
© 2018 Ganesan et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Nanomedicine 2018:13 6109–6121

International Journal of Nanomedicine Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
6109

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S178077

Microfluidization trends in the development of 
nanodelivery systems and applications in chronic 
disease treatments

Palanivel Ganesan1

Govindarajan Karthivashan2

Shin Young Park2

Joonsoo Kim2

Dong-Kug Choi1,2

1Department of Integrated Bio 
Science and Biotechnology, College 
of Biomedical and Health Science, 
Nanotechnology Research Center, 
Konkuk University, Chungju 27478, 
Republic of Korea; 2Department 
of Applied Life Sciences, Graduate 
School of Konkuk University, Research 
Institute of Inflammatory Diseases, 
Chungju 27478, Republic of Korea

Abstract: Plant bioactive compounds are known for their extensive health benefits and therefore 

have been used for generations in traditional and modern medicine to improve the health of 

humans. Processing and storage instabilities of the plant bioactive compounds, however, limit 

their bioavailability and bioaccessibility and thus lead researchers in search of novel encap-

sulation systems with enhanced stability, bioavailability, and bioaccessibility of encapsulated 

plant bioactive compounds. Recently many varieties of encapsulation methods have been used; 

among them, microfluidization has emerged as a novel method used for the development of 

delivery systems including solid lipid nanocarriers, nanoemulsions, liposomes, and so on with 

enhanced stability and bioavailability of encapsulated plant bioactive compounds. Therefore, 

the nanodelivery systems developed using microfluidization techniques have received much 

attention from the medical industry for their ability to facilitate controlled delivery with enhanced 

health benefits in the treatment of various chronic diseases. Many researchers have focused 

on plant bioactive compound-based delivery systems using microfluidization to enhance the 

bioavailability and bioaccessibility of encapsulated bioactive compounds in the treatment of 

various chronic diseases. This review focuses on various nanodelivery systems developed using 

microfluidization techniques and applications in various chronic disease treatments.
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Introduction
Currently there is an increasing demand for natural plant bioactive compounds in the 

treatment of various chronic diseases like cancer and diabetes, and neurological and 

other age-related chronic diseases owing to lower side effects.1–5 This demand has led 

to inter-collaboration across multiple research areas including medicinal, functional 

food, pharmaceuticals, and nutraceuticals. Owing to various process parameters 

during extraction, poor stability, oral environmental conditions, inaccessibility, and 

bioavailability, the application and development of various plant bioactive compound-

based treatments for chronic diseases have been limited.6–12 Therefore, an innovative 

approach that can protect bioactivity during oral treatments as well as provide enhanced 

bioavailability of those plant bioactive compounds for the successive treatment of 

chronic diseases is necessary.

Nanoencapsulation has been an efficient method of encapsulation of plant bioactive 

compounds to enhance the protection, stability, and bioavailability of plant bioactive 

compounds.4,13,14 Various nanodelivery systems including solid lipid nanocarriers, 

nano-structured lipid carriers, nanoemulsions, and nanoliposomes have been efficiently 

used in the development of encapsulation of the plant bioactive compounds with 
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their own merits and demerits for the treatment of chronic 

diseases.2–5,13,15–17 Several techniques like emulsification, 

supercritical fluidization, high-pressure homogenization, and 

ultrasonication are most commonly used in the development 

of those nanodelivery systems.18–21 However, the stability of 

these nanodelivery systems when loaded with plant bioac-

tive compounds was not acceptable. This in turn affects the 

bioavailability and bioaccessibility of those plant bioactive 

compounds developed through nanodelivery systems using 

conventional techniques. Microfluidization techniques have 

been recently applied in the development of nanodelivery 

systems with enhanced stability and bioavailability of plant-

based bioactive compounds.22–24

Novel stable nanodelivery systems have been developed 

with microfluidization techniques with enhanced stability 

of encapsulated compounds.25 The major advantages of 

the techniques include higher stability with a smaller par-

ticle size, higher scale production of nanodelivery systems 

with higher reproducibility, no aggregation of developed 

nanodelivery systems along with lower fusibility, and 

higher encapsulation efficacy with lower usages of other 

solvents.26–30 Further microfluidized nanodelivery systems 

with reduced particle size and higher bioaccessibility31,32 can 

be effectively achieved using food grade biopolymer along 

with non-toxic and highly biodegradable carriers, which can 

broaden its application in nutraceutical and functional food 

development using plant-based bioactive compounds for 

chronic disease treatments. Recently, many different types 

of food grade polymer carriers including polysaccharides 

and proteins have been effectively used in the production 

of mini emulsion production for its uniformity in produc-

tion and higher reproducibility using the microfluidization 

process. To the best of our knowledge, no review paper on 

the application of microfluidization in nanodelivery systems 

development for the effective delivery of plant bioactive 

compounds and its application in chronic disease treatment 

has been published.

Microfluidization
Plant bioactive compound-based nanodelivery systems devel-

opment using microfluidization is an emerging technique to 

enhance the stability and bioavailability of the incorporated 

plant bioactive compounds.26,33 Development of stable nano-

delivery systems using plant bioactive compounds has been 

a research area of emerging delivery systems in the medical 

field, thereby facilitating oral delivery without much loss in 

activity.33–35 Microfluidization mechanism is very essential to 

understand the development of stable nanodelivery systems, 

thereby enhancing the production of those systems with 

broader applications through the interdisciplinary approach 

of nutraceuticals and medicine.36,37 The microfluidization 

process is a type of high energy process which works on 

the dynamics of the specially designed microchannels. The 

generated turbulence and momentum makes the lipid carrier 

overcome its barrier. The pump driven by the compressed air 

mixe the lipids and active compounds at very high velocities 

in the designed microchannels, thereby forming stable deliv-

ery systems of a nano size.34,35 In the development of nanode-

livery systems, two types of microfluidization are currently 

practiced. One is two-step, single-channel microfluidization 

and the other is single-step, dual-channel microfluidization, 

with their own advantages and disadvantages. In the case of 

the nanoemulsion-based delivery system, microfluidization-

based nanoemulsion developed using a two-step single 

channel has many disadvantages like additional energy and 

more expensive wastage of lipid and oil for making coarse 

emulsion initially to be fed into the microfluidizer.38 How-

ever, single-step dual-channel microfluidization overcomes 

the above disadvantages and thereby prepares the stable 

nanoemulsion with higher loading abilities, thereby having 

broader application in the medical, food, and nutraceutical 

sectors. Microfluidizing types are shown in Figure 1.

Microfluidization has several advantages over the 

development of nanodelivery systems. For example, micro-

fluidization mechanism eases the development of the stable 

nanoemulsion with the particle size ,160 nm.39 The mecha-

nism involves forcing the coarse emulsion through micro-

channels to the particular area by pneumatically powered 

pump by pressurizing compressed air up to about 150 MPa 

which results in nanoemulsion,35,40 and the different passes 

lead to different sizes. It is also an easy-to-use and effective 

method for the development of other stable nanodelivery 

systems. Those developed nanodelivery systems show 

enhanced stability of the incorporated bioactive compounds, 

uniformity, and greater reproducibility, and food grade 

delivery systems can be effectively developed for greater 

application and development of functional food.28,34,41–44 

Recently, weighted orange oil terpenes used with different 

food grade polymers like modified gum arabic and modified 

starch to prepare nanoemulsion with the particle size of about 

77 nm showed enhanced stability for the clear beverage 

development using microfluidization.45 In addition, it has 

greater advantages in the medical field for its oral delivery 

with greater bioavailability and the sustained release of 

incorporated bioactive compounds. For example, orange oil 

nanoemulsion developed using ester gum incorporated in oil 
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phase and Quillaja saponins in continuous phase has higher 

stability of 2 weeks with the particle size of about 69 nm.46

Microfluidization-based 
nanoencapsulation of plant 
bioactive compounds
Plant bioactive compounds play a critical role in the pre-

vention and treatment of various chronic diseases including 

cancers, type 2 diabetes, hypertension, obesity, and neu-

rological diseases. Traditionally, food-based medicine or 

phytomedicine is followed generally throughout the world, 

and some bioactive compounds are documented in several 

countries.6,10,11,47,48 In general practice, plant bioactive com-

pounds are orally consumed in the form of either extracts 

or nutraceuticals, which benefit mankind by inhibiting or 

slowing down the occurrence of diseases by anticancer, anti-

inflammation, antidiabetic, antiobesity, and antioxidation 

mechanisms. However, during oral consumption of plant 

bioactive compounds, their activity and mechanisms are 

fully achieved due to numerous factors in the gastrointesti-

nal tracts. In order to overcome those factors, encapsulation 

of those bioactive compounds is a very efficient alternative, 

thereby enhancing activity and disease prevention. Several 

researchers have recently studied the development of vari-

ous nanoencapsulation systems for higher encapsulation and 

greater efficacy in nanoencapsulated bioactive compounds 

using microfluidization. Nanoencapsulated plant bioactive 

compounds using microfluidization have greater stability 

of the developed systems and can also be repeatable in 

bulk production. In addition, a microfluidized delivery 

system can be produced in a uniform size, and there is less 

breakage and release of encapsulated bioactive compounds 

in comparison with other systems.28,29,49–51 Furthermore, 

lower usage of the organic solvents is required, and a food 

grade carrier can be used to develop highly biodegradable, 

lower toxic delivery systems. Therefore, the current work 

focused on providing a detailed review of the developed 

nanodelivery systems for plant bioactive compounds using 

microfluidization and its application in various chronic 

disease treatments.

Development of microfluidization-
based nanodelivery systems
Nanodelivery systems play a key role in the delivery of plant 

bioactive compounds in enhanced oral delivery mostly due 

to the smaller size and higher surface exposure of those 

Figure 1 Microfluidization process for the preparation of nanodelivery systems.
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bioactive compounds. However, based on the size and prepa-

ration of those delivery systems using different equipment, 

different characteristic effects were shown in the functional 

properties of developed nanodelivery systems.6,10,11,47,48 In 

a recent study, solid lipid nanoparticles (SLNs) developed 

using microfluidization showed a smaller particle size of 

about 36–136 nm along with enhanced stability when gener-

ated using microfluidizing techniques.52 Similarly, pickering 

nanoemulsions with very high stability were also developed 

using microfluidization by preventing droplet coalescence 

with surface coverage and achieving a higher bridging effect 

between the droplet. Based on the abovementioned few 

studies, the microfluidizing effect showed higher stability 

in the development of nanodelivery systems.53 Therefore, 

it can enhance the bioavailability of those encapsulated 

compounds and can be helpful in the remedies for various 

chronic diseases. Microfluidized nanodelivery systems are 

shown in Figure 2. Briefly, some of the nanodelivery systems 

developed using microfluidization and their properties are 

discussed in this section.

SLNs
SLNs are among the lipid nanocarriers developed for 

transporting the hydrophobic bioactive compounds with 

higher loading capacity along with the enhanced stability of 

the loaded bioactive compounds.54–60 SLNs showed higher 

loading efficacy and bioavailability of various plant bioac-

tive compounds like curcumin, resveratrol, quercetin, and 

catechin. These plant-derived bioactive compound–loaded 

SLNs showed higher potential in the prevention and cure of 

various chronic diseases.61–66 Curcumin-loaded SLNs with 

some modification have been recently developed, showing 

a higher anticancer effect with enhanced loading efficacy. 

SLNs have been developed using different methods includ-

ing high-speed homogenization, spray drying, cold homog-

enization, hot homogenization, ultrasonication, double 

emulsion, and supercritical technology. Usage of all those 

techniques includes various advantages and disadvantages 

in the development of SLNs.67–69 The major disadvantages 

of the above systems in the development of SLNs include 

partitioning of the lipids, lower stability, and higher usage 

of the organic solvents, which limit its development in novel 

SLN development for chronic disease treatment. Recently, 

microfluidization was used for the development of SLNs 

with very high loading efficacy and higher bioavailability of 

those encapsulated compounds in the SLNs.70–75 Microalgae 

oil contains a higher amount of docosahexaenoic acid (DHA; 

22:6), which is among the essential fatty acids required in 

Figure 2 Applications of microfluidization process in the development of various nanodelivery systems.
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healthy brain development and for various body functions. 

Consumption of the microalgae oil rich in DHA showed 

various beneficial activities in humans, including anticancer 

and antineurological properties and enhanced heart function. 

However, due to lesser stability and bioactivity loss during 

oral consumptions, alternatively SLNs were developed using 

microalgae oil. Higher encapsulation efficacy and lower 

particle size were highly achieved through the microfluidiza-

tion techniques in the microalgae-loaded SLNs. Microalgae 

oil-rich DHA-loaded SLNs developed with the particle 

size of about 300–350 nm with uniform distribution of oil 

in the SLNs could be potentially applicable in functional 

food development76 with prevention or treatment of chronic 

diseases. Similarly, transparent and stable SLNs can be 

developed using microfluidization techniques and could be 

highly applicable in the development of various plant bioac-

tive compound–loaded SLNs.

Nanoemulsions
Nanoemulsions are one among the nanodelivery systems that 

play a key role in the delivery of plant bioactive compounds 

like curcumin, resveratrol, and quercetin for its enhanced 

application in the prevention and treatment of chronic 

diseases.77–80 The advantages of incorporating bioactive 

compounds in nanoemulsion are smaller particle size, higher 

stability, and transparent emulsion, where the scattering 

effect of the light is very low compared with that of normal 

emulsions. The coalescence and flocculation effect of the 

plant bioactive compound–loaded nanoemulsion was much 

lower due to the small particle size, and thus the attractive 

forces between the droplets will be greatly reduced. Nano-

emulsion can be effectively prepared using various methods 

like low energy methods including spontaneous formation by 

mixing or phase inversion and a high energy method includ-

ing high-pressure homogenizer or sonication. Every method 

has its own advantages and disadvantages in the preparation 

of the nanoemulsion-loaded plant bioactive compounds.81–85 

The most common disadvantages of these methods are usage 

of synthetic solvents, emulsifiers or oils, bioavailability and 

potential toxicity of the solvents, and stability during oral 

delivery. To overcome the above disadvantages, a micro-

fluidizer has recently been used in the development of the 

nanoemulsion with a smaller particle size, higher stability, 

and higher encapsulation efficacy of incorporated bioactive 

compounds.35,38,45,86–89 The application of microfluidized 

nanoemulsions is shown in Figure 3. Curcumin is among 

the top bioactive compounds extensively used in traditional 

medicine for generations owing to its greater potential effects 

including anticancer, antihypertension, antidiabetic, and 

antineuroinflammatory effects. Owing to the lower solubility 

and lesser bioavailability of those compounds, many studies 

on the development of curcumin-loaded nanoemulsion 

Figure 3 Microfluidized nanoemulsion applications in the treatment of various chronic diseases.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

6114

Ganesan et al

development have found higher beneficial effects in the 

treatment of various chronic diseases. In order to enhance 

its efficacy, various approaches have used curcumin-loaded 

nanoemulsion for the enhanced bioavailability of the cur-

cumin. Microfluidized nanoemulsion can be obtained with a 

particle size of about 275 nm90 with higher stability, which can 

scatter light weakly, and it could be highly applicable in food 

grade bioactive compounds or nutraceutical development.

Nanoliposomes
Nanoliposomes are yet another delivery vehicle made up of 

phospholipid bilayers, which contain aqueous compartments 

that can encapsulate various plant bioactive compounds for 

the controlled and sustained delivery of the encapsulated 

active compounds. Owing to the lower particle size and 

controlled delivery, it has a wide range of applications in 

medicine, pharmaceuticals, nutraceuticals, and functional 

foods.91–95 Various methods are involved in the preparation 

and development of nanoliposomes for enhanced stability 

like ultrasonic injection, ethanol injection, and homogenizer 

methods.96–102 The above methods are able to produce plant 

bioactive compound–loaded nanoliposomes, but the encap-

sulation efficacy and bioavailability of those encapsulated 

bioactive compounds vary with the methods.103–108 Recently, 

the microfluidization method has been very effectively used 

for plant bioactive compound–loaded nanoliposome develop-

ment, overcoming the above disadvantages in the preparation 

method and enhancing the sustained release of those bioac-

tive compounds. Tea polyphenol–loaded nanoliposome was 

effectively prepared using the microfluidization method with 

a particle size of about 66 nm along with enhanced stability 

of those developed nanoliposomes.107 The same research 

group also developed nanoliposome with different produc-

tion technologies including a high-pressure homogenizer 

and ultrasonication methods with a particle size .100 nm. 

Higher stability and sustained release of the tea polyphenol–

loaded nanoliposomes were observed in the microfluidized 

nanoliposomes, and it could be applicable in the development 

of food grade nutraceuticals and medicine. In a recent study, 

black carrot extract rich in anthocyanin-loaded nanoliposome 

was also developed with a particle size of ,50 nm, and it 

could be helpful in the development of nutraceuticals.109 

Similarly, vitamin C–loaded nanophytosomes were also 

developed with a lower particle size and higher stability, 

and sustained release of vitamin C was achieved through 

the microfluidization method.109 The particle size of the 

nanophytosomes developed by microfluidized method was 

about 92 nm, which was much lower than the traditional 

method.110 The skin permeation study of vitamin C–loaded 

nanoliposomes developed using the microfluidization method 

was very high in comparison with liposomes and vitamin C 

during 24 hours. Similarly, curcumin-loaded nanoliposomes 

were also developed using microfluidization techniques with 

a lower particle size of about 68 nm and higher stability 

than the liposomes. The stability of the curcumin-loaded 

nanoliposomes was also enhanced against alkaline pH and 

metal ions. Refrigerated storage temperature also enhances 

the stability of microfluidized nanoliposomes along with the 

sustained release of the encapsulated curcumin.111 Overall, 

the microfluidization method could be effectively used in 

the preparation of nanoliposome loaded with plant bioactive 

compounds for its enhanced application in the nutraceutical, 

functional food, pharmaceutical, and medicine industries.

Nanosuspensions
Microfluidized nanosuspensions are among the emerging tech-

niques in the development of low soluble bioactive compound-

based nanosuspension. Microfluidization helps to increase the 

bioavailability of those compounds by reducing the particle 

size and thereby increasing the surface area. Microfluidization-

based nanosuspensions have several advantages over the 

traditional suspensions including lower particle size, higher 

stability, a simple process, and higher dissolution rate.112–118 

Several drug-based nanosuspensions were developed with 

higher efficiency in the bioavailability of those drugs in various 

chronic disease treatments. Recently, budesonide nanosuspen-

sion was developed using the microfluidization method with a 

smaller particle size of about 122 nm. The pulmonary deliv-

ery and distribution of the drug in the lung were higher than 

that of the normal-sized particles.119 Similarly, another drug 

named ritonavir suspension was developed using the micro-

fluidization process with a uniform lower particle size and 

higher efficacy of about 3.5-fold. In another study, the plant 

bioactive compound gambogenic acid nanosuspensions were 

developed using the solvent precipitation method with the 

particle size of about 183 nm with higher anticancer efficacy 

than gambogenic acid.120 However, microfluidization-based 

nanosuspension will be an alternative approach in the delivery 

of many plant bioactive compound-based nanosuspensions 

with higher efficacy in the bioavailability of those compounds 

against various chronic diseases.

Poly(lactic-co-glycolic acid) (PLGA)-
based nanoparticles
PLGA-based nanoparticles are highly used in the delivery of 

various drugs and bioactive compounds as carriers for their 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

6115

Microfluidized nanodelivery systems

sustained release and target-specific delivery. PLGA was 

widely accepted by the FDA owing to the lower toxicity; after 

hydrolysis, it can produce monomers without any harmful 

effects.121–127 Various methods were used in the preparation of 

PLGA-based nanoparticles including emulsification, solvent 

precipitation, nanoprecipitation, and interfacial polymeriza-

tion methods. Different methods have advantages and disad-

vantages in PLGA-based nanoparticle development and drug 

loading efficacy while the major limitations in most methods 

involve no uniformity and large-scale production limitations. 

This leads researchers to search for low energy, higher uni-

form bulk production, and microfluidization overcomes the 

limitation in the development of PLGA-based nanoparticles 

in the entrapment of various drugs128–130 and plant bioactive 

compounds. Recently, efavirenz-loaded PLGA nanoparticles 

were also developed using the microfluidization method with 

a particle size of about 73 nm along with the higher perme-

ability of about 1.3-fold higher than the normal drug, thus 

showing a higher anti-HIV effect. It makes the researchers in 

use of plant bioactive compound-based PLGA nanoparticles 

for the efficient delivery using microfluidization methods.131 

Recently, curcumin-loaded PLGA nanoparticles were devel-

oped using microfluidization methods with a particle size of 

about 30–70 nm, controlled delivery, and lower degradation 

of the curcumin. Higher anticancer efficacy of the developed 

nanoparticle was also observed against cancer cell lines.

Role of microfluidized nanodelivery 
systems loaded with plant bioactive 
compounds in chronic diseases
Microfluidization techniques help to produce various nano-

delivery systems including SLNs, nanoemulsions, nanolipo-

somes, and PLGA nanoparticles loaded with drugs or plant 

bioactive compounds with enhanced stability and bioavail-

ability of those loaded compounds.132–139 Various in vitro 

or in vivo studies have confirmed that these microfluidized 

nanodelivery systems loaded with bioactive compounds 

showed enhanced protection in the treatment of chronic 

diseases including cancer, obesity, neurological diseases, 

and diabetes. A few of those studies are discussed in the 

following sections.

Anticancer effect
Cancer is among the major chronic diseases that cause major 

human death throughout the world, and scientists work 

diligently to produce various drugs for its treatment.140–142 

General medical practice includes radiation and chemo-

therapy, which lead to various other complications leading 

the patients in much stress.143–145 Recently, nanomedicine 

has played a vital role in the treatment of cancer overcom-

ing several side effects of traditional medicines, although 

nanodelivery systems loaded with drugs or plant-based 

bioactive compounds face critical challenges in the delivery 

of the bioactive compounds to the target sites and through 

the delivery systems.146–149 Microfluidization techniques try 

to solve some disadvantages during the production of those 

nanodelivery systems developed using anticancer drugs or 

plant-based bioactive compounds. Curcumin, resveratrol, 

quercetin, and catechin are the most active compounds 

showing extensive benefits in anticancer activities. Recently 

curcumin-loaded palm oil–based nanoemulsion was devel-

oped with a smaller particle size, and it could be used in future 

food-based nanomedicine against various cancer treatments. 

Similarly, curcumin nanoliposome also produced using 

curcumin as an active compound by using microfluidization 

techniques with the particle size of about 68 nm showed 

sustained release of the curcumin, which could be useful for 

chronic diseases including cancer.111 Recently, a plant-based 

bioactive compound known as camptothecin, a compound 

from Chinese tree bark, was used in the development of 

target-specific nanolipospheres owing to the potential toxic-

ity of the active compound to the natural cells. Researchers 

developed target-specific nanolipospheres of ,20 nm size 

by using those active compounds,150 and further research is 

necessary in terms of their toxicity effects on normal cells 

during treatments.

Antiobesity effects
Obesity is yet another major cause linked to various chronic 

diseases including hypertension, diabetes, and cardiovascular 

diseases. Consuming lipid-rich foods and sedentary lifestyle 

link to obesity, and it is a big burden to the well-being of 

mankind.151,152 Treating obesity with plant-based bioactive 

compounds in the form of food, nutraceuticals, or drugs 

is practiced.9,10,153–158 However, the bioavailability of those 

compounds through oral delivery faces many challenges. 

Recently, nanomedicine develops antiobesity bioactive com-

pound–loaded nanodelivery systems, which has enhanced 

the delivery potential over traditional medicines. Recently, 

microfluidized nanomedicines developed using antiobesity 

bioactive compounds have enhanced the stability of nanode-

livery systems. Capsaicin is among the major plant bioactive 

compounds extensively used in the treatment of obesity. 

Owing to higher pungency, odor, and low solubility, its usage 

and its bioavailability of the bioactive compounds in the treat-

ment of obesity are limited.159–162 Recently, microfluidization 
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techniques have been extensively used in the development 

of food grade nanodelivery systems or nanomedicines for 

the enhanced bioavailability of the capsaicin and its related 

compounds.163 Recently, oleoresin capsicum–loaded nano-

emulsion was developed using microfluidization techniques 

with the particle size of about 50 nm showing enhanced anti-

obesity effects in a high-fat-induced rat. Similarly conjugated 

linoleic acid–loaded nanoemulsion was developed using 

microfluidizing techniques, which also showed an enhanced 

antiobesity effect.164 Higher efficacy of the antiobesity plant-

based bioactive compounds like zeaxanthin was also studied 

using microfluidization techniques by reducing its particle 

size. Further development of various nanodelivery systems 

using those antiobesity bioactive compounds is necessary to 

enhance its application.

Cardiovascular effect
Plant-derived bioactive compounds showed higher potential 

in the prevention of cardiovascular diseases.10,165,166 Consump-

tion of the plant bioactive compound–rich food showed 

higher prevention either by the prevention of the oxidation 

of lipoprotein or by the prevention of atherosclerotic lesion 

development. A diet rich in plant bioactive compounds 

showed an active preventive role in various mechanisms 

against the atherosclerotic effect.167–171 However, the bioavail-

ability of those bioactive compounds against atherosclerosis 

is very low and development of novel nanodelivery systems 

is currently playing a key role. Recently various nanodelivery 

systems were developed using plant bioactive compounds like 

nanoemulsion or nanoparticles for their effective preventive 

role against various chronic diseases including cardiovascular 

effects.172–175 Recently, Baicalein-loaded nanoemulsion was 

developed with a particle size of about 91 nm, showing excel-

lent bioavailability of these compounds in rats,176 and it could 

be possibly used in anticardiovascular studies. Another poten-

tial anticardiovascular compound β-carotene was studied 

using the microfluidization technique, and are able to produce 

food grade nanoemulsion along with higher stability with a 

particle size of ,200 nm.176 However, the enhanced stabil-

ity of those active compound loaded nanodelivery systems 

developed using microfluidization techniques are still limited 

in their protective role in the anticardiovascular effects.

Antineuroinflammation effect
Plant bioactive compounds like curcumin, resveratrol, and 

piperine play a significant role in antineuroinflammation 

and neuroprotection activity; they thereby can prevent 

various neuroinflammatory diseases including Parkinson’s, 

Alzheimer’s, and other brain diseases.177–183 However, the 

delivery of those bioactive compounds is playing a key role 

in the prevention of the above neuroinflammatory diseases. 

Novel nanodelivery systems like SLNs, nanoemulsions, 

and nanoliposomes are successful in the delivery of various 

plant-based bioactive compounds in the treatment of neu-

roinflammatory diseases.184–191 However, the stability and 

bioavailability of bioactive compound–loaded nanodelivery 

systems were greatly enhanced through microfluidization 

techniques. Curcumin, a potential antineuroinflammatory 

compound, was successfully loaded in zein nanoparticles 

using microfluidization techniques with a lower particle size 

and showed higher bioaccessibility.192

Conclusion
Microfluidization-based nanodelivery systems using plant bio-

active compounds is a technology that is expected to make tre-

mendous progress in producing various nanodelivery systems 

including SLNs, nanoemulsions, nanoliposomes, and PLGA 

nanoparticles. These techniques are able to produce stable 

and highly reproducible nanosystems of certain drugs with 

a lower particle size with the higher possibility of industrial 

scale production and application in the treatment of various 

chronic diseases. Stable nanodelivery systems developed using 

microfluidization techniques also showed higher bioavail-

ability and bioaccessibility of those encapsulated plant-based 

bioactive compounds. Several microfluidized drugs are in the 

commercial market which are used in the treatment of various 

chronic diseases. Further research studies are also necessary in 

the design of microfluidization processing parameters for the 

development of particular nanodelivery systems using plant 

bioactive compounds in determining the stability and in the 

treatment of certain diseases. This will lead to the develop-

ment of novel plant bioactive compound-based nanodelivery 

systems using microfluidization techniques with higher ben-

eficial effects in the treatment of many chronic diseases.
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