, is an example of utilizing aspects of 

pathogens for therapeutic purposes. The future of CPPs for 

brain delivery could involve using trans-membrane peptide 

domains derived from trypanosomes,98 or the Zika virus,99 

both of which contain peptides that target enhanced uptake 

into the brain.

Drawbacks and barriers
There remain some issues for liposomes as a drug delivery 

system. There is an increased cost when they are used, but 

this is ameliorated by the fact that they may allow a drug 
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to reach its target with a liposome, but not without, or the 

overall dose may be decreased as a greater proportion of the 

drug reaches its target. They are not suitable for oral delivery 

because they will rupture due to osmotic shock when entering 

the hypotonic environment of the stomach (depending on the 

osmolarity of the internal aqueous filling of the liposome) 

and the lipids will be digested in the small intestine. Once 

in the bloodstream, the majority of liposomes are taken up 

non-specifically by the mononuclear phagocyte system, and 

this includes those with a stealth coating. This reduces the 

number available to be delivered to the brain, although this 

can be overcome by administering a larger dose in a single 

bolus, rather than multiple smaller doses.100 There are two 

main strategies for crossing the BBB (see “BBB transport” 

section) by either targeting a transporter system or by use of 

a CPP. The former approach may lead to saturation of the 

transporter system, whereas this is less of a limiting factor 

in the latter as it is non-specific. Finally, as this is a rela-

tively new technology, there are still some technical issues 

regarding the supply of liposome products to the consumer 

in terms of sterility and product shelf life. Liposomes are 

not suitable for heat sterilization, but bacterial contamina-

tion can be avoided by filtration due to the small size of the 

liposomes.101 In terms of stability, liposomes in suspension 

will eventually start to fuse together, changing the size to the 

point at which they become ineffective as a delivery system. 

To avoid this, the liposomes can be lyophilized or spray dried 

in the presence of trehalose or sucrose and will retain their 

size on rehydration.102,103

Conclusion
Despite these challenges, the use of liposomal carriers is 

proving to be a potentially good strategy for future therapy 

of AD. They have a unique ability for modification to cross 

the BBB, while also showing some evidence of effective-

ness without brain delivery, via the peripheral sink effect. 

Multiple molecules are able to enhance BBB transport, and 

many others allow targeting toward key molecular systems 

involved in AD pathogenesis. It is likely that future develop-

ment will focus mainly on early intervention to slow down the 

progression of this disease, rather than attempting to reverse 

it in more advanced cases. Current study is moving toward 

targeting more than just one aspect of brain pathology, using 

multifunctional liposomes, and this holds great promise for 

the future, but is currently in the very early stages of develop-

ment. Further study and substantial funding will be required 

to achieve success, so that this type of strategy can be driven 

into human clinical trials and beyond.
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