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Abstract: COPD is characterized by persistent respiratory symptoms and airflow limitation, 

caused by a mixture of small airway disease and pulmonary emphysema. Programmed cell death 

has drawn the attention of COPD researchers because emphysema is thought to result from 

epithelial cell death caused by smoking. Although apoptosis has long been thought to be the 

sole form of programmed cell death, recent studies have reported the existence of a genetically 

programmed and regulated form of necrosis called necroptosis. Autophagy was also previously 

considered a form of programmed cell death, but this has been reconsidered. However, recent 

studies have revealed that autophagy can regulate programmed cell death, including apoptosis 

and necroptosis. It is also becoming clear that autophagy can selectively degrade specific pro-

teins, organelles, and invading bacteria by a process termed “selective autophagy” and that this 

process is related to the pathogenesis of human diseases. In this review, we outline the most 

recent studies implicating autophagy, selective autophagy, and necroptosis in COPD. Strategies 

targeting these pathways may yield novel therapies for COPD.
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Introduction
COPD involves persistent respiratory symptoms and airflow limitation. The chronic 

airflow limitation is caused by a mixture of small airway disease and pulmonary 

emphysema, usually due to significant exposure to noxious particles or gases. Cigarette 

smoke (CS) is the most common identifiable risk factor for COPD, with smokers known 

to have a greater COPD mortality rate than non-smokers.1 Pulmonary emphysema 

is thought to result from epithelial cell death caused by smoking; therefore, COPD 

researchers have devoted considerable attention to programmed cell death.

Apoptosis was previously recognized as the sole form of programmed cell death, 

whereas necrosis was considered as uncontrolled cell death induced by extreme physical 

or chemical stress. However, emerging studies have demonstrated the existence of 

a genetically programmed and regulated form of necrosis, termed “necroptosis,” 

defined as necrotic cell death dependent on the receptor-interacting protein kinase 3 

(RIPK3).2–4 RIPK3, RIPK1, and mixed-lineage kinase domain-like protein (MLKL) 

form a multiprotein complex called the “necrosome,” in which MLKL is an essential 

necroptosis inducer that acts downstream of RIPK3.5,6 Unlike apoptosis, which is 

thought to be a weak inducer of inflammation with little release of damage-associated 

molecular patterns (DAMPs) from dying cells, necroptosis is considered a strong 

inducer of inflammation that releases massive amounts of DAMPs.7

Autophagy is a highly conserved process through which cells can recycle organ-

elles and proteins by degrading them in lysosomes.8 Autophagy proceeds through 
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sequential steps beginning with the generation of autophago-

somes from an isolation membrane, followed by elongation 

to form a mature autophagosome that captures cytosolic 

cargo. While the term “autophagic cell death” has long been 

used to refer to a type of cell death associated with exces-

sive cytoplasmic vacuolization,9 autophagy is considered to 

primarily act as a protective mechanism that may prevent cell 

death by maintaining cellular integrity through regenerating 

metabolic precursors and clearing subcellular debris.10 Thus, 

currently, autophagic cell death is not considered as a form 

of programmed cell death,11 but is ascribed to cell death 

with, rather than by, autophagy. In contrast, it is becoming 

clear that autophagy can regulate other cell death path-

ways. In cells of childhood acute lymphoblastic leukemia, 

induction of autophagy-dependent necroptosis is required 

to overcome glucocorticoid resistance.12 In endothelial 

cells, autophagy inhibition rescues palmitic acid-induced 

necroptosis.13 Thus, accumulating evidence suggests that 

autophagy may regulate necroptosis in the pathogenesis of 

human diseases.

While autophagy has long been considered as simply a 

non-specific homeostatic cellular process, increasing evidence 

suggests that it represents a more selective process than 

originally anticipated.14 Selective autophagy delivers a wide 

range of autophagic cargo from protein aggregates to whole 

organelles and even intracellular microbes to the lysosome for 

degradation. It is thought that ubiquitin-positive substrates, 

such as protein aggregates, mitochondria, and invading 

bacteria not dealt with the proteasome system, are selectively 

degraded by autophagy.15 Ubiquitination seems to function 

as a general tag for selective autophagy in mammalian cells. 

Various selective autophagy subtypes have been recognized 

and named after their specific targets, for example, aggre-

gated proteins: aggrephagy,16 mitochondria: mitophagy,17 

pathogens: xenophagy,18 and cilia: ciliophagy.19 The study 

of selective autophagy is an emerging field that is expected 

to provide new insights into the pathogenesis of human lung 

diseases.14 In this review, we examine the growing evidence 

favoring the contribution of autophagy, selective autophagy 

(Table 1), and necroptosis (Table 2) to COPD pathogenesis 

and discuss the dual nature of these processes in the lungs. 

A better understanding of the protective and injurious effects 

of these processes in disease pathogenesis will help design 

personalized therapies for COPD treatment.

Molecular mechanisms of autophagy, 
selective autophagy, and necroptosis
Autophagy is an evolutionarily conserved catabolic process 

by which cytoplasmic materials are delivered to and degraded 

in the lysosome.10 Often referred to simply as autophagy, 

macroautophagy is the best characterized form of autophagy, 

involving the engulfment of cytoplasmic contents and 

organelles through a complex reorganization of subcellular 

membranes to form a new organelle: the autophagosome. 

In the 1990s, genetic studies in yeast identified a series of 

autophagy-related (ATG) genes that regulate the macroau-

tophagic process.20,21 Autophagosome elongation requires 

two ubiquitin-like conjugation systems, the ATG5-12 conju-

gation system and the ATG8 conjugation system, which are 

regulated by various ATG proteins. Microtubule-associated 

Table 1 Roles of selective autophagy in COPD

Cell death mode Strain/manipulation Phenotype/observation Reference

Mitophagy PINK1-/- mice, chronic 
and acute CS

Decreased epithelial cell necroptosis and 
airspace enlargement. Decreased airway 
dysfunction

41

C57Bl/6, acute CS Injection of mitophagy inhibitor Mdivi-1 
ameliorated CS-dependent airway dysfunction

41

Human COPD lung Increased mitophagy markers 41
Ciliophagy Becn1+/- mice, acute CS Decreased cilia loss and airway dysfunction 19

Abbreviations: CS, cigarette smoke; PINK1, PTEN-induced putative kinase protein 1.

Table 2 Role of necroptosis in COPD

Cell death mode Strain/manipulation Phenotype/observation Reference

Necroptosis C57BL/6, chronic CS Increased necroptosis markers 41
mBE-mtor-/- mice, chronic CS Decreased necroptosis markers and airspace enlargement 47
BALB/cByJ, acute CS Increased neutrophilic airway inflammation 46
Human COPD lung Increased necroptosis markers 41

Abbreviation: CS, cigarette smoke.
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protein light chain 3 (LC3), a homolog of yeast ATG8, is 

one of the most well-known ATG proteins and is often 

used as a specific marker to evaluate autophagy in vitro and 

in vivo.22

Selective autophagy serves to selectively degrade mito-

chondria and other specific organelles, bacteria, and protein 

aggregates using the autophagic machinery.23 To evaluate 

the inclusive list of molecular mechanisms involved in 

selective autophagy currently in the literature is beyond the 

scope of this review; therefore, we focus on mitophagy, the 

autophagy-dependent elimination of mitochondria, in this 

review. The proposed model for mitophagy is that damaged 

and depolarized mitochondria stabilize PTEN-induced puta-

tive kinase protein 1 (PINK1), which in turn recruits the E3 

ubiquitin ligase Parkin. Subsequently, Parkin ubiquitinylates 

various mitochondrial outer membrane proteins, includ-

ing the mitofusins MFN1 and MFN2,24 voltage-dependent 

anion channels (VDACs),25 and mitochondrial rho GTPase 

(MIRO),26 and induces mitophagy by recruiting autophagic 

receptors such as p62.

A multiprotein complex, the necrosome, is formed by 

RIPK3, RIPK1, and MLKL and regulates necroptosis. 

Among these proteins, MLKL is an essential necroptosis 

inducer that acts downstream of RIPK3. Oligomerization 

and intramolecular autophosphorylation of RIPK3 lead 

to the recruitment and phosphorylation of MLKL, which 

exposes a 4-helical bundle domain.27 Recent studies sug-

gest two functions for MLKL: it serves as a platform 

at the plasma membrane for the recruitment of Ca2+ or 

Na+ ion channels28,29 and serves as a direct pore-forming 

complex recruited by the binding of the amino terminus 

of its four-helical bundle domain to negatively charged  

phosphatidylinositolphosphates.30–32

Autophagy: regulation and function 
in COPD
Ning et al33 examined comprehensive gene expression 

profiles in GOLD-2 vs GOLD-0 smokers, which suggested 

that the autophagy-related protein ATG8/microtubule-

associated protein-1 LC3 was a candidate of molecular 

target in COPD. Further investigation demonstrated pivotal 

functional roles for autophagy proteins in CS-induced 

emphysema.34,35 In COPD lung tissues, autophagic vacuoles 

(autophagosomes/autolysosomes) were increased compared 

to those in control tissues as observed by electron micros-

copy, a gold-standard method for autophagy determination, 

whereas little vacuole formation was evident in control 

tissues.35 Expression of the active form of LC3B, LC3B-II, 

as well as Atg4B, Atg5, Atg12, and Atg7 was significantly 

increased in COPD lungs.35 Genetic depletion of the essential 

autophagy mediators, LC3B and Beclin 1, ameliorated CS 

extract (CSE)-induced epithelial cell death.34 To determine 

whether increased autophagosome formation was correlated 

with autophagic activity in the lungs of CS-treated mice, we 

conducted in vivo autophagic flux assays.19,36 Analysis of 

LC3B steady-state levels in a lysosome-enriched fraction of 

lung homogenates revealed a time-dependent increase in leu-

peptin-sensitive LC3B degradation in vivo, which persisted 

until 24 hours after CS exposure, supporting the conclusion 

that CS causes a cumulative increase in autophagic flux 

in lung tissues.19 These data suggest that the CS-induced 

autophagic pathway may regulate epithelial cell death associ-

ated with emphysematous airspace enlargement in chronic 

CS-exposed mice and in patients with COPD.

While CS induces autophagy in pulmonary epithelial 

cells, Monick et al37 reported defective autophagy in CS-

exposed macrophages. Such a deficit in autophagy was also 

found in the alveolar macrophages of smokers, suggesting 

that impaired delivery of bacteria to lysosomes may lead to 

recurrent infections in patients with COPD.37 Moreover, Fujii 

et al38 evaluated autophagy-regulated senescence in bronchial 

epithelial cells treated with CSE. While 3-methyladenine, an 

autophagy inhibitor, enhanced CSE-induced senescence in 

primary human bronchial epithelial cells (HBECs), Torin-1, 

an autophagy inducer, suppressed CSE-induced HBEC 

senescence.38 The authors found that baseline autophagic 

activity in HBECs from patients with COPD was significantly 

higher than that in HBECs from non-smokers and non-

COPD smokers; however, autophagy induction in HBECs in 

response to CSE exposure was significantly lower in COPD 

patients than in non-smokers and non-COPD smokers.38 

These findings suggest that the autophagic response is insuf-

ficient in the lungs of patients with COPD, which leads to 

accelerated epithelial cell senescence.

Interestingly, mTOR signaling also has been linked to 

CS-induced COPD/emphysema.39 mTOR is an evolution-

arily conserved serine-threonine kinase that acts as a sensor 

of environmental and cellular nutrition and energy status 

that also plays an important role in regulating autophagy.40 

Rtp801, a stress-related protein triggered by adverse 

environmental conditions, was overexpressed in human 

emphysematous lungs and in lungs of mice exposed to CS.39 

Rtp801 stabilized the assembly of the mTOR inhibitory 

complex TSC1-TSC2, resulting in exacerbation of oxidative 

stress-induced cell death.39 The mTOR inhibitor rapamycin 

reduced alveolar inflammation in wild-type mice exposed 
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to CS, whereas it increased the number of apoptotic and 

inflammatory cells in room air-exposed wild-type mice and 

abrogated the protective effects of Rtp801 knockout in mice 

exposed to CS. These studies highlight that the timing and 

lung cell targets of mTOR inhibition may be essential to 

define its beneficial and pathological roles in COPD.

Thus, accumulating evidence demonstrates that autophagy 

plays previously unforeseen roles in COPD pathogenesis and 

that it can have both protective and injurious effects on COPD 

progression. Although there is no unifying explanation for 

the discrepancies between the results of various studies, the 

timing and lung cell targets for autophagy may be essential 

to define its beneficial vs pathologic roles. A better under-

standing of the balance between cytoprotective and pro-death 

functions of autophagy in response to CS will be required for 

the therapeutic targeting of this process in COPD.

Selective autophagy: mitophagy and 
ciliophagy in COPD
Recently, we reported that mitophagy regulates necroptosis, 

which contributes to the pathogenesis of COPD (Figure 1).41 

Mitophagy selectively eliminates mitochondria by employing 

the autophagic machinery.42 Parkin and PINK1 are key 

regulators of mitophagy.42 CSE causes significant mito-

chondrial depolarization and induces mitophagy in lung 

epithelial cells.41 We demonstrated that the mitochondrial 

division/mitophagy inhibitor Mdivi-1 protected against 

CS-induced cell death by reducing the phosphorylation of 

MLKL, a substrate for RIP3 in the necroptosis pathway.41 

Mice genetically deficient in PINK1 were protected against 

mitochondrial dysfunction, airspace enlargement, and muco-

ciliary clearance disruption during CS exposure.41 Our results 

suggest that CS-activated mitophagy may alter mitochondrial 

membrane integrity and induce mitophagy and necroptosis in 

pulmonary epithelial cells. Furthermore, recent studies have 

suggested that CS-induced mitophagy may regulate cellular 

senescence in COPD pathogenesis.43 Genetic blocking of 

mitophagy resulted in enhanced CS-induced mitochondrial 

ROS production and cellular senescence in HBECs. The 

precise mechanism by which a cell “decides” to undergo 

either mitophagy-induced necroptosis or senescence remains 

unclear. One hypothesis is that mitophagy may lead to 

Figure 1 Mitophagy and necroptosis in COPD.
Notes: CS-induced mitochondrial fission and PINK1-dependent mitophagy in epithelial cells are independent of mitochondrial integrity. Aberrant mitophagy may increase 
the population of impaired mitochondria, leading to induction of necrosome formation. In the necrosome, RIP3 phosphorylates MLKL, and translocation of phosphorylated 
MLKL to the cell membrane leads to direct pore formation and epithelial cell death with the release of DAMPs.
Abbreviations: CS, cigarette smoke; DAMP, damage-associated molecular pattern; MLKL, mixed-lineage kinase domain-like protein; PINK1, PTEN-induced putative kinase 
protein 1.
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either senescence or necroptosis depending on the degree 

of cellular injury.43

We also reported that ciliophagy, the consumption of cilia 

components by autophagy, regulates cilia length during CS 

exposure (Figure 2).19 We showed that autophagy-impaired 

(Becn1+/- or Map1lc3B-/-) mice, as well as tracheal epithelial 

cells isolated from these mice, display reduced CS-induced 

cilia shortening.19 We identified cytosolic deacetylase histone 

deacetylase 6 (HDAC6) as a critical regulator of ciliophagy 

during CS exposure.19 Importantly, analysis of human COPD 

specimens demonstrated epigenetic deregulation of HDAC6 

by hypomethylation and increased protein expression in the 

airway.19 These data suggest that ciliophagy, an HDAC6-

dependent selective autophagy pathway, may represent a 

novel pathway critical to cilia homeostasis in response to 

CS exposure.

It remains unclear how cells utilize non-selective and 

selective autophagy pathways in response to CS exposure. 

We speculate that CS induces non-selective autophagy 

coincident with injury to organelles (eg, mitochondria, cilia), 

which would be degraded by selective autophagy. Thus, 

non-selective and selective autophagy may likely proceed 

simultaneously in a single cell. In addition, either process 

may be impacted by cell type and stimulus intensity. Thus, 

future studies are needed to elucidate the relationship between 

both types of autophagy in response to CS exposure.

Necroptosis: a critical regulator of 
cell death in COPD
It is becoming clear that autophagy and selective autophagy 

can regulate apoptosis and necroptosis in COPD.34,41 Chen 

et al34 showed that dynamic interactions of the autophagy 

protein LC3B with Cav-1 and Fas regulate CS-induced 

lung epithelial cell apoptosis, leading to emphysematous 

airspace enlargement. Recently, we reported that CS-induced 

mitophagy may alter mitochondrial membrane integrity, 

leading to necroptosis induction (Figure 1).41 CSE-induced 

cell death in pulmonary epithelial cells was effectively 

reduced by the treatment with necrox-5, a necrosis inhibi-

tor with antioxidant activity that localizes primarily in the 

mitochondria, or with necrostatin-1, a necroptosis inhibitor. 

CSE treatment resulted in increased phosphorylation 

of MLKL, a substrate for RIP3 in the necroptosis path-

way, which was decreased in PINK1-knockdown cells.41 

Figure 2 Ciliophagy in COPD.
Notes: CS-induced oxidative stress leads to cilia protein damage. Damaged cilia proteins are ubiquitinated, which promotes aggregate formation. HDAC6 recognizes 
ubiquitinated protein aggregates and delivers them to autophagosomes. This degradation of cilia proteins, through an autophagy-dependent process termed “ciliophagy,” is 
associated with cilia shortening.
Abbreviations: CS, cigarette smoke; HDAC6, histone deacetylase 6.
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Similarly, we observed that the mitochondrial division/

mitophagy inhibitor Mdivi-1 inhibited MLKL phosphory-

lation induced by CSE in pulmonary epithelial cells. These 

results suggest that mitophagy regulates CSE-induced 

necroptosis in pulmonary epithelial cells. Furthermore, we 

detected high levels of RIP3 near emphysematous regions in 

the lungs of mice exposed to CS for 3 months.41 Importantly, 

we observed stronger PINK1 and RIP3 expression in the 

epithelial cells of patients with COPD than in that of control 

subjects. Confocal imaging confirmed higher and coincident 

expression of PINK1 and RIP3 in COPD compared to that in 

healthy lungs. These observations in human clinical samples 

strongly suggest that our experimental data associating 

mitophagy with necroptosis are relevant to COPD. Moreover, 

we have reported that sphingolipids regulate lung epithelial 

cell mitophagy and necroptosis during CS exposure.44 Inhibi-

tion of ceramide-generating acid sphingomyelinase reduces 

both CS-induced PINK1 phosphorylation and necroptosis.44 

Our data provide a mechanistic explanation for how CS 

induces mitophagy-driven necroptosis and further support the 

fact that the dysregulated sphingolipid metabolism is impli-

cated in the pathogenesis of structural cell injury in COPD.

COPD is also characterized by chronic inflammation 

of the airways, lung tissue, and pulmonary blood vessels 

as a result of exposure to CS. COPD patients show chronic 

neutrophilic inflammation in the airways, accompanied by 

aberrant tissue repair and remodeling.45 While apoptosis 

has often been described as a major physiological process 

for emphysema, apoptosis is not generally accompanied by 

inflammation because of no or limited release of DAMPs. 

Therefore, it has been proposed that additional mechanisms 

underlie CS-induced apoptosis leading to airway inflamma-

tion in COPD. In contrast, there is a general consensus that 

necroptosis directly triggers inflammation through a massive 

release of DAMPs from the disintegrating cells.7 Pouwels 

et al46 revealed that CS-induced necroptosis and the release 

of DAMPs trigger neutrophilic airway inflammation in mice. 

Exposure to CS increased the levels of DAMPs and numbers 

of neutrophils in bronchoalveolar lavage fluid in mice, and 

this effect was statistically reduced on treatment with the 

necroptosis inhibitor necrostatin-1.46 More recently, Wang 

et al47,48 reported a novel regulatory mechanism of necropto-

sis-mediated inflammation. Endoplasmic reticulum chaper-

one GRP78 promoted a CSE-induced inflammatory response 

and mucus hyperproduction in airway epithelial cells, likely 

through the upregulation of necroptosis and subsequent 

activation of the nuclear factor-κB and activator protein-1 

pathways.48 In contrast, the mTOR suppresses the CS-induced 

inflammatory cytokines interleukin-6 and interleukin-8 

through the nuclear factor-kB pathway, likely through the 

modulation of autophagy, apoptosis, and necroptosis.47 These 

results suggest that necroptosis might be a promising thera-

peutic target for emphysema and inflammation.

Conclusion
Accumulating evidence demonstrates that autophagy, selec-

tive autophagy, and necroptosis exert previously unknown 

functions during COPD pathogenesis. While autophagic cell 

death is not currently considered a form of programmed cell 

death, autophagy proteins can regulate programmed cell death, 

including necroptosis and apoptosis, in a context-specific 

fashion. Furthermore, the autophagic pathway shares a number 

of signal molecules with programmed cell death pathways. In 

COPD, cell death has been mainly evaluated in terms of clinical 

phenotypes of emphysema (eg, loss of alveolar surface area); 

however, it is now predicted that cell death can regulate fur-

ther biological processes, such as inflammation. In particular, 

necroptosis is a promising target for regulating COPD inflam-

mation, as it directly triggers inflammation through a massive 

release of DAMPs. Therefore, careful consideration and further 

research are needed for designing strategies to manipulate these 

pathways as valid therapeutic interventions.
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