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Abstract: Three-dimensional structural information is critical for understanding functional 

protein properties and the precise mechanisms of protein functions implicated in physiological 

and pathological processes. Comparison and detection of protein binding sites are key steps for 

annotating structures with functional predictions and are extremely valuable steps in a drug design 

process. In this research area, MED-SuMo is a powerful technology to detect and characterize 

similar local regions on protein surfaces. Each amino acid residue’s potential chemical interac-

tions are represented by specifi c surface chemical features (SCFs). The MED-SuMo heuristic is 

based on the representation of binding sites by a graph structure suitable for exploration by an 

effi cient comparison algorithm. We use this approach to analyze one particular SCOP super-

family which includes HSP90 chaperone, MutL/DNA topoisomerase, histidine kinases, and 

α-ketoacid dehydrogenase kinase C (BCK). They share a common fold and a common region 

for ATP-binding. To analyze both similar and differing features of this fold, we use a novel 

classifi cation method, the MED-SuMo multi approach (MED-SMA). We highlight common and 

distinct features of these proteins. The different clusters created by MED-SMA yield interesting 

observations. For instance, one cluster gathers three types of proteins (HSP90, topoisomerase 

VI, and BCK) which all bind the drug radicicol.

Keywords: functional classifi cation, surface similarity, protein surface chemical feature, 

radicicol binding

Introduction
Protein three-dimensional (3D) structural information help to understand functional 

protein properties and the precise mechanisms of proteins implicated in physiological 

and pathological processes.1 Knowledge of 3D protein structures linked to small 

molecules can be used for structure- and ligand-based drug design approaches.2,3 

It also gives direct hints to the protein functional mechanisms. A protein’s activity 

often depends on a small, highly conserved set of residues within the binding site.4,5 

Comparison and detection of protein binding sites are key steps for annotating struc-

tures with functional predictions. In this fi eld, Structural Genomics consortia have 

radically changed mankind’s base of protein structural knowledge. Their endeavors 

have permitted the resolution of numerous structures characterized as “Unknown 

function”, and multiple functional sites are not associated with any known binding 

partner.6 Consequently, the development of computational methods to functionally 

annotate protein structures has become a major research area.

The simplest approaches are based on sequence analogy, eg, PSI-BLAST,7 or on 

the characterization of functional patterns or profi les, eg, PROSITE.8 They help to draw 

on knowledge and assumptions of protein functions in assigning predicted functions. 

However, they cannot embrace the complexity of local 3D folds. During the past 

years, various methods to compare and detect binding sites have been elaborated; they 

use diverse types of descriptors. Their general purpose is often to create automated 

functional annotation methods independent from amino acid sequence or from 
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global fold similarity, eg, CavBase,9 SiteEngine,10 FLAP,11 

CPASS,12 or eF-seek.13

Some of these approaches share gross features but they 

also have notable distinctions. For instance, SiteEngine 

and CavBase both associate physico-chemical properties to 

structural characteristics. However, SiteEngine allows the 

comparison of entire protein surfaces to a binding site data-

base, whereas CavBase is restricted to cavity comparisons. 

The web-based version of SiteEngine is restricted to the 

comparison of a single site versus one protein structure.10 

CavBase detects related cavities based on a clique detection 

algorithm9 while CPASS comparison uses an alignment of 

binding site pairs through a root–mean–square–difference 

(RMSD) scoring function.12 Roterman has developed an 

innovative methodology based on irregular hydrophobicity 

distribution.14 A few other methods are based on the detec-

tion of conserved residues to characterize binding sites, eg, 

evolutionary trace method15–17 or sequence alignment with a 

dedicated dataset as Catalytic Site Atlas (CSA).4

In this research area, SuMo is a powerful technology to 

localize similar local regions on protein surfaces ie, binding 

sites.18 Each chemical property, or interaction, of an amino 

acid residue is represented by a specifi c surface chemical 

feature (SCF). These are gathered in triangles to constitute 

a SuMo graph vertex. Since each SCF is associated with 

heterogeneous geometrical properties, and that triplets 

have specifi c superimposition rules (distance, angle), the 

comparison heuristic is extremely rapid. The comparison 

of a 3D pattern against all the binding sites of the PDB can 

be performed in a few minutes.19 MED-SuMo is the latest 

evolution of SuMo software developed by MEDIT-SA (see 

http://www.medit.pharma.com/). Recent developments 

have improved its binding site database, and have included 

novel functional annotation tools as presented in a recent 

study.20

Proteins are also classifi ed according to their folds,21 

eg, SCOP (Structural Classifi cation of Proteins),22,23 that 

provides a manually refi ned classifi cation with detailed and 

comprehensive descriptions of the structural and evolutionary 

relationships of the known protein structure.22,23 However, 

a critical limitation of these fold-based classifi cations is the 

use of complete protein folds or protein domains. Similarity 

of fold does not necessarily correspond to a similarity of 

function. In this paper, we focus on an interesting SCOP 

superfamily which includes the heat shock protein 90 SCOP 

family (HSP90, see Figure 1).

HSP90 is one of the most abundant proteins. Its different 

forms exhibit mainly chaperone functions associated to protein 

folding, cell survival,24 apoptosis and tumor repression.25 

It binds ATP (see Figures 2a and 2b) and is the target of 

some innovative drugs including geldanamycin which has 

enabled 50% reduction of tumor growth,26 and celasterol 

which disrupts interactions between HSP90 and Cdc37 in 

pancreatic cancer cells.27 Some recent research focussed on a 

new potential drug, radicicol. This molecule has a very high 

affi nity for HSP90 (20 nM).28 Figure 3 shows the association 

of the drug with the HSP90 at the binding site normally fi lled 

with a natural ligand.28 However, radicicol is not specifi c 

to HSP90 as it binds bacterial Sensor Kinase PhoQ,29 and 

topoisomerase VI.30 An interesting detail is that HSP90 

chaperone, MutL/DNA topoisomerase or histidine kinases 

share (see Figure 1) a common fold and that a common region 

of ATP-binding has been detected (see Figures 2c and 2d).

To analyze the similar and different features of this fold, 

we use a novel classifi cation method, MED-SuMo Multi 

approach (MED-SMA), based on the MED-SuMo technology. 

In this work, binding sites from the SCOP superfamily 

ATPase domain of HSP90 chaperone/DNA topoisomerase 

II/histidine kinase proteins are gathered in a dataset, compared 

Figure 1 Heat shock protein 90 (HSP90) SCOP superfamily: GHKL: HSP90, MutL 
proteins, pyruvate dehydrogenase kinase and DNA topoisomerase VI all share this fold.
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pairwise and classifi ed using the Markov Cluster Algorithm 

(MCL).31 Results from this method highlight common and 

distinct functional features between the analyzed proteins.

Materials and methods
Protein structure database
SCOP web site provides the list of proteins associated to a 

selected fold.23 The “ATPase domain of HSP90 chaperone/

DNA topoisomerase II/histidine kinase” superfamily contains 

116 PDB structures (see http://scop.berkeley.edu/data/scop.

b.e.ccg.A.html). The protein binding sites were selected to 

perform the classifi cation.

MED-SuMo algorithm
MED-SuMo is designed to localize similar regions associated 

to a defi ned function.18–20 A key advantage is its ability to 

detect binding site similarities even when local fl exibility 

is observed. Its heuristic is based on a 3D representation 

of macromolecules using precise SCFs. For MED-SuMo, 

a protein structure is represented by a set of functional 

groups including, for example, unbound hydrogen bond 

(Hbond) donors or acceptors, accessible sides of aromatic 

rings and carboxylate, charges, hydroxyl groups. Each 

feature encodes its chemical characteristics with precise 

geometrical properties. The overall MED-SuMo comparison 

methodology is presented in Figure 4. SCFs are displayed 

on the protein structure through a lexicographic analysis of 

the atoms in the PDB fi les, ie, a residue is represented by a 

set of representative SCFs (cf. Figures 4a, 4b). Their posi-

tions and orientations are fi ltered as shown in Figure 4c. 

Remaining SCFs are assembled into triplets with specifi c 

geometric characteristics, eg, edge size, perimeter, angles 

(cf. Figure 4d). The full triplet network is stored in the MED-

SuMo database as a graph data structure where triplets are 

the vertices and edges connect adjacent triangles (ie, those 

sharing at least two SCFs).

To compare graphs, MED-SuMo looks for compatible 

triplets; composed of compatible SCFs (cf. Figure 4e). 

These triplets are called comparison “seeds”. When a seed 

is detected, MED-SuMo extends the comparisons to the 

vertices of the neighbourhood, until no more similarities are 

found. This process enables the formation of similar patches 

(common groups of SCFs) between two graphs, weighted up 

by the MED-SuMo score.18 These comparisons are usually 

performed between a query and a database of precompiled 

graphs. Two kinds of MED-SuMo database are commonly 

used: the binding site database that is composed from the 

SCFs around co-crystallized ligands and the full surface 

database, composed from SCFs covering the whole surface of 

each studied protein, typically the entire PDB. The database 

characteristics are defi ned by three essential parameters: 

the size of the ligand environment taken into account 

a) b)

d)c)

Figure 2 An example of heat shock protein 90 (HSP90) bound to its natural ligand. 
The protein shown is an HSP90 of Saccharomyces cerevisiae (PDB code 1AMW). a–b) 
underlines the close contacts (in red) of the ADP (in blue). c–d) underlines in green 
the common binding region of this SCOP superfamily.

Figure 3 An example of heat shock protein 90 (HSP90) bound to radicicol. Both views represent an HSP90 of Saccharomyces cerevisiae (PDB code 1BGQ) bound to the drug 
radicicol shown in blue (see Figure 2 to compare with the natural ligand of HSP90).
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by MED-SuMo (named ligand_radius and only concerning 

the binding site database), the maximal distance between two 

SCFs to be included in a triplet (named edge_max) and the 

maximal perimeter for a triangle (named max_edge_sum).

Classifi cation of protein binding sites
As noted, MED-SuMo has an interesting and original 

approach to detect structural and functional similarities 

between protein binding sites.18–20 We decided to apply this 

approach to classify defi ned sets of structures. This new 

method, named MED-SuMo Multi Approach (MED-SMA), 

enables the comparison of all binding sites from a set of pro-

teins using a pairwise comparison system. Matching regions 

are found in the binding sites to derive a similarity graph. 

This graph is classifi ed with the MCL31. Figure 5 illustrates 

the overall procedure. For this work, MED-SMA is only 

applied on the MED-SuMo binding sites database.

To begin, a set of proteins is selected (see previous 

paragraph, cf. Figure 5a). Ligands’ characteristics are used 

to decide which binding sites to include in the MED-SuMo 

database. Once the ligands parameters are set, the database 

is created and the pairwise comparison is launched using the 

standard MED-SuMo comparison procedure.

These comparisons highlight similar regions between 

pairs of binding sites (cf. Figure 5b) represented by groups of 

SCFs called patches. Only comparisons with a MED-SuMo 

score higher than a fi xed cut-off (parameter score_min) are 

accepted. Patches associated to the same binding sites are 

analyzed: if two patches share enough SCFs (defi ned by a 

threshold parameter named covering_factor), they are merged 

in a multipatch (cf. Figure 5c). A multipatch is a set of SCFs 

common to several binding sites of the protein set; they can 

also be called sub-sites. They represent the true meaningful 

common regions of binding sites. They have two properties: 

(i) enough SCFs are in common, such that binding sites are 

structurally and chemically similar, and (ii) they can provide 

a measure of sub-pocket similarity. These measures are used 

to compute a similarity matrix. For this matrix, the MED-

SuMo score between matching multipatches is calculated 

(cf. Figure 5d). MCL is used to interpret the matrix through 

Binding site ConnectionSCFs localization

MEDSuMo database

Low compatibility score

Good compatibility score

Research

e)

d)

c)b)a)

Figure 4 MED-SuMo comparison procedure. a) Localization of an interesting part of the protein surface often characterized by the presence of a co-crystallized ligand. 
b) Surface chemical features (SCFs) are displayed on the protein structure through a lexicographic analysis of the PDB fi les. c) SCFs are gathered in triplets. d) The triplet 
network is then stored as a graph data structure with the triplets as vertices and with edge connecting adjacent triplets. e) The query graph (in blue) is compared to the 
database graphs (in green and brown); they usually represent all binding sites of the PDB. Compatible triplets are detected, ie, they are formed by compatible SCFs.  At last, the 
corresponding graphs (hits) are ranked in regard to their compatibility score.

Powered by TCPDF (www.tcpdf.org)



Drug Design, Development and Therapy 2009:3 63

Analysis of HSP90-related folds

classifi cation of the protein binding site set into clusters of 

sub-sites (cf. Figure 5e). A 2D plot of the clusters can be 

visualized using tools such as Biolayout.32,33

Results
MED-SMA classifi cation
To generate the MED-SuMo database, only binding sites 

co-crystallized with ligands with more than ten atoms are 

selected. Of the originally selected 116 PDB structures, 101 

satisfy this fi lter. This yields a total of 146 binding sites in the 

fi nal database. Several kinds of ligands are present, purines, eg, 

adenosine tri-phosphate or N-ethyl-5’-carboxamido adenosine, 

or potential drugs, eg, Radicicol or Novobiocin. Of these 146 

binding sites, 78 are from HSP90, 38 from topoisomerase/

MutL, 26 are from histidine kinase, and four are from α-keto-

acid dehydrogenase kinase C (BCK). The database parameters 

are set to a ligand radius of 6.0 Å and triangle parameters of 

13 Å and 39 Å (respectively edge_max and max_edge_sum). 

To classify this dataset, MED-SMA takes around two minutes 

on a four CPU machine. The classifi cation parameters are set 

to a minimal compatibility score (score_min) of 4.0 and a 

covering_factor of 0.6.

Here, the MED-SMA approach produces fi ve clusters. 

The distribution of these clusters in regards to the SCOP 

families is shown in Table 1 and the composition of each 

cluster is available in Supplementary data 1.

Two types of MED-SMA clusters are seen. Three clusters 

are homogeneous as they contain only proteins from a unique 

SCOP family (MED-SMA clusters 1, 3, and 5). Two clusters 

are heterogeneous as they contain at least two SCOP families 

(MED-SMA clusters 2 and 4). MED-SMA clusters 1 and 3 

are specifi c to topoisomerase/MutL while cluster 5 is specifi c 

to histidine kinase. MED-SMA cluster 2 contains binding 

sites from two families (ie, BCK and histidine kinase) and 

MED-SMA cluster 4’s binding sites are from three of the four 

families (HSP90, topoisomerase/MutL, and BCK).

MED-SMA clusters 1 and 3
MED-SMA clusters 1 and 3 contain 22 and 6 binding sites 

of the 38 proteins of the topoisomerase/MutL/DNA gyrase 

a)

b) c)

d)e)

Figure 5 Global steps of binding site classifi cation heuristic. MED-SuMo Multi approach (MED-SMA) can be divided in 5 steps: a) Database construction: all selected binding 
sites are stored as graph in the MED-SuMo database. b) Pairwise comparisons: all binding sites are compared to each other to detect similarities between pairs (lines with dif-
ferent colors).  These similarities are called patches c) If overlapping patches have a certain amount of common SCFs (more than a threshold value: parameter covering_factor), 
they are merged in multipatches (grey circles). d) MED-SuMo scores between pairs of multipatches are calculated and used to create a similarity matrix which is classifi ed by 
MCL (Markov Cluster Algorithm) to create clusters of binding sites. e) Biolayout 2D view of the MED-SMA clusters.
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family, respectively. The two forms of topoisomerases IV 

structures of Escherichia coli (PDB code 1S14 and 1S16) 

share 99.5% sequence identity except for a 23 residue insertion 

in 1S16. These two proteins are separated by MED-SMA. 

A precise look at their ATP-binding sites highlights structural 

similarities but, above all, some strong distinctions. Figure 6 

shows a 3D superimposition of these proteins. The region 

noted (1) on Figure 6 shows an excellent superimposition 

of several β-sheets and 2 α-helixes. Moreover a part of the 

binding sites is also similar, with a set of fi ve SCFs well 

superimposed (noted [2] on Figure 6). Conversely, the other 

side of the binding site (noted [3] on Figure 6) is quite diverse. 

Ligands of these two topoisomerases are novobiocin for 1S14 

and phosphoaminophosphonic acid-adenylate ester (ANP) 

for 1S16. They are not located at the same spatial position 

and their overlap is small (∼10 atoms) compared to their 

respective sizes (44 atoms for novobiocin and 31 atoms for 

ANP). Furthermore, novobiocin can not fi t at all in the 1S16 

binding site, otherwise a steric clash appears with 1S16’s 

α helixes (noted [4] on Figure 6). Thus, binding sites from 

MED-SMA clusters 1 and 3 do not share suffi cient similarities 

to be gathered by MED-SMA, neither can they bind the same 

kind of molecules. Interestingly, the two forms are very close 

but the residue insertion causes strongly diverging affi nities 

to ligands of this class.34 So, our results reinforce the study 

of Bellon and colleauges. Moreover, it characterizes with 

elegance the fact that these two distinct local conformations 

are found in different related proteins.

Table 1 Confusion matrix of the SCOP families within the clusters. The MED-SuMo clusters are arranged vertically whereas the SCOP 
families are arranged horizontally. MED-SuMo clusters #1, #3 and #5 are homogeneous clusters, they only contain protein from: SCOP 
DNA gyrase/MutL family (for #1 and #3) and histidine kinase, respectively. MED-SuMo clusters #2 and #4 are heterogeneous

SCOP fam MED-Clusters HSP90 DNA gyrase MutL Histidine kinase A-ketoacid dehydrogenase kinase C

1 0 22 0 0

2 0 0 15 3

3 0 6 0 0

4 78 10 0 1

5 0 0 11 0

(3)

(4)

(2)

(1)

(1)

(1)

Figure 6 Superimposition of two topoisomerase VI separated by MED-SMA. PDB codes 1S16 (red) and 1S14 (green) are superimposed.  They are both topoisomerase but 
their binding sites do not share enough similarity to be grouped in the same cluster.   This fi gure is divided by several numbered regions: 1) Protein structure similarities. two α 
helixes and several β-sheets are common to both structures. 2) Low similarity in binding sites underlined by fi ve SCFs. 3) Difference between the two structures on the other 
side of the binding site. 4) Potential clash between the query ligand and the hit protein structure.
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MED-SMA cluster 4
As mentioned earlier, MED-SMA cluster 4 gathers three 

different SCOP families. It is the largest cluster, containing 

89 binding sites. All HSP90s of the dataset are present 

(78 binding sites), 10 from mutL/DNA topoisomerase family 

(with one topoisomerase VI, fi ve MutL, and four PMS2) and 

one from BCK family. Only the histidine kinase family is 

not represented in this MED-SMA cluster. The ligands are 

highly diverse with 48 unique ligands found.

Binding sites in this MED-SMA cluster share a common 

set of SCFs. Figure 7 shows a global superimposition of one 

structure of each family. The white rectangles show similari-

ties whereas the remainder is very different as represented 

in the global superimposition of all the protein families in 

Figure 1. Figure 8 shows a close view around the radicicol. 

The eight labelled SCFs (circled in yellow) are shared by 

all superimposed structures in Figure 7. They are located all 

around the ligand meaning that the similarities concern the 

whole binding site.

The fact that MED-SMA gathers the binding sites from 

three different SCOP families implies a high probability that 

the binding modes are related. Considering the nonspecifi c 

drug radicicol which binds HSP90 and topoisomerase VI,30 we 

could easily make the hypothesis that this drug would also bind 

the different proteins included in this MED-SMA cluster.

MED-SMA clusters 2 and 5
MED-SMA clusters 2 and 5 mostly consist of histidine kinase. 

MED-SMA cluster 2 is heterogeneous while MED-SMA 

cluster 5 is homogeneous. Cluster 5 is very worthwhile 

because it is pure and that the dimensions of its binding sites 

are very similar as they all bind purine ligands. Since the 

binding sites gathered by MED-SMA share binding modes 

to ligands, this type of cluster could be used to search 

for specifi c drugs; here, drugs to inhibit histidine kinase 

CheA action.

Interestingly, MED-SMA cluster 2 also contains two 

histidine kinase CheA (PDB codes 2CH4 and 1I5D). The 

separation of proteins from the same family in two different 

clusters is due to differences between their binding sites. 

When 1I5D’s binding site is compared to histidine kinase 

CheA from cluster 5, the MED-SuMo score is less than 4.0 

(which is the cut-off we chose for the pairwise comparison 

step). So, a drug designed to inhibit binding sites of 

cluster 5 would not bind (or not with the same affi nity) the 

two excluded histidine kinase CheA binding sites.

Figure 7 Superimposition of four proteins from three distinct SCOP families but gathered in the same cluster by MED-SMA. (PDB codes 2HKJ [green], 2CCT [cyan], 1B63 
[pink] 1JM6 [yellow]).  The white rectangles show similarities around the ligands and also the helices from the Bergerat fold.  The rest of the superimposition is quite messy, 
as protein global folds are very different.
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Another interesting point on MED-SMA cluster 2 is that it 

contains both BCK and anti-sigma factor spoIIab. These two 

proteins are inhibited like HSP90 by the radicicol. However, 

as they are not associated to MED-SMA cluster 4, it may 

refl ect a specifi c binding mode.

Discussion
The detection of functional sites on protein surfaces is 

important for the identifi cation of biological activity. Ligand-

protein interactions occur for the majority of protein struc-

tures and they are implicated in major biological processes. 

However, with no help from known related sequences or 

structures their detection is diffi cult.14 Several innovative 

approaches have been proposed, ie, the use of hydrophobicity 

distribution on protein structures based on the fuzzy oil drop 

model,35 the destabilization of limited protein regions,36 

phylogenomic classifi cation of protein sequences37 or the 

classifi cation of known protein catalytic sites.38 Prediction 

of protein functional sites is an important step to identify 

small-molecule interactions for drug discovery39 and it can 

be very useful to optimize drug design.40 Another valuable 

application is as a pre-processing step to reduce the search 

space for rigorous computational docking algorithms.

Methods to compare binding sites have been developed 

using various kinds of structural descriptors, eg, CavBase 

uses pseudocenters,41 and the strong hypothesis that chemical 

similarity and activity are linked. In this fi eld, MED-SuMo 

has an interesting approach using SCFs. Each SCF repre-

sents a pertinent chemical property and is described with 

specifi c geometric rules. The search for equivalent binding 

sites is performed by detection of similar graphs.42 The 

specifi c geometric rules of each SCF enable the heuristic to 

be quite fast. So, MED-SuMo provides an interesting and 

original method to detect structural and functional similarities 

between protein binding sites. Unlike MED-SuMo, very few 

methods enable functional classifi cation of sets of binding 

sites43 and specifi c binding sites are usually chosen (protein 

kinase) for the published work. Comparing our protocol with 

others is quite diffi cult.

Here, it is applied in a new clustering approach where 

the ligand environment is classifi ed. An application to a 

particular protein fold, the Bergerat ATP-binding fold char-

acterized as the ATPase domain of HSP90 chaperone/DNA 

topoisomerase II/histidine kinase SCOP superfamily is 

described here. The constituent families are quite different 

but their ATP binding sites appear quite alike. MED-SMA 

detects fi ve different clusters. Three out of fi ve are specifi c 

to a single family. These three MED-SMA clusters highlight 

the specifi city of the binding sites; for example; no molecule 

binding to cluster 1’s binding site would also bind MED-SMA 

Figure 8 A close view around the radicicol ligand.  The eight labelled SCFs (circled in yellow) are shared by all superimposed structures in Figure 7.  They are located all around 
the ligand, which means that the similarities concern the whole binding site.
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cluster 2 sites with the same interactions. The fact that the 

ligands are similar in MED-SMA cluster 1 and 2 (eg, ADP) 

emphasizes the previous observation. The ligands are the 

same whereas the binding modes are different. Oppositely, 

MED-SMA cluster 4 gathers three different families. The 3D 

superimposition from MED-SuMo, points out the difference 

of the global fold whereas the Bergerat fold can be observed 

(white rectangle on Figure 7). Interestingly, SCFs can be 

found all around the query ligand (cf. Figure 7), meaning 

that there is a global similarity of the binding sites from the 

three SCOP families. Moreover, this result is consistent with 

the experimental data as the proteins from these three SCOP 

families all bind radicicol.28–30,44

These different results demonstrate the ability of the 

method to gather binding sites with related binding modes. 

This kind of relationship between families is very interesting 

and their identifi cation is a direct application for MED-SMA. 

Moreover, with this kind of association, we can validate the 

assertion that functions can be assigned to unknown proteins 

by associating them to a specifi c best matching cluster. 

Matching clusters rather than single structures overcomes 

most of the noise in both the assignments and in the functions 

of those assigned matches. Other applications are planned, 

for example, a more general kinase classifi cation using MED-

SMA is under investigation.

Conclusions
This example clearly shows that our approach is well suited 

for fi nding common and distinct characteristics of ligand 

binding pockets. Thus, close proteins can have different local 

binding modes, while more distant ones can share common 

binding features ie, a potential cross-reaction may be pos-

sible. For instance, proteins associated to radicicol are found 

in the same MED-SMA clusters. This approach is clearly 

applicable to structural genomics research. As noted by 

Ferrè and colleagues, functional patches associated to a large 

collection of protein surface cavities can be used to provide 

functional clues for protein with unknown structures.45 This 

observation is shared from our study. Thus, MED-SuMo is an 

approach that may improve the effi ciency and effectiveness 

of early steps along the drug discovery path, improving early 

lead choices, enhancing poor leads, or aiding multivariate 

optimizations. This study further demonstrates that MED-

SuMo is appropriate for both annotating protein structures 

and for deriving structural functional classifi cations.

Finally, with its effectiveness at dealing with the entire 

PDB, and the parallelisation of the computational process in 

course, MED-SuMo is well-suited to large-scale applications. 

In fact it is currently used to resolve the big challenge of the 

POPS project (see http://www.pops-systematic.org/) in clas-

sifying every binding site represented in the PDB.

Software licensing
Commercial information regarding MED-SuMo is available 

at http://www.medit.fr/. Questions about MED-SuMo licens-

ing should be addressed to info@medit.fr. Researcher from 

the Inserm Institute UMR-S 726 has no fi nancial interests 

in MEDIT and collaborates with this company only for the 

present project. Therefore, MEDIT SA has the exclusivity 

for MED-SuMo sales.

Acknowledgments
This work was supported by French Institute for Health and 

Medical Care (INSERM) and University Denis Diderot Paris 7. 

ODA’s PhD is fi nanced by the French technical research asso-

ciation (ANRT) through a CIFRE grant. MEDIT holds all the 

rights on the presented methodology. The authors are indebted 

to S. Adcock for useful comments on the manuscript.

References
 1. Wendt KU, Weiss MS, Cramer P, Heinz DW. Structures and diseases. 

Nat Struct Mol Biol. 2008;15:117–120.
 2. Guido RV, Oliva G, Andricopulo AD. Virtual screening and its 

integration with modern drug design technologies. Curr Med Chem. 
2008;15:37–46.

 3. Waszkowycz B. Towards improving compound selection in structure-
based virtual screening. Drug Discov Today. 2008;13:219–226.

 4. Porter CT, Bartlett GJ, Thornton JM. The Catalytic Site Atlas: a resource 
of catalytic sites and residues identifi ed in enzymes using structural 
data. Nucleic Acids Res. 2004;32:D129–133.

 5. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. Analysis of catalytic 
residues in enzyme active sites. J Mol Biol. 2002;324:105–121.

 6. Fox BG, Goulding C, Malkowski MG, Stewart L, Deacon A. Structural 
genomics: from genes to structures with valuable materials and many 
questions in between. Nat Methods. 2008;5:129–132.

 7. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and 
PSI-BLAST: a new generation of protein database search programs. 
Nucleic Acids Res. 1997;25:3389–3402.

 8. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. 
Nucleic Acids Res. 1991;19(Suppl):2241–2245.

 9. Schmitt S, Kuhn D, Klebe G. A new method to detect related function 
among proteins independent of sequence and fold homology. J Mol 
Biol. 2002;323:387–406.

10. Shulman-Peleg A, Nussinov R, Wolfson HJ. SiteEngines: recognition 
and comparison of binding sites and protein-protein interfaces. Nucleic 
Acids Res. 2005;33:W337–41.

11. Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS. A common 
reference framework for analyzing/comparing proteins and ligands. 
Fingerprints for Ligands and Proteins (FLAP): theory and application. 
J Chem Inf Model. 2007;47:279–294.

12. Powers R, Copeland JC, Germer K, Mercier KA, Ramanathan V, 
Revesz P. Comparison of protein active site structures for functional 
annotation of proteins and drug design. Proteins. 2006;65:124–135.

13. Standley DM, Kinjo AR, Kinoshita K, Nakamura H. Protein structure 
databases with new web services for structural biology and biomedical 
research. Brief Bioinform. 2008;9:276–285.

Powered by TCPDF (www.tcpdf.org)



Drug Design, Development and Therapy 2009:368

Doppelt-Azeroual et al

14. Brylinski M, Prymula K, Jurkowski W, et al. Prediction of functional sites 
based on the fuzzy oil drop model. PLoS Comput Biol. 2007;3:e94.

15. Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method 
defi nes binding surfaces common to protein families. J Mol Biol. 
1996;257:342–358.

16. Mihalek I, Res I, Lichtarge O. Evolutionary trace report_maker: a new 
type of service for comparative analysis of proteins. Bioinformatics. 
2006;22:1656–1657.

17. Morgan DH, Kristensen DM, Mittelman D, Lichtarge O. ET viewer: 
an application for predicting and visualizing functional sites in protein 
structures. Bioinformatics. 2006;22:2049–2050.

18. Jambon M, Imberty A, Deleage G, Geourjon C. A new bioinformatic 
approach to detect common 3D sites in protein structures. Proteins. 
2003;52:137–145.

19. Jambon M, Andrieu O, Combet C, Deleage G, Delfaud F, Geourjon C. 
The SuMo server: 3D search for protein functional sites. Bioinformatics. 
2005;21:3929–2930.

20. Doppelt O, Moriaud F, Bornot A, de Brevern AG. Functional annotation 
strategy for protein structures. Bioinformation. 2007;1:357–359.

21. Jefferson ER, Walsh TP, Barton GJ. A comparison of SCOP and CATH 
with respect to domain-domain interactions. Proteins. 2008;70:54–62.

22. Andreeva A, Howorth D, Chandonia JM, et al. Data growth and its 
impact on the SCOP database: new developments. Nucleic Acids Res. 
2008;36:D419–425.

23. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural 
classifi cation of proteins database for the investigation of sequences 
and structures. J Mol Biol. 1995;247:536–540.

24. Picard D. Heat-shock protein 90, a chaperone for folding and regulation. 
Cell Mol Life Sci. 2002;59:1640–1648.

25. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat 
Rev Cancer. 2005;5:761–772.

26. Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone 
complex as a novel target for cancer therapy. Ann Oncol. 2003;14:
1169–1176.

27. Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG, Sun D. A novel 
Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic 
cancer cells. Mol Cancer Ther. 2008;7:162–170.

28. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH. 
Structural basis for inhibition of the Hsp90 molecular chaperone by 
the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 
1999;42:260–266.

29. Guarnieri MT, Zhang L, Shen J, Zhao R. The Hsp90 inhibitor radicicol 
interacts with the ATP-binding pocket of bacterial sensor kinase PhoQ. 
J Mol Biol. 2008;379:82–93.

30. Corbett KD, Berger JM. Structural basis for topoisomerase VI inhibi-
tion by the anti-Hsp90 drug radicicol. Nucleic Acids Res. 2006;34:
4269–4277.

31. van Dongen S. Graph Clustering by Flow Simulation. PhD thesis. 
Utrecht, The Netherlands: University of Utrecht; 2000.

32. Enright AJ, Ouzounis CA. BioLayout–an automatic graph layout algo-
rithm for similarity visualization. Bioinformatics. 2001;17:853–854.

33. Goldovsky L, Cases I, Enright AJ, Ouzounis CA. BioLayout(Java): 
versatile network visualisation of structural and functional relationships. 
Appl Bioinformatics. 2005;4:71–74.

34. Bellon S, Parsons JD, Wei Y, et al. Crystal structures of Escherichia 
coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single 
residue dictates differences in novobiocin potency against topoi-
somerase IV and DNA gyrase. Antimicrob Agents Chemother. 
2004;48:1856–1864.

35. Dessailly BH, Lensink MF, Wodak SJ. Relating destabilizing regions to 
known functional sites in proteins. BMC Bioinformatics. 2007;8:141.

36. Brown DP, Krishnamurthy N, Sjolander K. Automated protein subfam-
ily identifi cation and classifi cation. PLoS Comput Biol. 2007;3:e160.

37. Ramensky V, Sobol A, Zaitseva N, Rubinov A, Zosimov V. 
A novel approach to local similarity of protein binding sites substan-
tially improves computational drug design results. Proteins. 2007;
69:349–357.

38. Mao L, Wang Y, Liu Y, Hu X. Molecular determinants for ATP-binding 
in proteins: a data mining and quantum chemical analysis. J Mol Biol. 
2004;336:787–807.

39. Niefi nd K, Putter M, Guerra B, Issinger OG, Schomburg D. GTP plus 
water mimic ATP in the active site of protein kinase CK2. Nat Struct 
Biol. 1999;6:1100–1103.

40. Yde CW, Ermakova I, Issinger OG, Niefi nd K. Inclining the purine 
base binding plane in protein kinase CK2 by exchanging the fl anking 
side-chains generates a preference for ATP as a cosubstrate. J Mol Biol. 
2005;347:399–414.

41. Nebel JC, Herzyk P, Gilbert DR. Automatic generation of 3D motifs 
for classification of protein binding sites. BMC Bioinformatics. 
2007;8:321.

42. Wu S, Liang MP, Altman RB. The SeqFEATURE library of 3D func-
tional site models: comparison to existing methods and applications to 
protein function annotation. Genome Biol. 2008;9:R8.

43. Kuhn D, Weskamp N, Hullermeier E, Klebe G. Functional classifi ca-
tion of protein kinase binding sites using Cavbase. Chem Med Chem. 
2007;2:1432–1447.

44. Besant PG, Lasker MV, Bui CD, Turck CW. Inhibition of branched-
chain alpha-keto acid dehydrogenase kinase and Sln1 yeast histi-
dine kinase by the antifungal antibiotic radicicol. Mol Pharmacol. 
2002;62:289–296.

45. Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M. Functional 
annotation by identifi cation of local surface similarities: a novel tool 
for structural genomics. BMC Bioinformatics. 2005;6:194.

Powered by TCPDF (www.tcpdf.org)



Drug Design, Development and Therapy 2009:3 69

Analysis of HSP90-related folds

Supplementary data
Supplementary table 1
MED-SMA cluster ID PDB_LIG_ID Ligand name SCOP family

CL_1 1EI1_1_92 ANP DNA_Gyrase_B_EColi

CL_1 1EI1_2_90 ANP DNA_Gyrase_B_EColi

CL_1 1MX0_1_31 ANP TOPO_VI

CL_1 1MX0_2_29 ANP TOPO_VI

CL_1 1MX0_3_28 ANP TOPO_VI

CL_1 1MX0_4_25 ANP TOPO_VI

CL_1 1MX0_5_22 ANP TOPO_VI

CL_1 1MX0_6_21 ANP TOPO_VI

CL_1 1PVG_1_1 ANP DNA_TOPO_II_Byeast

CL_1 1PVG_2_0 ANP DNA_TOPO_II_Byeast

CL_1 1QZR_1_117 CDX DNA_TOPO_II_Byeast

CL_1 1QZR_2_113 ANP DNA_TOPO_II_Byeast

CL_1 1QZR_3_111 ANP DNA_TOPO_II_Byeast

CL_1 1S16_1_102 ANP TOPO_IV

CL_1 1S16_2_100 ANP TOPO_IV

CL_1 1Z59_1_17 ADP TOPO_VI

CL_1 1Z5A_1_11 ADP TOPO_VI

CL_1 1Z5A_2_8 ADP TOPO_VI

CL_1 1Z5B_1_86 ADP TOPO_VI

CL_1 1Z5B_2_84 ADP TOPO_VI

CL_1 1Z5C_1_9 ADP TOPO_VI

CL_1 1Z5C_2_5 ADP TOPO_VI

CL_2 1GJV_1_112 SAP alpha-ketoacid_dehydrogenase_kinase

CL_2 1GKZ_1_33 ADP alpha-ketoacid_dehydrogenase_kinase

CL_2 1I5D_1_118 128 Histidine_Kinase_CheA

CL_2 1ID0_1_10 ANP Histidine_Kinase_PhoQ

CL_2 1JM6_2_61 ADP Pyruvate_dehydrogenase_kinase

CL_2 1L0O_1_75 ADP Anti-sigma_factor_spoIIab

CL_2 1L0O_2_73 ADP Anti-sigma_factor_spoIIab

CL_2 1TH8_1_123 ADP Anti-sigma_factor_spoIIab

CL_2 1TH8_1_124 ADP Anti-sigma_factor_spoIIab

CL_2 1THN_1_104 ADP Anti-sigma_factor_spoIIab

CL_2 1THN_2_101 ADP Anti-sigma_factor_spoIIab

CL_2 1TID_1_35 ATP Anti-sigma_factor_spoIIab

CL_2 1TID_2_32 ATP Anti-sigma_factor_spoIIab

CL_2 1TIL_1_27 ATP Anti-sigma_factor_spoIIab

CL_2 1TIL_2_24 ATP Anti-sigma_factor_spoIIab

CL_2 1TIL_3_23 ATP Anti-sigma_factor_spoIIab

CL_2 2C2A_1_120 ADP Sensor_histidine_kinase_TM0853

CL_2 2CH4_1_56 ANP Histidine_Kinase_CheA

CL_3 1AJ6_1_76 NOV DNA_GYRASE_B_EColi

CL_3 1KIJ_1_66 NOV DNA_GYRASE_B_TT

CL_3 1KIJ_2_64 NOV DNA_GYRASE_B_TT

CL_3 1KZN_1_52 CBN DNA_GYRASE_B_EColi

(Continued)
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Supplementary table 1 (Continued)

MED-SMA cluster ID PDB_LIG_ID Ligand name SCOP family

CL_3 1S14_1_105 NOV TOPO_IV

CL_3 1S14_2_103 NOV TOPO_IV

CL_4 1A4H_1_62 GMY HSP90_Yeast

CL_4 1AM1_1_37 ADP HSP90_Yeast

CL_4 1AMW_1_7 ADP HSP90_Yeast

CL_4 1B62_1_16 ADP MulL

CL_4 1B63_1_91 ANP MulL

CL_4 1BGQ_1_55 RDC HSP90_Yeast

CL_4 1BYQ_1_99 ADP HSP90_Human

CL_4 1EA6_1_110 ADP PMS2

CL_4 1EA6_2_109 ADP PMS2

CL_4 1H7U_1_46 ATG PMS2

CL_4 1H7U_2_44 ATG PMS2

CL_4 1JM6_1_63 ADP Pyruvate_dehydrogenase_kinase

CL_4 1NHH_1_43 ANP MulL

CL_4 1NHI_1_108 ANP MulL

CL_4 1NHJ_1_42 ANP MulL

CL_4 1OSF_1_83 KOS HSP90_Human

CL_4 1QY5_1_13 NEC HSP90_Dog

CL_4 1QY8_1_87 RDI HSP90_Dog

CL_4 1QYE_1_143 CDY HSP90_Dog

CL_4 1TBW_1_107 AMP HSP90_Dog

CL_4 1TBW_2_106 AMP HSP90_Dog

CL_4 1TC0_1_125 ATP HSP90_Dog

CL_4 1TC0_2_121 ATP HSP90_Dog

CL_4 1TC6_1_116 ADP HSP90_Dog

CL_4 1TC6_2_114 ADP HSP90_Dog

CL_4 1U0Y_1_26 PA7 HSP90_Dog

CL_4 1U0Z_1_95 RDC HSP90_Dog

CL_4 1U0Z_6_93 RDC HSP90_Dog

CL_4 1U2O_1_3 NEC HSP90_Dog

CL_4 1U2O_2_2 NEC HSP90_Dog

CL_4 1UY6_1_88 PU3 HSP90_Human

CL_4 1UY7_1_6 PU4 HSP90_Human

CL_4 1UY8_1_82 PU5 HSP90_Human

CL_4 1UY9_1_4 PU6 HSP90_Human

CL_4 1UYC_1_144 PU7 HSP90_Human

CL_4 1UYD_1_74 PU8 HSP90_Human

CL_4 1UYE_1_141 PU9 HSP90_Human

CL_4 1UYF_1_71 PU1 HSP90_Human

CL_4 1UYG_1_138 PU2 HSP90_Human

CL_4 1UYH_1_68 PU0 HSP90_Human

CL_4 1UYI_1_135 PUZ HSP90_Human

CL_4 1UYK_1_133 PUX HSP90_Human

CL_4 1UYM_1_132 PU3 HSP90_Human

CL_4 1YC1_1_15 4BC HSP90_Human

CL_4 1YC3_1_14 4BC HSP90_Human

(Continued)
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Supplementary table 1 (Continued)

MED-SMA cluster ID PDB_LIG_ID Ligand name SCOP family

CL_4 1YC4_1_89 43P HSP90_Human

CL_4 1YET_1_39 GDM HSP90_Human

CL_4 1YSZ_1_131 NEC HSP90_Dog

CL_4 1YT0_1_80 ADP HSP90_Dog

CL_4 1ZW9_1_137 H64 HSP90_Yeast

CL_4 1ZWH_1_58 RDE HSP90_Yeast

CL_4 2BRC_1_20 CT5 HSP90_Yeast

CL_4 2BRE_1_19 KJ2 HSP90_Yeast

CL_4 2BRE_2_18 KJ2 HSP90_Yeast

CL_4 2BSM_1_77 BSM HSP90_Human

CL_4 2BT0_1_81 CT5 HSP90_Human

CL_4 2BT0_2_79 CT5 HSP90_Human

CL_4 2BYH_1_69 2D7 HSP90_Human

CL_4 2BYI_1_134 2DD HSP90_Human

CL_4 2BZ5_1_70 AB4 HSP90_Human

CL_4 2BZ5_2_65 AB4 HSP90_Human

CL_4 2CCS_1_98 4BH HSP90_Human

CL_4 2CCT_1_30 2E1 HSP90_HumanC

CL_4 2CCU_1_97 2D9 HSP90_Human

CL_4 2CDD_1_96 CT5 HSP90_Human

CL_4 2CDD_2_94 CT5 HSP90_Human

CL_4 2EXL_1_41 GMY HSP90_Dog

CL_4 2EXL_2_40 GMY HSP90_Dog

CL_4 2FWY_1_12 H64 HSP90_Human

CL_4 2FWZ_1_85 H71 HSP90_Human

CL_4 2FXS_1_78 RDA HSP90_Yeast

CL_4 2FYP_1_60 RDE HSP90_Dog

CL_4 2FYP_2_59 RDE HSP90_Dog

CL_4 2GFD_1_72 RDA HSP90_Dog

CL_4 2GFD_2_67 RDA HSP90_Dog

CL_4 2GQP_1_130 PA7 HSP90_Dog

CL_4 2GQP_2_128 PA7 HSP90_Dog

CL_4 2H55_1_122 DZ8 HSP90_Human

CL_4 2H8M_1_139 NEI HSP90_Dog

CL_4 2H8M_2_136 NEI HSP90_Dog

CL_4 2HCH_1_142 N5A HSP90_Dog

CL_4 2HCH_2_140 N5A HSP90_Dog

CL_4 2HG1_1_36 N5O HSP90_Dog

CL_4 2HG1_2_34 N5O HSP90_Dog

CL_4 2HKJ_1_38 RDC TOPOVI

CL_4 2IWS_1_48 NP4 HSP90_Yeast

CL_4 2IWU_1_45 NP5 HSP90_Yeast

CL_4 2IWX_1_00 M1S HSP90_Yeast

CL_4 2UWD_1_126 2GG HSP90_Human

CL_5 1I58_1_129 ACP Histidine_Kinase_CheA

CL_5 1I58_2_127 ADP Histidine_Kinase_CheA

CL_5 1I59_1_57 ANP Histidine_Kinase_CheA

(Continued)
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Supplementary table 1 (Continued)

MED-SMA cluster ID PDB_LIG_ID Ligand name SCOP family

CL_5 1I59_2_54 ADP Histidine_Kinase_CheA

CL_5 1I5A_1_51 ACP Histidine_Kinase_CheA

CL_5 1I5A_2_49 ACP Histidine_Kinase_CheA

CL_5 1I5B_1_119 ANP Histidine_Kinase_CheA

CL_5 1I5B_2_115 ANP Histidine_Kinase_CheA

CL_5 1I5C_1_50 ADP Histidine_Kinase_CheA

CL_5 1I5C_2_47 ADP Histidine_Kinase_CheA

CL_5 2CH4_2_53 ANP Histidine_Kinase_CheA
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