Association between polymorphisms in microRNAs and ischemic stroke in an Asian population: evidence based on 6,083 cases and 7,248 controls

Donghua Zou^{1,*} Chunbin Liu^{1,*} Qian Zhang¹ Xianfeng Li¹ Gang Qin1 Qi Huang¹ Youshi Mengi Li Chen² Iinru Wei¹

Department of Stroke Center, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China; ²Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China

*These authors contributed equally to this work

Correspondence: Jinru Wei Department of Stroke Center, The Fifth Affiliated Hospital of Guangxi Medical University, No 89 Qixing Road, Nanning, Guangxi 530022, People's Republic of China Tel +86 771 261 7892 Email drweijinru@126.com

Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, Guangxi 530021, People's Republic of China Tel +86 771 535 0031 Email chenligfkk@163.com

Background: Polymorphisms in miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832) and miR-499 (rs3746444) have been associated with ischemic stroke (IS), but studies have given inconsistent results.

Methods: This meta-analysis investigated the possible association between IS risk and the four polymorphisms. A total of 14 case-control studies from Asian populations involving 6,083 cases and 7,248 controls for the four polymorphisms were included.

Results: Results showed that the GG genotype of miR-146a (rs2910164) may be associated with increased IS risk according to the recessive model (OR=1.20, 95% CI=1.02-1.42, P=0.03). Similarly, the CC genotype of miR-149 (rs2292832) may be associated with increased IS risk according to the recessive model (OR=1.28, 95% CI=1.08-1.52, P=0.005) and the homozygous model (OR=1.31, 95% CI=1.09-1.58, P=0.004). In contrast, miR-196a2 (rs11614913) and miR-499 (rs3746444) polymorphisms did not show significant association with IS risk in any of the five genetic models.

Conclusion: These results indicate that the GG genotype of miR-146a (rs2910164) and CC genotype of miR-149 (rs2292832) may confer increased susceptibility to IS, while miR-196a2 (rs11614913) and miR-499 (rs3746444) polymorphisms may not be associated with IS risk in Asian populations. These conclusions should be verified in large and well-designed studies.

Keywords: miRNAs, polymorphism, ischemic stroke, meta-analysis

Introduction

Stroke is a significant worldwide problem. An estimated 80% of the patients survive for at least 1 year after stroke, yet >70% have enduring disabilities.^{1,2} Ischemic stroke (IS) and intracerebral hemorrhage account for ~80%–85% and 15%–20% of all stroke cases, respectively.3 IS is a complex syndrome whose pathological development involves multiple components, which include environmental and genetic factors. 4 Established environmental risk factors include age, sex, body mass index, hypertension, diabetes mellitus, smoking, and hyperlipidemia. However, recent studies suggested that genetics may contribute more than environment to IS, considering that a number of single-gene disorders are related to IS. 5-8 Nevertheless, the factors defining genetic susceptibility to IS remain unclear.

MicroRNAs (miRNAs) represent a group of short non-coding RNA molecules, 18-25 nucleotides in length. Bioinformatics data indicate that a single miRNA can bind to as many as 200 gene targets, and miRNAs may regulate the expression of approximately one-third of protein-coding mRNAs. A single-nucleotide polymorphism

http://dx.doi.org/10.2147/CIA.S174000

(SNP) in miRNA may create a mismatch, leading to gene expression disorder and diseases. Evidence has indicated that miRNAs regulate various IS-related biological processes, such as atherosclerosis, hypertension, and plaque rupture. In fact, altered miRNA expression has been observed in IS in preclinical animal models and patients, suggesting a potential role in predicting the diagnosis and prognosis of IS. 11,12

More specifically, the literature suggests an association between IS and polymorphisms in miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444). However, these associations are controversial because individual studies relied on relatively small samples. Therefore, to obtain a more comprehensive understanding of the available evidence, we conducted this meta-analysis of 14 case—control studies to evaluate the possible association between IS risk and miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444) in Asian populations.

Materials and methods Search strategy

All clinical and experimental case—control studies of miRNA polymorphisms and IS risk published through February 1, 2018 were identified through systematic searches in PubMed, EMBASE, Google Scholar, and the Chinese National Knowledge Infrastructure (CNKI) databases using English and Chinese. The search terms used were as follows: microRNA; miRNA; these two terms in combination with polymorphism, polymorphisms, SNP, variant, variants, variation, genotype, genetic, or mutation; and all the abovementioned terms in combination with stroke or ischemic stroke. Reference lists in identified articles and reviews were also searched manually to identify additional eligible studies.

Inclusion criteria

To be included in our review and meta-analysis, studies had to 1) have a case-control design for assessing the association of IS risk with miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444); 2) be accessible as a full-text article and report sufficient data for estimating ORs with 95% CIs; 3) report genotype frequencies; and 4) involve humans rather than animal models.

Data extraction

Two authors (DHZ and CBL) independently extracted the following data from the included studies: first author's

family name, year of publication, ethnicity, testing methods, control source, age, sex, *P*-value for Hardy–Weinberg equilibrium (HWE) in controls, numbers and genotypes of cases and controls, and frequencies of genotypes in cases and controls. Discrepancies were resolved by consensus. Only those studies that met the predetermined inclusion criteria were included.

Assessment of methodological quality

To assess the quality of the studies included in this analysis, the Newcastle–Ottawa scale was used by two independent assessors (JRW and LC).²⁷ For the Newcastle–Ottawa scale, a full score is nine stars; a score range of 5–9 stars is considered to indicate generally high methodological quality, whereas a range of 0–4 stars is considered to indicate poor quality.²⁸ The quality of all the included studies is summarized in Table 1. Any disagreements about Newcastle–Ottawa scores were resolved by other authors following a comprehensive reassessment. Only high-quality studies were included in our meta-analysis.

Statistical analyses

The unadjusted OR with 95% CI was used to assess the strength of the association of IS risk with miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444) based on genotype frequencies in cases and controls. The significance of pooled ORs was determined using the *Z*-test, with P<0.05 defined as the significance threshold. Meta-analysis was conducted using a fixed-effect model when P>0.10 for the Q-test, indicating the lack of heterogeneity among studies; otherwise, a random-effect model was used. All these statistical tests were performed using Review Manager 5.2 (Cochrane Collaboration, Oxford, England).

Publication bias was assessed using Begg's funnel plot and Egger's weighted regression, with P<0.05 considered statistically significant. Begg's funnel plots and Egger's weighted regression were calculated using Stata 12.0 (StataCorp LP, College Station, TX, USA).

Results

Description of studies

Figure 1 is a flow diagram illustrating the process of searching for and selecting studies. A total of 184 potentially relevant publications up to February 1, 2018 were systematically identified through searches of the PubMed, EMBASE, Google Scholar, and CNKI databases in English

Table I Methodological quality of the studies included in the final analysis based on the Newcastle-Ottawa scale for assessing the quality of case-control studies

study	Selection (score)	core)			Comparability (score)	Exposure (score)			Total score ^b
	Adequate definition of patient cases	Representativeness of patient cases	Selection of controls	Definition of controls	Control for important factor or additional factor	Ascertainment of exposure (blinding)	Same method of ascertainment for participants	Non-response rate ^a	
Sun ¹³	_	_	0	_	2	0	_	_	7
Li ¹⁴	_	_	0	_	0	0	_	_	2
He and Han ¹⁵	_	_	0	_	2	0	_	_	7
Jeon et al ¹⁶	_	_	0	_	2	0	_	_	7
Hu et al ¹⁷	_	_	0	_	2	0	_	_	7
Liu et al ¹⁸	_	_	0	_	_	0	_	_	9
Zhu et al ¹⁹	_	_	0	_	2	0	_	_	7
Huang et al ²⁰	_	_	0	_	2	0	_	_	7
Zhong et al ²¹	_	_	0	_	2	0	_	_	7
Qu et al ²²	_	_	0	_	0	0	_	_	2
Lyu et al ²³	_	_	0	_	2	0	_	_	7
Zhu ²⁴	_	_	0	_	2	0	_	_	7
Luo et al ²⁵	_	_	0	_	2	0	_	_	7
Zhu et al ²⁶	_	_	0	_	2	c	_	C	9

Notes: *When there was no significant difference in the response rate between both groups based on a chi-squared test (P>0.05), one point was awarded. *Total score was calculated by adding up the points awarded in each item.

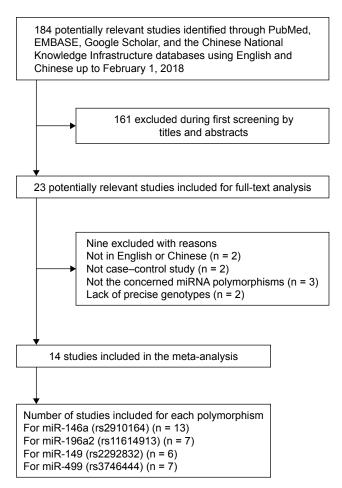


Figure I Flowchart of study selection.

and Chinese. Of these, we excluded 161 studies during initial screening based on review of the titles and abstracts. During analysis of the full text of the remaining articles, two studies were excluded for not being case—control studies, three studies were excluded because they did not report

precise genotypes, and two articles were excluded because they investigated polymorphisms of miRNAs other than miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), or miR-499 (rs3746444). A further two studies were excluded because they were not written in English or Chinese.

In the end, 14 studies¹³⁻²⁶ were included in this metaanalysis based on our search strategy and inclusion criteria. Their characteristics are summarized in Table 2. Of these, 13 studies^{13,14,16-26} (Table 3) involving 5,726 cases and 7,175 controls evaluated the association between miR-146a (rs2910164) polymorphism and IS risk. Seven studies^{16,18–20,} ^{24–26} (Table 3) involving 3,090 cases and 3,047 controls evaluated the association between miR-196a2 (rs11614913) polymorphism and IS risk. Six studies^{15-17,24-26} (Table 3) involving 2,448 cases and 2,322 controls evaluated miR-149 (rs2292832) polymorphism and IS risk. The remaining seven studies^{16,18,20,23-26} (Table 3) involving 3,082 cases and 3,044 controls evaluated miR-499 (rs3746444) polymorphism and IS risk. The distribution of genotypes in controls was consistent with HWE (P>0.05) in all but three studies. ^{14,20,22} The overall quality of the included studies was adequate, and the mean Newcastle-Ottawa score for the included studies was 6.57 (Table 1).

Quantitative data synthesis

IS risk and miR-146a (rs2910164) polymorphism

The overall results for miR-146a (rs2910164) are summarized in Table 4 and Figure 2. On the basis of 5,726 cases and 7,175 controls from 13 studies, ^{13,14,16–26} the overall results indicated that the GG genotype of miR-146a (rs2910164) may be associated with increased IS risk according to the recessive model (OR=1.20, 95% CI=1.02–1.42, *P*=0.03; Figure 2B).

Table 2 Characteristics of the studies included in the meta-analysis

Study	Year	Ethnicity	Country	Testing	Control	Age (years,	mean± SD)	Male, n (%)	SNP
				method	source	Cases	Controls	Cases	Controls	
Sun ¹³	2011	Asian	China	PCR-RFLP	Hospital- based healthy volunteers	63±12	62±13	236 (61.9)	347 (53.4)	miR-146a (rs2910164)
Li ¹⁴	2010	Asian	China	PCR-RFLP	Hospital- based healthy volunteers	64±11	45±12	188 (67.2)	579 (57.3)	miR-146a (rs2910164)
He and Han ¹⁵	2013	Asian	China	PCR-RFLP	Hospital- based healthy volunteers	65.7±11.5	66.3±10.2	205 (55.0)	193 (51.7)	miR-149 (rs2292832)
Jeon et al ¹⁶	2013	Asian	South Korea	TaqMan	Hospital- based healthy volunteers	64.16±11.90	63.14±10.19	336 (49.6)	244 (44.1)	miR-146a (rs2910164); miR-196a2 (rs11614913);

(Continued)

Table 2 (Continued)

				method	source	Cases	Cantuala	C	Controls	
						Cases	Controls	Cases	Controls	
										miR-149
										(rs2292832);
										and miR-499
Hu et al ¹⁷	2014	Asian	China	PCR-RFLP	Lloopieol	<i>(4</i> ± 1 1 7	63±10.5	94 (48.0)	QE (4(2)	(rs3746444)
nu et ai"	2014	Asian	China	FCR-RFLF	Hospital-	64±11.7	63±10.5	74 (40.0)	95 (46.3)	miR-146a
					based healthy volunteers					(rs2910164) and miR-149
					volunteers					(rs2292832)
Liu et al ¹⁸	2014	Asian	China	PCR-RFLP	Hospital-	67.52±10.29	66.34±11.07	227 (58.06)	180 (60.81)	miR-146a
					based healthy			, ,	, ,	(rs2910164);
					volunteers					miR-196a2
										(rs11614913
										and miR-499
										(rs3746444)
Zhu et al ¹⁹	2014	Asian	China	PCR-LDR	Hospital-	61.62±0.986	62.05±0.982	253 (68.75)	261 (68.50)	miR-146a
					based healthy volunteers					(rs2910164) and miR-196
					volunteers					(rs11614913)
Huang et al ²⁰	2015	Asian	China	TaqMan	Hospital-	63 (54–70) ^a	61 (54–68) ^a	327 (61.6)	327 (61.6)	miR-146a
					based healthy	(((; ; ; ;)	(****)	()	(rs2910164);
					volunteers					miR-196a2
										(rs11614913)
										and miR-499
										(rs3746444)
Zhong et al ²¹	2016	Asian	China	PCR	Hospital-	62.6±8.63	61.1±9.58	177 (59.6)	170 (56.7)	miR-146a
					based healthy					(rs2910164)
Qu et al ²²	2016	Asian	China	PCR-LDR	volunteers Hospital-	61.30±9.40	59.50±8.50	718 (63.0)	903 (57.0)	miR-146a
Q		, 101411	· · · · · · ·		based healthy	0.1.00=71.10	37.30_3.50	(33.3)	(00)	(rs2910164)
					volunteers					,
Lyu et al ²³	2016	Asian	China	TaqMan	Hospital-	58±11.9	58±11.9	210 (55.6)	210 (55.6)	miR-146a
					based healthy					(rs2910164)
					volunteers					and miR-499
Zhu ²⁴	2016	Asian	China	PCR-RFLP	Hospital-	63.74±4.49	63.31±4.84	215 (54.3)	202 (53.4)	(rs3746444) miR-146a
	2010	, which	Cimia	· Or rail	based healthy	05.7 1=1.17	03.31±1.01	213 (3 1.3)	101 (33.1)	(rs2910164);
					volunteers					miR-196a2
										(rs11614913)
										miR-149
										(rs2292832);
										and miR-499
Luo et al ²⁵	2017	Asian	China	PCR	Hospital-	(7 70 ±12 22	60.17±10.32	10/ // Ε 0\	101 (50 0)	(rs3746444)
Luo et al-	2017	Asian	China	FCR	based healthy	67.70±12.33	60.17±10.32	176 (63.6)	181 (59.8)	miR-146a (rs2910164);
					volunteers					miR-196a2
					Volunteers					(rs11614913)
										miR-149
										(rs2292832);
										and miR-499
										(rs3746444)
Zhu et al ²⁶	2017	Asian	China	TaqMan	Hospital-	61.0±10.2	59.7±9.9	321 (62.9)	311 (59.4)	miR-146a
					based healthy					(rs2910164);
					volunteers					miR-196a2
										(rs11614913)
										miR-149
										(rs2292832);
										and miR-499

 $\textbf{Note:} \ ^{\text{a}} \textbf{These data are expressed as median (25th, 75th quartiles)}.$

Abbreviations: LDR, ligase detection reaction; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; SNP, single-nucleotide polymorphism.

Zou et al **Dove**press

Table 3 Genotype distributions of miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444)

Study	Year	P-value for HWE	Sample size (cases/controls)	No c			Allele frequof cases, n (No c			Allele freque controls, n	
miR-146a (rs	s291016	4)		СС	GC	GG	С	G	СС	GC	GG	С	G
Sun ¹³	2011	0.345	358/650	136	161	61	433 (60.5)	283 (39.5)	228	304	118	760 (58.5)	540 (41.5)
Li ¹⁴	2010	0.009	268/1,010	79	110	79	268 (50.0)	268 (50.0)	345	455	210	1,145 (56.7)	875 (43.3)
Jeon et al ¹⁶	2013	0.589	678/553	223	327	128	773 (57.0)	583 (43.0)	211	266	76	688 (62.2)	418 (37.8)
Hu et al ¹⁷	2014	0.193	196/205	75	87	34	237 (60.5)	155 (39.5)	97	82	26	276 (67.3)	134 (32.7)
Liu et al ¹⁸	2014	0.650	296/391	85	159	52	329 (55.6)	263 (44.4)	116	198	77	430 (55.0)	352 (45.0)
Zhu et al ¹⁹	2014	0.952	368/381	145	173	50	463 (63.0)	273 (37.0)	132	185	64	449 (80.6)	313 (19.4)
Huang et al ²⁰	2015	0.106	531/531	189	261	81	639 (60.2)	423 (39.8)	219	257	55	695 (65.4)	367 (34.6)
Zhong et al ²¹	2016	0.133	297/300	141	128	28	410 (69.0)	184 (31.0)	113	152	35	378 (63.0)	222 (37.0)
Qu et al ²²	2016	< 0.001	1,139/1,585	355	618	166	1,328 (58.3)	950 (41.7)	483	869	233	1,835 (57.9)	1,335 (42.1)
Lyu et al ²³	2016	0.079	378/378	119	198	61	436 (57.7)	320 (42.3)	153	187	38	493 (65.2)	263 (34.8)
Zhu ²⁴	2016	0.521	396/378	131	194	71	456 (57.6)	336 (42.4)	154	179	45	487 (64.4)	269 (35.6)
Luo et al ²⁵	2017	0.672	298/303	129	130	39	388 (65.1)	208 (34.9)	119	139	45	377 (62.2)	229 (37.8)
Zhu et al ²⁶	2017	0.085	523/510	170	267	86	607 (58.0)	439 (42.0)	204	251	55	659 (64.6)	361 (35.4)
miR-196a2 (TT	TC	СС	T	C (12.0)	TT	TC	СС	T	C
Jeon et al ¹⁶	2013	0.126	678/553	139	352	187	630 (46.5)	726 (53.5)	105	292	156	502 (45.4)	604 (54.6)
Liu et al ¹⁸	2014	0.060	296/391	51	181	64	283 (47.8)	309 (52.2)	84	214	93	382 (48.8)	400 (51.2)
Zhu et al ¹⁹	2014	0.384	368/381	71	189	108	331 (45.0)	405 (55.0)	78	198	105	354 (46.5)	408 (53.5)
Huang et al ²⁰	2015	0.856	531/531	100	265	166	465 (43.8)	597 (56.2)	112	266	153	490 (46.1)	572 (53.9)
Zhu ²⁴	2016	0.354	396/378	112	205	79	429 (54.2)	363 (45.8)	110	196	72	416 (55.0)	340 (45.0)
Luo et al ²⁵	2017	0.385	298/303	73	138	87	284 (47.7)	312 (52.3)	75	159	69	309 (51.0)	297 (49.0)
Zhu et al ²⁶	2017	0.548	523/510	150	273	100	573 (54.8)	473 (45.2)	146	260	104	552 (54.1)	468 (45.9)
miR-149 (rs2	2292832)		TT	тс	СС	Т	С	TT	тс	СС	Т	С
He and Han ¹⁵	2013	0.303	357/373	138	162	57	438 (66.6)	276 (41.4)	160	175	38	495 (66.4)	251 (33.6)
Jeon et al ¹⁶	2013	0.921	678/553	299	303	76	901 (66.4)	455 (33.6)	262	238	53	762 (68.9)	344 (31.1)
Hu et al ¹⁷	2014	0.199	196/205	79	76	41	234 (59.7)	158 (40.3)	80	89	36	249 (60.7)	161 (39.3)
Zhu ²⁴	2016	0.720	396/378	165	179	52	509 (64.3)	283 (35.7)	190	158	30	538 (71.2)	218 (28.8)
Luo et al ²⁵	2017	0.447	298/303	131	127	40	389 (65.3)	207 (34.7)	121	136	46	378 (62.4)	228 (37.6)
Zhu et al ²⁶	2017	0.351	523/510	232	221	70	685 (65.5)	361 (34.5)	240	213	57	693 (67.9)	327 (32.1)
miR-499 (rs3	3746444)		AA	AG	GG	Α	G	AA	AG	GG	Α	G
Jeon et al ¹⁶	2013	0.740	678/553	460	195	23	1,115 (82.2)	241 (17.8)	365	170	18	900 (81.4)	206 (18.6)
Liu et al ¹⁸	2014	0.170	296/391	181	96	19	458 (77.4)	134 (22.6)	278	99	14	655 (83.8)	127 (16.2)
Huang et al ²⁰	2015	0.002	531/531	398	133	0	929 (87.5)	133 (12.5)	403	128	0	934 (87.9)	128 (12.1)
Lyu et al ²³	2016	0.621	378/378	257	110	11	624 (82.5)	132 (17.5)	250	113	15	613 (81.1)	143 (18.9)
Zhu ²⁴	2016	0.910	396/378	255	123	18	633 (79.9)	159 (20.1)	249	116	13	614 (81.2)	142 (18.8)
Luo et al ²⁵	2017	0.131	298/303	215	78	5	508 (85.2)	88 (14.8)	244	53	6	541 (89.3)	65 (10.7)
Zhu et al ²⁶	2017	0.380	505/510	349	124	32	840 (80.3)	206 (19.7)	328	158	24	814 (79.8)	206 (20.2)

 $\textbf{Abbreviation:} \ \mathsf{HWE}, \ \mathsf{Hardy-Weinberg} \ \mathsf{equilibrium}.$

Table 4 Overall meta-analysis of the association between ischemic stroke and polymorphisms in miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444)

Genetic model	OR [95% CI]	Z (P-value)	Heterog	eneity of study des	sign	Analysis
			χ²	df (P-value)	I ² (%)	model
miR-146a (rs2910164) from 13 case-con	trol studies (5,726 cases	and 7,175 controls)				
Allelic model (G-allele vs C-allele)	1.10 [0.99-1.22]	1.74 (0.08)	47.91	12 (<0.001)	75	Random
Recessive model (GG vs GC+CC)	1.20 [1.02-1.42]	2.16 (0.03)	31.55	12 (0.002)	62	Random
Dominant model (CC vs GC+GG)	0.91 [0.80-1.04]	1.41 (0.16)	34.76	12 (<0.001)	65	Random
Homozygous model (GG vs CC)	1.24 [1.00-1.53]	1.95 (0.05)	43.43	12 (<0.001)	72	Random
Heterozygous model (GC vs CC)	1.06 [0.95-1.17]	1.00 (0.32)	20.79	12 (0.05)	42	Random

(Continued)

Table 4 (Continued)

Genetic model	OR [95% CI]	Z (P-value)	Heterog	eneity of study des	sign	Analysis
			??2	df (P-value)	I ² (%)	model
miR-196a2 (rs11614913) from 7 case-co	ntrol studies (3,090 cases	and 3,047 controls)				
Allelic model (C-allele vs T-allele)	1.04 [0.97-1.12]	1.10 (0.27)	3.20	6 (0.78)	0	Fixed
Recessive model (CC vs TC+TT)	1.04 [0.93-1.17]	0.73 (0.46)	4.60	6 (0.60)	0	Fixed
Dominant model (TT vs TC+CC)	0.95 [0.85-1.08]	0.77 (0.44)	2.86	6 (0.83)	0	Fixed
Homozygous model (CC vs TT)	1.07 [0.92-1.24]	0.91 (0.36)	2.85	6 (0.83)	0	Fixed
Heterozygous model (TC vs TT)	1.07 [0.93-1.23]	0.90 (0.37)	2.72	5 (0.74)	0	Fixed
miR-149 (rs2292832) from 6 case-contro	ol studies (2,448 cases an	d 2,322 controls)				
Allelic model (C-allele vs T-allele)	1.09 [1.00-1.18]	1.91 (0.06)	4.84	5 (0.44)	0	Fixed
Recessive model (CC vs TC+TT)	1.28 [1.08-1.52]	2.80 (0.005)	6.14	5 (0.29)	19	Fixed
Dominant model (TT vs TC+CC)	0.89 [0.79-1.00]	1.99 (0.05)	6.31	5 (0.28)	21	Fixed
Homozygous model (CC vs TT)	1,31 [1.09-1.58]	2.92 (0.004)	8.27	5 (0.14)	40	Fixed
Heterozygous model (TC vs TT)	1.07 [0.95-1.21]	1.12 (0.26)	4.22	5 (0.52)	0	Fixed
miR-499 (rs3746444) from 7 case-contro	ol studies (3,082 cases an	d 3,044 controls)				
Allelic model (G-allele vs A-allele)	1.09 [0.95-1.25]	1.28 (0.20)	12.36	6 (0.05)	51	Random
Recessive model (GG vs AG+AA)	1.21 [0.91-1.61]	1.31 (0.19)	3.81	5 (0.58)	0	Fixed
Dominant model (AA vs AG+GG)	0.93 [0.78-1.12]	0.77 (0.44)	16.43	6 (0.01)	63	Random
Homozygous model (GG vs AA)	1.20 [0.90-1.60]	1.25 (0.21)	4.47	5 (0.48)	0	Fixed
Heterozygous model (AG vs AA)	1.06 [0.87–1.28]	0.56 (0.57)	17.10	6 (0.009)	65	Random

IS risk and miR-196a2 (rs11614913) polymorphism

The overall results are summarized in Table 4 and Figure 3. On the basis of 3,090 cases and 3,047 controls from seven studies, ^{16,18–20,24–26} miR-196a2 (rs11614913) polymorphism did not show significant association with IS risk in any of the following five genetic models: allelic model, OR=1.04, 95% CI=0.97–1.12, *P*=0.27 (Figure 3A); recessive model, OR=1.04, 95% CI=0.93–1.17, *P*=0.46 (Figure 3B); dominant

model, OR=0.95, 95% CI=0.85–1.08, *P*=0.44 (Figure 3C); homozygous model, OR=0.95, 95% CI=0.85–1.08, *P*=0.44 (Figure 3D); and heterozygous model, OR=1.07, 95% CI=0.93–1.23, *P*=0.37 (Figure 3E).

IS risk and miR-149 (rs2292832) polymorphism

The overall results for miR-149 (rs2292832) are summarized in Table 4 and Figure 4. On the basis of 2,448 cases and

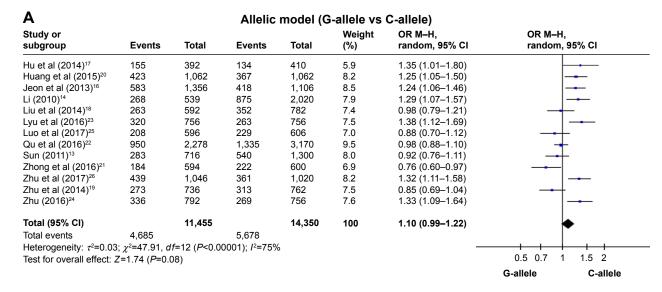
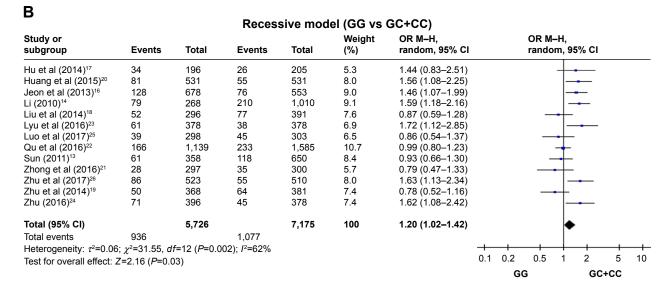



Figure 2 (Continued)

C

Dominant model (CC vs GC+GG)

Study or subgroup	Events	Total	Events	Total	Weight (%)	OR M–H, random, 95% CI		OR M- rando	-H, m, 95%	CI	
Hu et al (2014) ¹⁷	75	196	97	205	5.7	0.69 (0.46–1.03)			4		
Huang et al (2015)20	189	531	219	531	8.5	0.79 (0.61–1.01)		_	\dashv		
Jeon et al (2013)16	223	678	211	553	8.7	0.79 (0.63-1.00)		_	\dashv		
Li (2010) ¹⁴	79	268	345	1,010	7.5	0.81 (0.60–1.08)					
Liu et al (2014)18	85	296	116	391	6.8	0.96 (0.68-1.33)		_	-		
Lyu et al (2016) ²³	119	378	153	378	7.4	0.68 (0.50-0.91)			-		
Luo et al (2017) ²⁵	129	298	119	303	6.9	1.18 (0.85–1.63)					
Qu et al (2016) ²²	355	1,139	483	1,585	10.2	1.03 (0.88–1.22)			+		
Sun (2011) ¹³	136	358	228	650	8.0	1.13 (0.87–1.48)					
Zhong et al (2016)21	141	297	113	300	6.9	1.50 (1.08–2.07)				_	
Zhu et al (2017)26	170	523	204	510	8.3	0.72 (0.56-0.93)			_		
Zhu et al (2014)19	145	368	132	381	7.5	1.23 (0.91–1.65)			+		
Zhu (2016) ²⁴	131	396	154	378	7.5	0.72 (0.54–0.96)		-	-		
Total (95% CI)		5,726		7,715	100	0.91 (0.80-1.04)			•		
Total events	1,977	,	2,574	,		, ,			1		
Heterogeneity: τ^2 =0.04	*	f=12 (P=0 0	,						+	+	
Test for overall effect: 2		•	000), 1 -0070				0.2	0.5	1	2	5
	(- /						СС		GC+G	3

D

Homozygous model (GG vs CC)

Study or subgroup	Events	Total	Events	Total	Weight (%)	OR M–H, random, 95% CI			M–H, Iom, 95%	CI	
Hu et al (2014) ¹⁷	34	109	26	123	6.0	1.69 (0.93–3.06)			-	_	
Huang et al (2015)20	81	270	55	274	8.0	1.71 (1.15–2.53)				-	
Jeon et al (2013)16	128	351	76	283	8.6	1.56 (1.11-2.20)			 -		
Li (2010)14	79	158	210	555	8.5	1.64 (1.15-2.35)					
Liu et al (2014)18	52	137	77	193	7.4	0.92 (0.59-1.44)			-		
Lyu et al (2016) ²³	61	180	38	191	7.2	2.06 (1.29-3.30)				_	
Luo et al (2017) ²⁵	39	168	45	164	6.9	0.80 (0.49-1.31)					
Qu et al (2016) ²²	166	521	233	716	9.7	0.97 (0.76–1.23)			+		
Sun (2011) ¹³	61	197	118	346	8.2	0.87 (0.60-1.26)			-		
Zhong et al (2016)21	28	169	35	148	6.3	0.64 (0.37-1.12)		_	-		
Zhu et al (2017)26	86	256	55	259	8.0	1.88 (1.26–2.78)			-	_	
Zhu et al (2014)19	50	195	64	196	7.5	0.71 (0.46–1.10)		-	-		
Zhu (2016) ²⁴	71	202	45	199	7.5	1.85 (1.19–2.88)				_	
Total (95% CI)		2,913		3,647	100	1.24 (1.00-1.53)			•		
Total events	936		1,077						'		
Heterogeneity: τ^2 =0.11	$: \gamma^2 = 43.43. d$	f=12 (P<0.0	,				+	-		-	
Test for overall effect: 2			,,				0.05	0.2	1	5	20
	,	,						GG		CC	

Figure 2 (Continued)

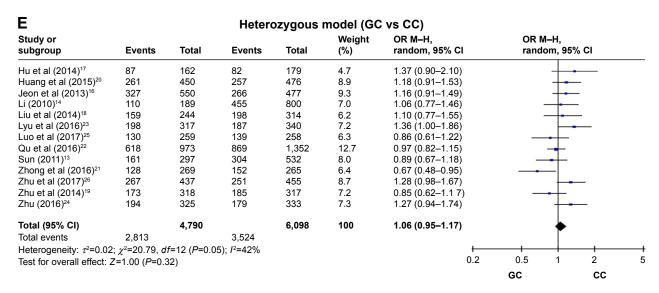
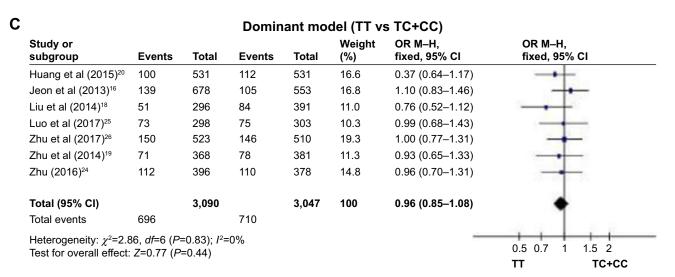


Figure 2 Forest plot describing the association between the miR-146a (rs2910164) polymorphism and ischemic stroke risk according to different genetic models: (A) allelic (G-allele vs C-allele), (B) recessive (GG vs GC+CC), (C) dominant (CC vs GC+GG), (D) homozygous (GG vs CC), and (E) heterozygous (GC vs CC).

Α

Allelic model (C-allele vs T-allele)


Study or subgroup	Events	Total	Events	Total	Weight (%)	OR M–H, fixed, 95% CI	OR M–H, fixed, 95% CI
Huang et al (2015) ²⁰	597	1,062	572	1,062	16.8	1.10 (0.93–1.30)	
Jeon et al (2013)16	726	1,356	604	1,106	20.7	0.96 (0.82-1.12)	-
Liu et al (2014)18	309	592	400	782	11.1	1.04 (0.84-1.29)	-
Luo et al (2017) ²⁵	312	596	297	606	9.4	1.14 (0.91-1.43)	+
Zhu et al (2017) ²⁶	413	1,046	468	1,020	17.4	0.97 (0.82-1.16)	
Zhu et al (2014) ¹⁹	405	736	408	782	11.9	1.12 (0.92-1.37)	
Zhu (2016) ²⁴	363	792	340	756	12.6	1.04 (0.85–1.26)	10
Total (95% CI)		6,180		6,114	100	1.04 (0.97–1.12)	•
Total events	3,185		3,069				
Heterogeneity: χ^2 =3.2 Test for overall effect:		, .	=0%			_	0.5 0.7 1 1.5 2 C-allele T-allele

В

Recessive model (CC vs TC+TT)

Study or subgroup	Events	Total	Events	Total	Weight (%)	OR M–H, fixed, 95% CI	OR M–H, fixed, 95% CI
Huang et al (2015) ²⁰	166	531	153	531	18.9	1.12 (0.86–1.46)	
Jeon et al (2013)16	187	678	156	553	22.3	0.97 (0.75-1.24)	_
iu et al (2014) ¹⁸	64	296	93	391	11.3	0.88 (0.62-1.27)	
uo et al (2017) ²⁵	87	298	69	303	8.7	1.40 (0.97-2.02)	
'hu et al (2017) ²⁶	100	523	104	510	15.3	0.92 (0.68-1.25)	
hu et al (2014) ¹⁹	108	368	105	381	13.1	1.09 (0.79-1.50)	-
hu (2016) ²⁴	79	396	72	378	10.6	1.06 (0.74–1.51)	
otal (95% CI)		3,090		3,047	100	1.04 (0.93–1.17)	•
otal events	791		752				
Heterogeneity: χ^2 =4.6 Test for overall effect:		, .	=0%				0.5 0.7 1 1.5 2 CC TC+TT

Figure 3 (Continued)

D Homozygous model (CC vs TT) OR M-H, Study or Weight OR M-H, fixed, 95% CI subgroup **Events** Total **Events** Total (%) fixed, 95% CI Huang et al (2015)20 266 153 265 1.22 (0.86-1.72) 166 16.8 Jeon et al (2013)16 187 326 156 261 21.5 0.91 (0.65-1.26) Liu et al (2014)18 64 115 93 177 9.4 1.13 (0.71-1.82) Luo et al (2017)²⁵ 87 160 69 144 9.6 1.30 (0.82-2.03) Zhu et al (2017)26 100 250 104 250 18.1 0.94 (0.66-1.34) Zhu et al (2014)19 108 105 179 183 12.0 1.13 (0.74-1.72) Zhu (2016)²⁴ 79 191 72 182 12.6 1.08 (0.71-1.63) Total (95% CI) 1.487 1.462 100 1.07 (0.92-1.24) Total events 791 752 Heterogeneity: χ^2 =2.85, df=6 (P=0.83); I^2 =0% 0.5 0.7 1.5 2 1 Test for overall effect: Z=0.91 (P=0.36)

Heterozygous model (TC vs TT) Study or Weight OR M-H, OR M-H, subgroup **Events Total Events Total** fixed, 95% CI fixed, 95% CI (%) Huang et al (2015)20 265 365 266 378 18.7 1.12 (0.81-1.53) 292 397 Jeon et al (2013)16 352 291 Not estimable Liu et al (2014)18 181 232 214 298 10.8 1.39 (0.93-2.08) Luo et al (2017)25 138 211 159 234 13.7 0.89(0.60-1.32)Zhu et al (2017)26 273 423 260 406 24.6 1.02 (0.77-1.36) Zhu et al (2014)19 189 260 198 275 13.7 1.05 (0.72-1.53) 205 Zhu (2016)²⁴ 317 196 306 18.4 1.03 (0.74-1.43) 2,099 Total (95% CI) 2,295 100 1.07 (0.93-1.23) Total events 1,603 1,585 Heterogeneity: χ^2 =2.72, df=6 (P=0.74); I^2 =0% 0.5 0.7 1.5 2 Test for overall effect: Z=0.90 (P=0.37) TC TT

Figure 3 Forest plot describing the association between the miR-196a2 (rs11614913) polymorphism and ischemic stroke risk according to different genetic models: (A) allelic, (B) recessive, (C) dominant, (D) homozygous, and (E) heterozygous.

Ε

CC

TT

2,322 controls from six studies, $^{16,18,20,23-26}$ the overall results indicated that the CC genotype of miR-149 (rs2292832) may be associated with increased IS risk according to the recessive model (OR=1.28, 95% CI=1.08–1.52, P=0.005; Figure 4B) and homozygous model (OR=1.31, 95% CI=1.09–1.58, P=0.004; Figure 4D).

IS risk and miR-499 (rs3746444) polymorphism

The overall results are summarized in Table 4 and Figure 5. On the basis of 3,082 cases and 3,044 controls from seven studies, $^{16,18,20,23-26}$ miR-499 (rs3746444) polymorphism did not show significant association with IS risk in any of the following five genetic models: allelic model, OR=1.09, 95% CI=0.95–1.25, P=0.20 (Figure 5A); recessive model, OR=1.21, 95% CI=0.91–1.61, P=0.19 (Figure 5B); dominant model, OR=0.93, 95% CI=0.78–1.12, P=0.44 (Figure 5C); homozygous model, OR=1.20, 95% CI=0.90–1.60, P=0.21

(Figure 5D); or heterozygous model, OR=1.06, 95% CI=0.87–1.28, *P*=0.57 (Figure 5E).

Sensitivity analysis

Sensitivity analysis was conducted for miR-146a (rs2910164) by excluding the studies by Li et al¹⁴ and Qu et al;²² the *P*-value for HWE was less than 0.05 for these two studies. The recessive model gave different results (OR=1.19, 95% CI=0.98–1.45, *P*=0.07) than those obtained when all studies were meta-analyzed. Sensitivity analysis was conducted for miR-146a (rs2910164) by excluding one study by Jeon et al.¹⁶ Again, the recessive model gave different results (OR=1.18, 95% CI=0.99–1.41, *P*=0.07) than when all studies were included. Therefore, the results for miR-146a (rs2910164) should be interpreted with caution.

Sensitivity analysis was conducted for miR-196a2 (rs11614913) by excluding the study by Jeon et al. ¹⁶ The results were similar to those obtained with all studies,

Study or subgroup	Events	Total	Events	Total	Weight (%)	OR M-H, fixed, 95% CI	OR M–H, fixed, 95% CI
He and Han (2013) ¹⁵	276	714	251	746	14.8	1.24 (1.00–1.54)	
Hu et al (2014)17	158	392	161	410	9.2	1.04 (0.79-1.39)	-
Jeon et al (2013)16	455	1,356	344	1,106	24.8	1.12 (0.94–1.33)	-
Luo et al (2017) ²⁵	207	596	228	606	14.5	0.88 (0.70-1.12)	
Zhu et al (2017) ²⁶	361	1,046	327	1,020	21.3	1.12 (0.93–1.34)	
Zhu (2016) ²⁴	238	792	218	756	15.3	1.06 (0.85–1.32)	-
Total (95% CI)		4,896		4,644	100	1.09 (1.00–1.18)	•
Total events	1,695		1,529				Į*

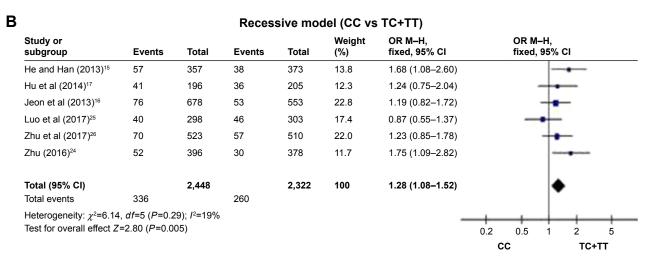
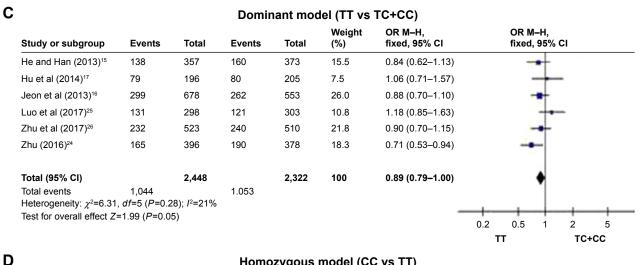



Figure 4 (Continued)

Homozygous model (CC vs TT) Weight OR M-H. OR M-H. fixed, 95% CI fixed, 95% CI Study or subgroup **Events** Total **Events** Total (%) He and Han (2013)15 195 38 198 13.4 1.74 (1.09-2.78) 57 Hu et al (2014)17 120 116 1.15 (0.67-1.99) 41 36 12.1 Jeon et al (2013)16 76 375 53 315 23.1 1.26 (0.85-1.85) Luo et al (2017)²⁵ 40 171 46 167 17.9 0.80 (0.49-1.31) Zhu et al (2017)26 70 302 57 297 22.2 1.27 (0.86-1.88) Zhu (2016)²⁴ 52 217 30 220 11.4 2.00 (1.22-3.28) Total (95% CI) 1,380 1,313 100 1.31 (1.09-1.58) Total events 336 260 Heterogeneity: χ^2 =8.27, df=5 (P=0.14); I^2 =40% Test for overall effect: Z=2.92 (P=0.004) 0.2 0.5 CC TT

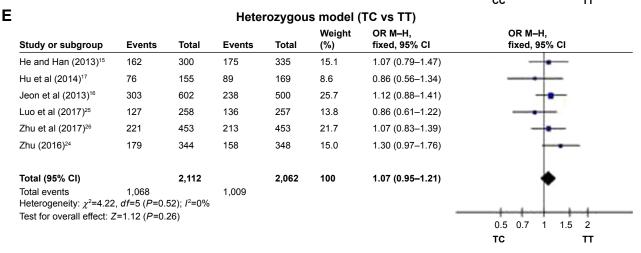


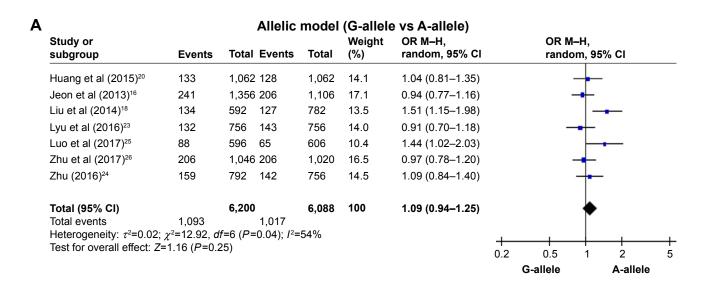
Figure 4 Forest plot describing the association between the miR-149 (rs2292832) polymorphism and ischemic stroke risk according to different genetic models: (A) allelic, (B) recessive, (C) dominant, (D) homozygous, and (E) heterozygous.

regardless of the genetic model. This implies that our metaanalysis results for miR-196a2 (rs11614913) are robust. Similar robustness was observed when we performed sensitivity analysis for miR-149 (rs2292832) and for miR-499 (rs3746444) by excluding the study by Jeon et al.¹⁶

Sensitivity analysis was conducted for miR-499 (rs3746444) by excluding a study by Huang et al,²⁰ in which

the *P*-value of HWE was less than 0.05. The results were not altered in any of the five genetic models.

Publication bias


Begg's funnel plot and Egger's test were performed to detect potential publication bias in this meta-analysis. No obvious asymmetry was observed in Begg's funnel plots in the recessive model, and Egger's tests (Figure 6) indicated no publication bias.

Discussion

Previous studies have demonstrated that mutations in the pre-miRNA of miR-146a, miR-499, miR-149, and miR-196a2 decrease the levels of the corresponding mature miRNAs.^{20,29,30} These four miRNAs affect thrombosis or inflammation pathways in the circulatory system by regulating tumor necrosis factor-α (TNF-α),³¹ methylenetetrahydrofolate reductase,³² annexin A1,³³ C-reactive protein,³⁴ the NF-κB pathway, and the MAP kinase pathway.³⁵ Many studies have been conducted to reveal the impact of SNPs on precursor and mature miRNAs and their associations with IS risk.¹³⁻²⁶ In fact, several meta-analyses have been conducted to explore the association between miRNA polymorphisms and IS risk. The results have been inconsistent, largely due to

limited sample size.^{36–39} Therefore, we conducted this metaanalysis on all eligible studies to provide a more precise estimate of the association of IS risk with miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444). Interestingly, all the case—control studies in our meta-analysis analyzed Asian populations.

A previous meta-analysis by Zhu et al³⁹ found the C allele of miR-146a (rs2910164) to be associated with lower IS risk, but this trend was observed only in Koreans according to the allelic model. Our meta-analysis, in contrast, suggests that this C allele is not significantly associated with IS risk; instead, we found the GG genotype of miR-146a (rs2910164) to be associated with increased risk. Our result may be more reliable than that of the previous meta-analysis by Zhu et al³⁹ because our meta-analysis contained nine more case—control studies^{14,15,17,21–26} with larger samples. Our subgroup analysis suggesting a significant relationship

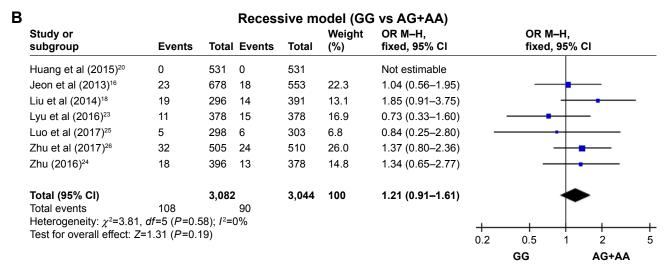
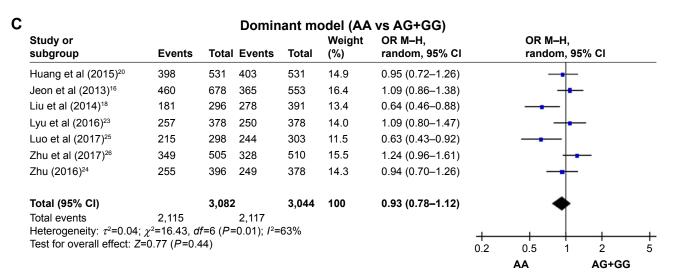



Figure 5 (Continued)

Study or subgroup Events Total Events Total (%) Weight (%) OR M-H, fixed, 95% Huang et al (2015) ²⁰ 0 398 0 403 Not estimal Not e	% CI fixed, 95% CI able 4–1.91)
Jeon et al (2013) ¹⁶ 23 483 18 383 22.6 1.01 (0.54 Liu et al (2014) ¹⁸ 19 200 14 292 12.2 2.08 (1.02 Lyu et al (2016) ²³ 11 268 15 265 17.1 0.71 (0.32	1 –1.91)
Liu et al (2014) ¹⁸ 19 200 14 292 12.2 2.08 (1.02 Lyu et al (2016) ²³ 11 268 15 265 17.1 0.71 (0.32	,
Lyu et al (2016) ²³ 11 268 15 265 17.1 0.71 (0.32	. 4.26)
, , , , , , , , , , , , , , , , , , , ,	2-4.20)
Luo et al (2017) ²⁵ 5 220 6 250 6.5 0.95 (0.28	2–1.58)
	3–3.14)
Zhu et al (2017) ²⁶ 32 381 24 352 27.0 1.25 (0.72	2–2.17)
Zhu (2016) ²⁴ 18 273 13 262 14.6 1.35 (0.65	5–2.82)
Total (95% CI) 2,223 2,207 100 1.20 (0.90	0–1.60)
Total events 108 90	, T

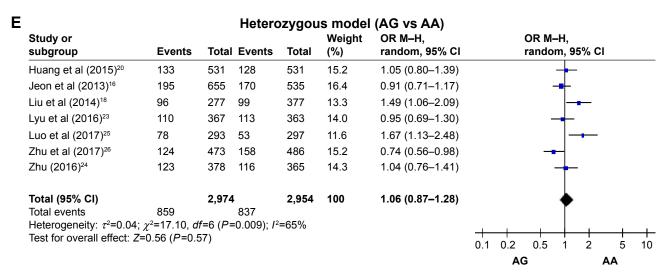


Figure 5 Forest plot describing the association between the miR-149 (rs2292832) polymorphism and ischemic stroke risk according to different genetic models: (A) allelic, (B) recessive, (C) dominant, (D) homozygous, and (E) heterozygous.

between the C allele of miR-146a (rs2910164) and lower IS risk contained only one case—control study, which was by Jeon et al.¹⁶

While the meta-analysis by Zhu et al³⁹ reported an association between the A allele of miR-499 (rs3746444) and decreased IS risk in Chinese, our meta-analysis did

not detect this association, either across Asian populations or specifically in the Chinese population (data not shown). Our result may be more reliable because our meta-analysis included four more case—control studies^{23–26} than the one by Zhu et al.³⁹ The results of our meta-analysis are consistent with those reported in the meta-analysis by Xiao et al.³⁷

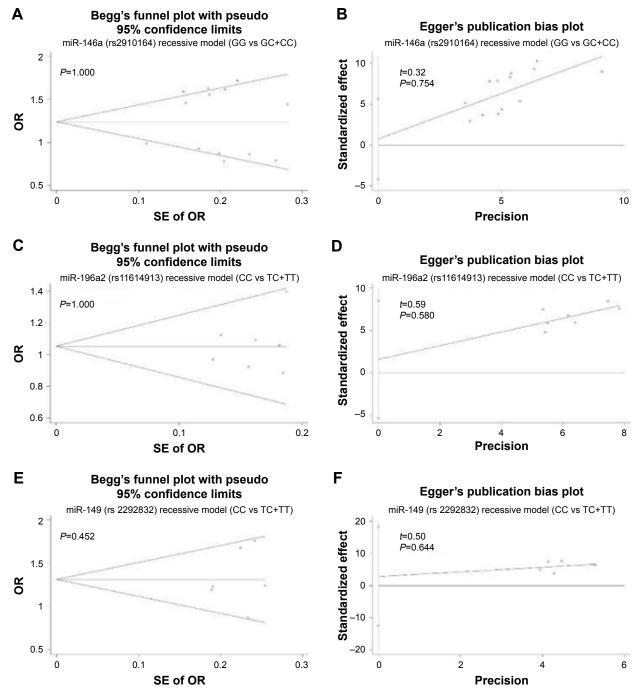


Figure 6 (Continued)

Zou et al Dovepress

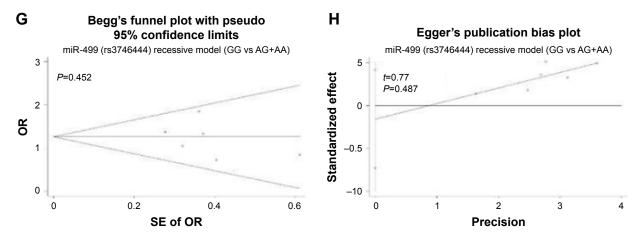


Figure 6 Begg's funnel plot and Egger's test to assess publication bias in the meta-analysis of potential associations between ischemic stroke risk and (A and B) miR-146a (rs2910164), (C and D) miR-196a2 (rs11614913), (E and F) miR-149 (rs2292832), and (G and H) miR-499 (rs3746444).

Note: All analyses were performed using a recessive genetic model.

Our meta-analysis suggests a significant association between the CC genotype of miR-149 (rs2292832) and increased IS risk. In contrast, the meta-analysis of Xiao et al³⁷ based on two case—control studies indicated that the TT genotype and T allele of miR-149 (rs2292832) are associated with significantly lower IS risk, whereas another meta-analysis³⁶ based on three case—control studies found the CC genotype and C allele of miR-149 (rs2292832) to be significantly associated with IS risk. Our meta-analysis contained three more case—control studies^{24–26} than either of these other meta-analyses, which may make it more reliable.

Our meta-analysis did not find a significant association between miR-196a2 (rs11614913) polymorphism and IS risk. This result confirms other meta-analyses^{37–39} based on smaller samples.

To the best of our knowledge, the current meta-analysis involves the largest sample (6,083 cases and 7,248 controls) than previous studies³⁶⁻³⁹ investigating the possible association of IS risk with miR-146a (rs2910164), miR-196a2 (rs11614913), miR-149 (rs2292832), and miR-499 (rs3746444) in Asian populations. Nevertheless, the metaanalysis is limited by the designs of the included studies. First, the P-value for HWE was less than 0.05 in two studies^{14,22} on miR-146a (rs2910164) and one study²⁶ on miR-499 (rs3746444). These results suggested that these study populations may not be representative of the broader target population. Second, the results may be affected by both genetic and environmental factors, but most studies did not report environmental exposure, making it impossible to include them in the meta-analysis. Third, our exclusion of unpublished data and of papers published in languages other than English and Chinese may have biased our results. Fourth, the studies may be subject to performance bias, attrition bias, and reporting bias, although Newcastle-Ottawa scores were at least 5 for all 14 studies, indicating high quality. Fifth, stroke is a heterogeneous disease and has different subtypes that may affect the results of genetic association studies, but most case—control studies in our meta-analysis appeared not to use a well-phenotyped population. This may make the results less accurate. Finally, all the patients in this meta-analysis were Asian and this may limit the relevance of the results to other populations. Thus, more large and well-designed studies are warranted in non-Asian populations.

Conclusion

This meta-analysis suggests that the GG genotype of miR-146a (rs2910164) and the CC genotype of miR-149 (rs2292832) may confer increased susceptibility to IS in Asian populations, whereas polymorphism in miR-196a2 (rs11614913) and miR-499 (rs3746444) may not be associated with IS risk. These conclusions should be verified in large and well-designed studies.

Acknowledgments

This study was supported by grants from the Natural Science Foundation of China (81560205 and 81760217), the Guangxi Natural Science Foundation (2016GXNSFCA380012 and 2017GXNSFAA198135), the Guangxi Colleges and Universities Science and Technology Research Project (KY2015ZD030), the Project of Nanning Scientific Research and Technology Development Plan (20163142), and the Scientific Research Project of Guangxi Health and Family Planning Commission (Z20170001) and China Scholarship Council (201708455059).

Author contributions

The study was designed by JRW and LC. The research was performed by DHZ, CBL, and QZ. Statistical analyses were

performed by XFL, GQ, QH, and YSM. The manuscript was written by DHZ. All authors contributed toward data analysis, drafting and critically revising the paper and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

- Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. *Circulation*. 2012;125(1):e2–e220.
- Lo AC, Guarino P, Krebs HI, et al. Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for VA ROBOTICS. *Neurorehabil Neural Repair*. 2009; 23(8):775–783.
- 3. Norrving B, Kissela B. The global burden of stroke and need for a continuum of care. *Neurology*. 2013;80(3 Suppl 2):S5–S12.
- Dichgans M. Genetics of ischaemic stroke. Lancet Neurol. 2007; 6(2):149–161.
- Holliday EG, Maguire JM, Evans TJ, et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. *Nat Genet*. 2012; 44(10):1147–1151.
- International Stroke Genetics Consortium (ISGC), Wellcome Trust Case Control Consortium 2 (WTCCC2), Bellenguez C, Bevan S, Gschwendtner A, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. *Nat Genet*. 2012;44(3):328–333.
- Hachiya T, Kamatani Y, Takahashi A, et al. Genetic predisposition to ischemic stroke. Stroke. 2017;48(2):253–258.
- Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. *Nat Genet*. 2018;50(4):524–537.
- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.
- Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. *Physiol Genomics*. 2011;43(10):521–528.
- Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006): 350–355.
- Tan KS, Armugam A, Sepramaniam S, et al. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009;4(11):e7689.
- Sun J. Association of miRNA-146a and EPHX2 Polymorphisms with Risk of Ischemic Stroke in Changsha Han Population and the Mechanisms [master's thesis]. Changsha, Hunan Province, China: Central South University; 2011.
- Li L. Association of miRNA-146a Polymorphism with Risk of Cardiovascular Disease and Ischemia Stroke and the Mechanisms [master's thesis]. Changsha, Hunan Province, China: Central South University; 2010.
- He S, Han Y. Association between miR-149 polymorphism and ischemic stroke of Han population in Hanzhong of Shanxi. *J Mod Lab Med*. 2013;2834:3238.
- Jeon YJ, Kim OJ, Kim SY, et al. Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk. *Arterioscler Thromb Vasc Biol*. 2013;33(2):420–430.
- Hu Y, Li S, Jiang X, et al. Study on the association of miR-146aC> G, miR-149 T> C polymorphism with susceptibility to ischemic stroke. *Prog Mod Biomed*. 2014;14:5648–5651.
- Liu Y, Ma Y, Zhang B, Wang SX, Wang XM, Yu JM. Genetic polymorphisms in pre-microRNAs and risk of ischemic stroke in a Chinese population. *J Mol Neurosci*. 2014;52(4):473–480.
- Zhu R, Liu X, He Z, Li Q. miR-146a and miR-196a2 polymorphisms in patients with ischemic stroke in the northern Chinese Han population. *Neurochem Res.* 2014;39(9):1709–1716.

- Huang S, Zhou S, Zhang Y, et al. Association of the genetic polymorphisms in pre-microRNAs with risk of ischemic stroke in a Chinese population. *PLoS One*. 2015;10(2):e0117007.
- Zhong H, Cai Y, Cheng J, et al. Apolipoprotein E Epsilon 4 enhances the association between the rs2910164 polymorphism of mir-146a and risk of atherosclerotic cerebral infarction. *J Atheroscler Thromb*. 2016;23(7):819–829.
- Qu JY, Xi J, Zhang YH, et al. Association of the microRNA-146a SNP rs2910164 with ischemic stroke incidence and prognosis in a chinese population. *Int J Mol Sci.* 2016;17(5):660.
- Lyu G, Wang S, Wang Q. Association of miR-146a rs2910164 and miR-499 rs3746444 polymorphisms with risk of ischemic stroke. New Med. 2016;47:257.
- Zhu X. Association of miRNAs and MTHFR Gene Polymorphisms with Ischemic Stroke in the Chinese Han Population [Ph.D. thesis]. Qingdao, Shandong Province, China: Qingdao University; 2016.
- Luo HC, Luo QS, Wang CF, Lei M, Li BL, Wei YS. Association of miR-146a, miR-149, miR-196a2, miR-499 gene polymorphisms with ischemic stroke in a Chinese people. *Oncotarget*. 2017;8(46):81295.
- Zhu H, Zhang H, Bao L, Dai M. Analysis of association of genetic polymorphisms of microRNAs with ischemic stroke. *Chin J Med Genet*. 2017;34:261–265.
- Wells GA, Shea B, O'connell D, et al. Newcastle-Ottawa Scale (NOS) for Assessing the Quality of NonranStudies in Meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Available in March, 2016.
- Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. *Arch Gen Psychiatry*. 2006;63(5):530–538.
- Shen J, Ambrosone CB, Dicioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. *Carcinogenesis*. 2008;29(10): 1963–1966.
- Hoffman AE, Zheng T, Yi C, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. *Cancer Res.* 2009;69(14):5970–5977.
- El Gazzar M, Church A, Liu T, Mccall CE. MicroRNA-146a regulates both transcription silencing and translation disruption of TNF-α during TLR4-induced gene reprogramming. J Leukoc Biol. 2011;90(3):509–519.
- Wu C, Gong Y, Sun A, et al. The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. *Nutr Metab Cardiovasc Dis.* 2013;23(7):693–698.
- Luthra R, Singh RR, Luthra MG, et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. *Oncogene*. 2008;27(52):6667–6678.
- Yang B, Chen J, Li Y, et al. Association of polymorphisms in premiRNA with inflammatory biomarkers in rheumatoid arthritis in the Chinese Han population. *Hum Immunol*. 2012;73(1):101–106.
- Cheng HS, Sivachandran N, Lau A, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5(7):1017–1034.
- du J, Cui C, Zhang S, Yang X, Lou J. Association of microRNA-146a and microRNA-149 polymorphisms with strokes in asian populations: an updated meta-analysis. *Angiology*. 2017;68(10):863–870.
- Xiao Y, Bao MH, Luo HQ, Xiang J, Li JM. A Meta-analysis of the association between polymorphisms in microRNAs and risk of ischemic stroke. *Genes*. 2015;6(4):1283–1299.
- Qin B, Zheng Y, Zhang W, et al. Lack of associations between rs2910164 and rs11614913 polymorphisms and the risk of ischemic stroke. *Int J Clin Exp Med.* 2015;8(10):18359–18366.
- Zhu J, Yue H, Qiao C, Li Y. Association between single-nucleotide polymorphism (SNP) in miR-146a, miR-196a2, and miR-499 and risk of ischemic stroke: a meta-analysis. *Med Sci Monit*. 2015;21:3658–3663.

Zou et al Dovepress

Clinical Interventions in Aging

Publish your work in this journal

Clinical Interventions in Aging is an international, peer-reviewed journal focusing on evidence-based reports on the value or lack thereof of treatments intended to prevent or delay the onset of maladaptive correlates of aging in human beings. This journal is indexed on PubMed Central, MedLine,

CAS, Scopus and the Elsevier Bibliographic databases. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

 $\textbf{Submit your manuscript here:} \ \texttt{http://www.dovepress.com/clinical-interventions-in-aging-journal}$

Dovepress