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Abstract: The application of natural carbohydrate polysaccharides for antigen delivery and 

its adjuvanation potential has garnered interest in the scientific community in the recent years. 

These biomaterials are considered favorable candidates for adjuvant development due to their 

desirable properties like enormous bioavailability, non-toxicity, biodegradability, stability, 

affordability, and immunostimulating ability. Chitosan is the one such extensively studied 

natural polymer which has been appreciated for its excellent applications in pharmaceuticals. 

Trimethyl chitosan (TMC), a derivative of chitosan, possesses these properties. In addition 

it has the properties of high aqueous solubility, high charge density, mucoadhesive, perme-

ation enhancing (ability to cross tight junction), and stability over a range of ionic conditions 

which makes the spectrum of its applicability much broader. It has also been seen to perform 

analogously to alum, complete Freund’s adjuvant, incomplete Freund’s adjuvant, and cyclic 

guanosine monophosphate adjuvanation, which justifies its role as a potent adjuvant. Although 

many review articles detailing the applications of chitosan in vaccine delivery are available, 

a comprehensive review of the applications of TMC as an adjuvant is not available to date. 

This article provides a comprehensive overview of structural and chemical properties of TMC 

which affect its adjuvant characteristics; the efficacy of various delivery routes for TMC antigen 

combination; and the recent advances in the elucidation of its mechanism of action.
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Introduction
The word adjuvant originates from the Latin dictionary “adjuvare,” which means “to 

aid.” The adjuvants are meant to enhance the immunogenicity of an antigen and thus 

reduce the number and amount of antigen doses to be administered. Some adjuvants 

help in the retention of the antigen in the host system and thereby help in improving 

the choice of routes for antigen delivery. Although there is no ideal definition for adju-

vant, there are certain criteria that define good adjuvant properties. Bioavailability, no 

cytotoxicity, biodegradability, inexpensive production, no immune response against 

itself, appropriate response against the disease, for example, Th1 against tuberculosis 

and Th1/Th2 mixed against anthrax, suitability for the desired route of vaccination 

are the foremost to mention.

The live attenuated organisms and inactivated pathogens comprise several natural 

adjuvants, hence can elicit a robust immune response. The subunit and recombinant 

antigen-based vaccines often require adjuvants to augment the specific immune 

response against the corresponding antigen. The aluminum-based adjuvants are pre-

dominant to date and the only ones licensed for human use. Unfortunately, often with 

its potent adjuvant effect, accompanies several adverse side effects like local pain 

and inflammation, necrosis, granulomas, and ulcers and many systemic side effects 
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like nausea, fever, arthritis, uveitis, eosinophilia, allergy, 

anaphylaxis, organ-specific toxicity, and immunotoxicity.1–3 

Aluminum is also concerned for its possible role in neurode-

generative diseases such Alzheimer’s disease.4

The illustrious complete Freund’s adjuvant (CFA) made 

by Freund in 1930, is an oil-in-water emulsion containing 

killed mycobacteria and is considered one of the most 

potent adjuvants.5 Its toxicity and local reactions make it 

unsuitable for human use. The incomplete Freund’s adju-

vant (IFA), however, is less toxic, being utilized in human 

vaccines.6 Similarly, several bacterial origin adjuvants were 

discovered later, such as lipopolysaccharide (LPS) and 

lipid A.7 Several bacterial DNA components have also been 

studied for their adjuvant potential, for instance, bacterial 

DNA containing CpG motifs, which are immunostimula-

tory and are regarded as a potent Th1 adjuvant.8 Over the 

time, a variety of adjuvants have been identified in the bac-

terial systems. Unfortunately, the toxicity of these adjuvants 

limits their use in humans. MF59 and adjuvant system 03 

(AS03) are also oil-in-water emulsion-based adjuvants 

developed by Novartis and GlaxoSmithKline, respectively, 

and have been approved for pandemic influenza vaccines.9 

However, a thorough characterization of both these formula-

tions is still lacking. Virosomes containing a viral envelope, 

membrane lipids, glycolipids, but no genetic material have 

been proved to be excellent antigen-delivering agents and 

adjuvants.10,11 Similarly, immune stimulating complexes 

comprised saponin, cholesterol, phospholipid, and QS21 

being the primary immunostimulant and are also currently 

in clinical trials for influenza, human papillomavirus and 

hepatitis C virus.12–14 Development of new adjuvants is 

necessary to help antigens become effective vaccines by 

inducing robust and enduring protective immune responses. 

New vaccine targets will require not only strong antibody 

responses but also robust cell-mediated immunity (CMI) 

including T helper (Th) cells and cytotoxic T lymphocytes. 

Alum alone will be inadequate for such cases because it 

poorly stimulates T-cell responses. Hence, there is a great 

need for the exploration of new adjuvants which could 

replace alum in future and have better properties. Since 

the initial trials for new adjuvants begin in small animal 

models, which cannot guarantee its direct translation in 

humans, it takes much time to test the potency of adju-

vants and release them for human use. Moreover, since 

the vaccines are evolving and new route of immunization 

are being assessed, there is a demand for suitable and safer 

alternatives for adjuvants.

Natural polymers as adjuvants
Natural carbohydrate polysaccharides are new on the track 

of being investigated for their antigen delivery as well as 

adjuvant potential. The biomaterials due to their desirable 

properties like enormous bioavailability, non-toxicity, bio-

degradability, stability, inexpensive production, and immu-

nostimulating ability are considered favorable candidates for 

adjuvant development. Table 1 represents the polysaccha-

rides which have been investigated with various antigens and 

have been proven to possess the immune-modulating ability. 

For instance, inulin, hyaluronic acid, and alginate have also 

gained attention in the field of vaccine delivery.15–18 Glucans, 

dextrans, xylans, galactomannans, and glucomannans are 

also few polysaccharides that have been reported to possess 

immunomodulatory properties.19,20 Advax is the successful 

example of polysaccharide delta inulin-based adjuvant, which 

is currently undergoing a clinical trial.21 Chitosan is one such 

natural polymer, which has been appreciated for its antacid, 

antiulcer, and wound healing property, thus finds excellent 

applications in pharmaceuticals.22,23 Biocompatibility, biode-

gradability, no cytotoxicity, high charge density, low cost, 

mucoadhesive, permeation enhancing (ability to cross tight 

junction), and immunomodulating ability are the excellent 

properties of chitosan that makes the spectrum of its appli-

cability much broader.24,25 Chitin (precursor of chitosan) 

and its derivatives have also shown promising results in the 

application of the development of cancer vaccine.26

Chitosan: derivative of chitin, the second 
most abundant polysaccharide
The polysaccharide chitosan [α-(1-4)-2-amino-2-deoxy-β-d-

glucan] is derived from chitin [(1-4)-2-acetamido-2-deoxy-

β-d-glucan] by its deacetylation. Chitin is the significant 

component of the body of all crustaceans and fungal cell 

wall. It has been extensively studied for its biomaterial 

property and use in various areas such as drug delivery, 

cosmetics, vaccine, antibacterial, and antifungal procedures. 

The insolubility of the chitosan in water makes it vulnerable 

to modifications that make it soluble and stable at a range 

of pH. The chitosan dissolution in water is also possible by 

lowering the pH to slightly acidic (pH 5). The presence of 

several facile modifiable groups on the polymer (Figure 1) 

makes it suitable for chemical alteration, thereby changing 

its properties such as solubility and charge and making it 

readily employable for various applications. They have 

been particularly studied for their excellent mucoadhesive 

properties and permeation improvement applications in drug 
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and protein delivery. Chitosan is evidently a non-toxic and 

biocompatible material. Consequently, the Food and Drug 

Administration (FDA) has approved the polymer for use 

in wound dressings and tissue engineering.27 The chitosan- 

based delivery studies are recent and could find potential 

applications in future. The various derivatives of chitosan- 

like glycated chitosan, thiolated chitosan, and trimethyl 

chitosan (TMC) are currently under investigation for drug 

delivery, vaccine delivery, and food-based applications.

Since chitosan is present naturally in the environment, 

there are several chitinases (hydrolyzing N-acetyl-β-1,4-

glucosaminide linkage) available in the environment, 

including plants and human, which can degrade the polymer, 

making its use environment-friendly. As the use of chitosan 

has increased in recent time, there is scope for its utilization 

in various applications such as a drug, DNA and antigen 

delivery, biosensor, imaging, and antifungal and antibacterial 

agent. Transport and delivery of vitamins (B6, B12, and C) 

have also been successfully tested by using TMC nanopar-

ticles (NPs) as a carrier/vehicle.28

Adjuvant properties of chitosan
For a long time chitosan has been researched for its adjuvant 

properties, and here we have discussed some of its recent prog-

ress as an adjuvant. As chitosan bears mucoadhesive proper-

ties, it has frequently been explored via mucosal routes of 

administration. However, it seems suitable for parenteral 

delivery as well, as it performed comparably to the alumi-

num hydroxide in case of H5N1 influenza vaccination in a 

recent study.29 The chitosan NPs loaded with UV-inactivated 

dengue virus, and Bacillus of Calmette and Guerin cell wall 

components were able to stimulate the immature dendritic 

cells (DCs) and consequently caused maturation of these cells, 

proving its potential as an adjuvant candidate against dengue.30 

Ovalbumin (OVA)/granulocyte-macrophage colony-stimulat-

ing factor-loaded chitosan NPs performed equivalently to IFA 

and CFA in the generation of OVA-specific antibody titer as 

well as CD4+ and CD8+ INF-γ + T cells.31

Chitosan has been tested with hepatitis B virus sur-

face antigen (HBsAg)32 diphtheria toxin, Mycobacterium 

tuberculosis CFP10-TB10.4 fusion protein,33 inactivated 

NIBRG-14 (H5N1) subunit antigen against influenza A, 

virus-like particles against norovirus,34 against poliovirus,35 

against influenza A (H7N9, H9N2, H1N1, and H5N1) virus 

infection,36–38 and against Helicobacter pylori39 and has 

proved its potency as a successful adjuvant against these 

diseases. Gordon et al demonstrated that thermosensitive 

chitosan hydrogels possess higher ability to stimulate both 

humoral-mediated immunity and CMI, in addition to a 

slow and controlled in vitro release of antigen, compared 

to chitosan NPs, liposomes, and lipid-based cubosomes. 

Table 1 A summary of the current status of research on the polysaccharide adjuvants

Polysaccharide adjuvants Source Current status Reference

Inulin Compositae Clinical trial (Advax) 21

Chitosan and its derivatives Crustaceans and fungi Preliminary research 34

Galactomannan Caesalpinia spinosa, Aspergillus fumigatus,  
Ramalina celastri, Morchella esculenta

Preliminary research 113

Glucomannan Candida utilis Preliminary research 114

Oligomannose HIV, recombinant form obtained from bacteria Preliminary research 115

Dextran Leuconostoc strains Preliminary research 116

Lentinan Lentinus edodes Preliminary research 117

β-Glucans Yeasts, seaweed, and algae Preliminary research 118

Zymosan Saccharomyces cerevisiae Preliminary research 119

Lipomannan Mycobacterium tuberculosis Preliminary research 120

Alginate Brown algae Preliminary research 121

Levans Aerobacter levanicum Preliminary research 122

OH

O
O

HO

H3C

CH3

CH3

N+

Figure 1 Chemical structure of trimethyl chitosan.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

7962

Malik et al

Similarly, in an interesting study, chitosan-based hydrogel 

vaccines were illustrated to generate effective CD8 T-cell 

memory and performed equivalent to DC vaccination.40–43 

Chitosan NPs are believed to augment the humoral and cel-

lular immune response as well as able to elicit a balanced 

Th1/Th2 response. This makes them desirable for a broad 

range of therapeutic and prophylactic vaccines.44

TMC: the highly desirable derivative 
of chitosan
TMC is one of the highly desirable derivatives of chitosan 

and is preferred over chitosan due to its properties like high 

aqueous solubility and stability over a wide range of ionic 

conditions. Due to its mucoadhesive properties,45 it can open 

and cross the tight junctions of epithelial cells.46 Moreover, 

TMC forms polyplexes with DNA and has been utilized for 

gene delivery.47 An optimum degree of quaternization (DQ) is 

required to achieve transepithelial delivery of low molecular 

weight (MW) drugs and proteins, which has been found to be 

40%–50%.48,49 These properties of TMC have been widely 

applied to its NP approach for delivering several antigens 

like OVA, tetanus toxoid, Omp19, Omp31, diphtheria toxoid, 

pDNA encoding antigen 85 of M. tuberculosis, Newcastle 

disease virus (NDV), whole inactivated virus (influenza), 

LTK63, and inactivated poliovirus. Table 1 summarizes 

the list of antigens that have been delivered with TMC as a 

mixture or encapsulated by TMC NPs.

Synthesis strategies, properties, and 
characterization of TMC
TMC is trimethylated chitosan and is largely derived from 

chitosan by reacting with iodomethane in stringent basic condi-

tions upon solubilizing in N-methyl-2-pyrrolidone and using 

sodium iodide as a catalyst.50,51 It can also be derived by treating 

chitosan with suitable formaldehyde group compound to pro-

duce a Schiff- base, with subsequent reaction with a reducing 

agent and eventually with a methyl halide.51,52 Reaction of chi-

tosan with less poisonous and less expensive dimethylsulfate is 

a recent method being adopted.53 However, the resulting unde-

sirable O-methylation occurs in almost all the reactions as they 

are carried out in strong basic conditions and high temperature 

which reduces the solubility of TMC in aqueous medium. To 

avoid this methyl iodide-based trimethylation could be car-

ried out at lower temperature using dimethylformamide/H
2
O 

mixture as solvent.54 Eschweiler–Clarke method followed by 

Verheul et al, is also another technique to obtain O-methyl 

free TMC.55 The final product TMC could be characterized 

for its trimethylation by performing H1-NMR after dissolving 

TMC in D
2
O. The DQ of TMC could then be measured from 

the NMR profile by using the following equation.

	
DQ 

CH

H
(%)

[( ) ]

[ ]
/= 3 3 19 100× ×

�

Here, [(CH
3
)

3
] is the integral of the hydrogens of the 

trimethylated amino groups at 3.3 ppm and [H] is the inte-

gral of the H-1 peaks between 4.7 and 5.7 ppm in the NMR 

profile. Its MW could be determined using gel permeation 

chromatography. FTIR spectroscopy, CHN elemental 

analysis, 1 hour, and 13C NMR analysis can also be used 

for further characterization of its structure. The properties of 

TMC like aqueous solubility, mucoadhesion potential, and 

transepithelial movement is affected by its DQ.56

Structural effect
The adjuvanticity effect of TMC has been closely correlated 

with its DQ. According to Boonyo et al, a 40% DQ of TMC 

is optimum for the immune response generation, as they 

tested with OVA intranasal administration.57 Similarly, with 

whole inactivated influenza virus (WIV) intranasal vaccina-

tion, a DQ of 37% was found to be better than 15%.58 The 

other factors that affect the adjuvant capability of TMC are 

its MW, the degree of acetylation (DAc) and the degree of 

O-methylation (DOM). Figure 1 clearly shows the modifi-

able functional groups of the polymer. It has been widely 

accepted that tailoring these three structural factors can lead 

to a differential immune response.57,58 The transport of WIV 

across Calu-3 cells was reduced by the reacetylated TMC, 

due to its rapid degradation relative to TMC.59 The DAc in 

case of chitosan has also been associated with its enzymatic 

degradation,60 permeation capacity,61 and antigen-presenting 

cell (APC) stimulation.62 Hence, DAc has a substantial 

effect on immune response elicitation. Regarding the MW 

of chitosan, Boonyo et al also reported that the immune 

response of the higher MW chitosan was better than the 

low MW variant.57 According to another study, the chitosan 

and TMC-based vaccine delivery via oral route with OVA 

were able to elicit an immune response against OVA but in 

a chitosan MW-dependent manner.63 Hence, an appropriate 

MW, as well as DQ and DAc, is required to achieve a suitable 

immune response. On the contrary, it was also demonstrated 

by a group that the DAc of 17% had a strong adjuvant effect 

which was not affected by the DOM or the DQ.64

Antigen conjugation with TMC has also been reported to 

boost the immune response in some instances. For example, 
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the conjugation of the OVA with the TMC illustrated 

improved immunogenicity as well as uptake of the protein 

by DCs and consequently helped in the maturation of DCs.65 

In a similar study, it was shown that the TMC-OVA conju-

gates were able to penetrate the skin more efficiently than 

the mixture of both and hence increased uptake by DCs of 

lymph nodes.66 Hence, the structural parameters affect the 

adjuvant capacity of TMC, and these could also be tailored 

to achieve a desired immune response.

Route of administration
The TMC adjuvanation effect also depends on the site of the 

administration.67 TMC has an intrinsic mucoadhesive prop-

erty, inherited from chitosan, as a result, nasal route has been 

explored the most. The TMC carries a positive charge at phys-

iological pH, and the nasal epithelium is negatively charged, 

this gives an extra edge for the electrostatic interaction of 

TMC with nasal epithelium. The nasal-associated lymphoid 

tissue allows the passage of TMC NPs conjugated proteins 

across it in addition to the increased immune response, upon 

nasal vaccination.68 The TMC NPs encapsulating OVA were 

able to increase the residence time of protein in the nasal 

epithelium and gave a high anti-OVA IgG as well as sIgA 

titer. These NPs were able to release the protein faster than 

the poly(lactic-co-glycolic acid) (PLGA) or PLGA/TMC 

NPs.69 In another attempt, it was seen that whole inactivated 

virus adjuvanted with TMC when immunized in the mice 

via nasal route did not produce any toxicity and was able 

to promote the uptake of the virus and amplify the immune 

response.70 The tetanus toxoid-loaded TMC NPs intended for 

a nasal delivery were also prepared by few separate groups 

which showed quite good encapsulation efficiency as well 

positive surface charge suitable for nasal delivery as well as 

an enhanced immune response elicitation.71–74 According to 

another study, the intranasal administration of Escherichia 

coli enterotoxin LTK63 (mutant) with TMC in mice induced 

remarkable bactericidal titer in the mice model.75 Thus, 

the TMC NPs gave the researchers a direction to explore 

the nasal route of vaccination with the help of TMC-based 

vaccine formulations due to the virtue of its ability to cross 

nasal epithelium.

For oral delivery of an antigen, it has to be protected from 

the degradative conditions of the gastrointestinal tract. In 

an oral delivery study, the hepatitis surface antigen-loaded 

TMC NPs upon ionic gelation with hydroxypropyl methyl-

cellulose phthalate, a pH-sensitive polymer, protected the 

antigen from gastric destruction.76 According to another 

study, oral route delivery of the chitosan and TMC with 

OVA were able to elicit an anti-OVA-specific immune 

response.63 Higher protection against Brucella melitensis 

and Brucella abortus infection was observed by oral route 

immunization in mice with TMC NPs encapsulating Omp19 

as well as Omp31 than the intraperitoneal route.77,78 The 

intraduodenal route of administration was also verified by 

a group by administration of TMC NPs encapsulated OVA 

as antigen and led to significantly higher antibody rise than 

antigen alone.79

Several groups also explored the dermal route. TMC 

NPs encapsulating diphtheria toxin elicited quite high IgG 

titers, and the levels were similar to that of the alum upon 

intradermal injection.80 Utilizing the dermal or subcutane-

ous route, an innovative microneedle-based approach for 

vaccination was illustrated with the help of inactivated polio 

vaccine particles (negatively charged) and TMC (positively 

charged) by layering them onto pH-sensitive microneedles 

and then immunizing rats. This approach led to the genera-

tion of antibodies against virus and emphasized the practical 

application of microneedles for dermal vaccination.81 In 

the same line, diptheria toxoid and TMC layering over the 

microneedles resulted in comparable immune response with 

the alum-adjuvanted diphtheria toxin upon dermal vaccina-

tion.82 Intramuscular immunization with pDNA encoding 

antigen 85A of M. tuberculosis provoked a significant Th1 

response in mice.83 Many routes have been explored for TMC 

vaccination. However, there is scope for further intervention 

into new routes.

Particulate effect
TMC NPs have gained recent interest as an adjuvant and 

a delivery vehicle for vaccination. The particles upon co-

encapsulation with an immunopotentiator further improves 

the strength and quality of immune response. In general, 

TMC NPs are prepared by the ionic gelation method, in 

which the positively charged TMC interacts with a nega-

tively charged molecule and forms a complex. Even though 

researchers have tried many other alternatives to enhance the 

adjuvant effect of NPs, the highly used negatively charged 

molecule is tripolyphosphate (TPP). The TMC NPs prepared 

with LPS or MDP instead of TPP elicited higher levels of IgG 

and isotypes titer.84 CpG as a negatively charged crosslinker 

has also been studied instead of TPP (conventionally used for 

TMC/TPP NP preparation), and it generated a strong Th1 as 

well as Th2 response upon nasal immunization.85 Chitosan 

NPs in combination with C48/80 mast cell activator also 

enhanced the immunogenicity of protective immunity of 

protective antigen.86
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The MW of TMC polymer has not been reported to be a 

factor affecting the particle size or loading efficiency of NPs. 

However, the DQ has been found to be inversely associated 

with the size of the TMC NPs.87,88 TMC particles within a size 

range of 200–300 nm were reported to be efficiently taken up 

by the DCs and also induced the activation of DCs.89 Similar 

sized vancomycin-loaded particles have been reported to 

demonstrate an efficient uptake by osteoblasts, resulting in 

their differentiation and elimination of the Staphylococcus 

aureus infection by controlled drug release.90 It has also 

been suggested that the smaller NPs are easily engulfed by 

the APCs in comparison with the large sized ones and could 

potentially be used as drug delivery agent against tumors.91 

TMC NPs in the range 200–300 nm have also been reported to 

have more uptake as they are able to cross the nasal epithelial 

membrane owing to its small size.92 Recently, TMC NPs of 

250 nm particle size encapsulating protective antigen were 

illustrated to possess adjuvant potential as well as provided 

protection against anthrax challenge in mouse model.93 

Thus particle size also plays an important role in eliciting 

an immune response.

The TMC-based NPs are smaller in size in comparison 

with the chitosan NPs. Improved loading efficiency and 

release profile with a higher zeta potential makes TMC-based 

NPs much more desirable.94 Another study of TMC NPs 

encapsulating HBsAg reported that the protein was released 

for 43 days with no burst release with a remarkably higher 

loading efficiency of nearly 90%.95

Several antigens have been tested with TMC NP-based 

vaccination and there has been a substantial evidence in 

support of its adjuvant potential. Table 2 lists the antigens, 

attenuated pathogens, and DNA that have been tested with the 

TMC NPs. For polio vaccination, virus-like particles coated 

with chitosan and TMC were tested for their stability and 

ability to interact with DCs.96 A robust humoral response was 

observed in a study where influenza matrix protein coding 

ectodomain fused with HSP70359-610 region of M. tuber-

culosis encapsulating TMC NPs was immunized intranasally 

Table 2 A summary of antigens tested with TMC as an adjuvant

TMC delivery form Antigens Route of  
immunization

Animal 
model

Reference

Nanoparticles Omp31 Oral Mice 77

Nanoparticles Antigens of Newcastle disease  
and infectious bronchitis

Intranasal Chickens 102

Microneedle layering Diptheria toxoid Dermal Mice 82

Nanoparticles pDNA encoding antigen 85A Intramuscular Mice 83

Nanoparticles Newcastle disease viruses Oral Chickens 101

Nanoparticles Unlipidated 19 kDa outer  
membrane protein (U-Omp19)

Oral, intraperitoneal Mice 78

Nanoparticles OVA Nasal Mice 106

TMC mixture WIV Intranasal Mice 59

Microneedle layer (TMC mixture and  
conjugated with antigen)

OVA Transcutaneous,  
intradermal, intranodal

Mice 17

Nanoparticles OVA Intradermal Mice 89

Nanoparticles OVA Intraduodenal Mice 79

Nanoparticles OVA Intradermal, intramuscular, 
intralymphatic

Mice 67

Nanoparticles (CpG ionic crosslinker) OVA Nasal Mice 85

Nanoparticles (mono-N-carboxymethyl  
chitosan crosslinker)

Tetanus toxoid Nasal Mice 74

TMC (varying DQ, DOM, molecular weight) WIV Nasal Mice 64

Nanoparticles (mono-N-carboxymethyl  
chitosan crosslinker)

Tetanus toxoid Intranasal Mice 73

TMC mixture LTK63 Intranasal Mice 75

Microneedle layer Inactivated polio virus Dermal Rats 81

Nanoparticles (with alginate modification) BSA Subcutaneous Mice 123

Abbreviations: BSA, bovine serum albumin; DOM, degree of O-methylation; DQ, degree of quaternization; OVA, ovalbumin; TMC, trimethyl chitosan; WIV, whole 
inactivated influenza virus.
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into the mice. This shows that the TMC NPs could also be 

an adjuvant and act as a vehicle for DNA vaccine delivery.97 

Both chitosan and TMC NPs have been proved to be effec-

tive adjuvants in combination with Human T-lymphotropic 

virus-Type-I recombinant proteins env23 and env13 upon 

subcutaneous and intranasal immunization in mice.98 Against 

TB, pDNA encoding Ag85A and ESAT-6 protein encap-

sulated TMC NPs, generated a strong humoral response in 

mice and in case of ESAT-6, TMC NPs generated high levels 

of IgG2a and IFN-g, which are more critical for adequate 

protection against TB.99,100 Two recent studies reported on 

chickens with N-2-hydroxypropyl trimethyl ammonium 

chloride chitosan (N-2-HACC) NPs loaded with NDV and 

infectious bronchitis virus showed remarkable protection 

against the virus after oral immunization in chickens.101,102 

In comparison with the alum-adsorbed HB and diphtheria 

toxin, TMC NPs loaded with HBsAg diphtheria toxin gen-

erated high IgG titers in both the cases and activated T-cell 

proliferation and produced a Th2-biased immune response 

in diphtheria vaccination.89,103 Similarly, the OVA-loaded 

TMC NPs generated a superior response to PLGA NPs when 

treated nasally into mice and also stimulated the maturation of 

DCs.70 There are reports wherein the other nano-formulations 

coated with TMC also elicited a good immune response, and 

TMC aided in achieving that enhancement in the immune 

modulation. For instance, a long-term immune response was 

maintained upon the intranasal immunization with nanoli-

posomes coated with TMC, loaded with M-protein epitope 

of Group-A streptococcus.104 PLGA-based lipid polymeric 

particles as well as only PLGA NPs were coated with TMC 

and were observed to enhance the immunity.105,106 TMC nano-

formulations-based vaccine development is rising steadily, 

and it will soon become a preferred delivery vehicle and 

adjuvant among researchers.

In vitro effect of TMC as an adjuvant
According to previous studies, TMC stimulates the DCs and 

APCs and even caused the maturation and differentiation of 

these cells, simultaneously releasing several cytokines. For 

instance, Nantachit et al107 demonstrated that the in vitro 

stimulation of human nasal epithelial cells with TMC NPs 

encapsulating EDIII-D3 (domain III of dengue serotype-3 E 

protein) stimulated the secretion of several proinflammatory, 

Th1, and Th2 cytokines as well as chemokines. The particles 

uptake by DCs also upregulated the maturation markers 

(CD80, CD83, CD86, and HLA-DR) of DCs.107 Similar 

uptake and upregulation of maturation markers CD83, CD86, 

and MHC-II was reported by a separate group.89 In another 

study, TMC-coated PLGA NPs and TMC-TPP NPs enhanced 

the antigen presentation by DCs, as shown by increased in 

vitro and in vivo CD4+ T-cell proliferation.106 Hence, the 

TMC NPs are efficiently captured by DCs which in turn 

stimulates the immune response.

Although the mechanism of action for the adjuvant effect 

of TMC is not entirely defined, it is hypothesized that it 

might possess a TRL recognition ability similar to chitin and 

thus could induce an innate immune response.108,109 A recent 

study by Carroll et al reveals some links of this mechanism 

of action. According to this study, the chitosan-induced 

maturation of DCs is mediated by the generation of type I 

interferons, eventually generating an antigen-specific Th1 

response and IgG2c rise. cGAS and STING (cytoplasmic 

DNA sensors) and mitochondrial ROS production are also 

reported to be involved in this Th1 response trigger. As chi-

tosan has been linked to NLRP3 inflammasome, contribut-

ing to Th1 cell polarization, TMC is postulated to follow a 

similar mechanism of action.110,111 Figure 2 shows some of 

the already known pathways and mechanism of action of 

TMC or its NPs. Further investigation is required to identify 

the downstream signaling events responsible for the action 

of TMC or chitosan.

Conclusion
TMC, a natural polysaccharide-based polymer, is gaining 

recognition as a highly potential adjuvant and is being 

researched by many research groups around the globe. Lately, 

TMC has been promisingly used for mucosal immunization 

and other applications owing to its encouraging results. It 

has various advantageous properties such as being non-toxic, 

biodegradable, excellent biocompatibility, strong immune 

response enhancement and low reactogenicity. Although 

the current understanding of the mode of action of TMC 

is theorized by stimulation through the Toll-like receptor, 

still it needs further investigation to define its applicability 

in generating a desired immune response (Th1/Th2). Its 

mucoadhesive property could be further explored to generate 

a variety of vaccine formulations for parenteral administra-

tion. Furthermore, the gamut of routes for TMC vaccination 

need to be broadened to make it employable against more 

bacterial and viral pathogens. As the TMC NPs can cross 

the tight junctions of epithelial cell membranes, the nasal 

vaccination could potentially be evolved to a new level with 

the help of this adjuvant. The intrinsic factors of TMC, such 

as its structure, the DAc, the degree of methylation, and the 

MW, which significantly affect its adjuvant properties that 

need to be probed with more permutation and combinations 
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to attain the best form of TMC as an adjuvant. The route of 

immunization and the form in which TMC (mixture, conju-

gated with antigen, NPs) is being used in combination with 

the antigen are also the decisive factors for an enhanced 

immune response generation. TMCs have been used for DNA 

delivery with some promising outcomes. Polyplexes formed 

by TMC and DNA interaction lead to condensation of the 

genetic material, which provides additional stability to the 

DNA. It also paves the way toward exploitation of TMC for 

DNA-based vaccines. Protection against various bacterial and 

viral pathogenic diseases also needs to be reconnoitered by 

employing TMC adjuvant-based vaccine strategies. In sum-

mary, TMC is a remarkably potential adjuvant for vaccine 

delivery and should be further investigated as an alternative 

to aluminum-based vaccines.

Regulatory aspects and future outlook
Chitosan and TMC possess many desirable properties like 

biocompatibility, less cytotoxicity, biodegradability, and 

mucoadhesiveness, and thus, they are one of the favorite 

candidates for vaccine delivery. Despite numerous vaccine 

studies in animal models have been reported using various 

antigens, chitosan and TMC have not yet been approved by 

the FDA as GRAS, hence could not be extended for human 

clinical studies for vaccination.112 Since chitosan has been 

approved by the FDA only for other topical applications 

like tissue engineering, wound healing, and cosmetic use, 

its approval for systemic applications would mark the next 

milestone in vaccine delivery. Therefore, further convinc-

ing studies are needed to emphasize the potential of TMC 

in numerous domains. The authors are hopeful that more 

vaccine studies demonstrating the already well-established 

functionality of TMC would aid in substantiating its use as 

an adjuvant in vaccine delivery.
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