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Background: α-Mangostin is a major active compound of mangosteen (Garcinia mangostana 

L.) pericarp extract (MPE) that has potent antioxidant activity. Unfortunately, its poor aqueous 

solubility limits its therapeutic application. Purpose: This paper reports a promising approach 

to improve the clinical use of this substance through electrospinning technique. 

Methods: Polyvinylpyrrolidone (PVP) was explored as a hydrophilic matrix to carry 

α-mangostin in MPE. Physicochemical properties of MPE:PVP nanofibers with various extract-

to-polymer ratios were studied, including morphology, size, crystallinity, chemical interaction, 

and thermal behavior. Antioxidant activity and the release of α-mangostin, as the chemical 

marker of MPE, from the resulting fibers were investigated. 

Results: It was obtained that the MPE:PVP nanofiber mats were flat, bead-free, and in a size 

range of 387–586 nm. Peak shifts in Fourier-transform infrared spectra of PVP in the presence 

of MPE suggested hydrogen bond formation between MPE and PVP. The differential scanning 

calorimetric study revealed a noticeable endothermic event at 119°C in MPE:PVP nanofibers, 

indicating vaporization of moisture residue. This confirmed hygroscopic property of PVP. The 

absence of crystalline peaks of MPE at 2θ of 5.99°, 11.62°, and 13.01° in the X-ray diffraction 

patterns of electrospun MPE:PVP nanofibers showed amorphization of MPE by PVP after being 

electrospun. The radical scavenging activity of MPE:PVP nanofibers exhibited lower IC
50

 value 

(55–67 µg/mL) in comparison with pure MPE (69 µg/mL). The PVP:MPE nanofibers tremen-

dously increased the antioxidant activity of α-mangostin as well as its release rate. Applying 

high voltage in electrospinning process did not destroy the chemical structure of α-mangostin as 

indicated by retained in vitro antioxidant activity. The release rate of α-mangostin significantly 

increased from 35% to over 90% in 60 minutes. The release of α-mangostin from MPE:PVP 

nanofibers was dependent on α-mangostin concentration and particle size, as confirmed by the 

first-order kinetic model as well as the Hixson–Crowell kinetic model.

Conclusion: We successfully synthesized MPE:PVP nanofiber mats with enhanced antioxidant 

activity and release rate, which can potentially improve the therapeutic effects offered by MPE.

Keywords: α-mangostin, mangosteen, polyvinylpyrrolidone, electrospinning, nanofiber, drug 

delivery system 

Introduction
Mangosteen (Garcinia mangostana L.) is a tropical plant that is cultivated mostly in 

Southeast Asian countries. Xanthone-rich pericarp of mangosteen has demonstrated 

numerous biological activities including anti-inflammatory, antiparasitic, antitumor, and 

antioxidant activities.1–5 Xanthones exist as either oxygenated or prenylated form. The 

latter, particularly α-mangostin, β-mangostin, and γ-mangostin as the most abundant 

xanthone-type compounds, has gained a special attention due to its beneficial effects 
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for health.6–8 Various studies have reported α-mangostin to 

exhibit antioxidant,9–11 antimicrobial,12–14 anti-inflamatory,15–17 

and anticancer activities.18,19 However, the limited aqueous 

solubility20,21 property constricts bioavailability of α-mangostin 

via oral route. Hence, an appropriate delivery system is abso-

lutely required to improve the efficacy of α-mangostin. 

Nanotechnology seems to be a smart way to solve the 

clinical problem of α-mangostin. α-Mangostin can be incor-

porated into nano-sized biocompatible carriers such as bio-

compatible nanofibers. Decreasing particle size to nanoscale 

can greatly increase the surface area for a given quantity of 

biodegradable polymer material, which in turn significantly 

enhances the release of drug via drug diffusion and matrix 

degradation/erosion mechanisms.22–26 Nanofibers have been 

recognized for their applications in drug delivery.27–32 Nano-

fibers as drug delivery systems with their very large surface 

area to volume ratios have the potential to improve drug 

release significantly. Furthermore, the small dimension of 

fibers combined with their microporous structure provided by 

the polymer mimics a protective shield, resulting in increased 

drug loading and drug stability.33

Electrospinning is the most versatile technique for the 

synthesis of nanofibers.34,35 This technique involves Coulomb 

forces resulted from the applied electrical charge and elonga-

tion of polymer solution as a result of exposure to electrical 

charge. These events lead to the formation of fine fibers and 

accumulation of the fibers onto a grounded-collector.36 The 

size and morphology of the resulting fibers are highly tun-

able by proper adjustment of polymer properties (structure, 

molecular weight, and tacticity), precursor solution (viscosity 

and conductivity), and electrostatic field.37 Electrospinning 

offers great capability of producing fibers ranging from very 

small diameter to $10 nm and presents good mechanical 

characteristics with microporous structures and controlled 

surfaces,29 which makes electrospun fibers potentially dem-

onstrate promising results as a drug delivery system.

Recently, few studies have reported successful develop-

ment of polymer/mangosteen pericarp extract (MPE) nano-

fibers intended for various purposes. For instance, MPE was 

loaded onto polyvinyl alcohol (PVA) nanofibers for dermal 

delivery purpose38 and was spun in a mixture with chitosan 

(CS)/EDTA/PVA for wound healing.39 In such cases, the 

choice of polymer must be considered carefully since poly-

mer can affect aqueous solubility of active compound and 

its release profile. Moreover, the underlining mechanism on 

how the polymer influences the release profile of the active 

substance needs to be understood. Water-soluble polymers 

such as PVA are a suitable matrix for nanofibers with rapid 

release. However, a highly soluble polymer such as PVP 

might be required in some cases, particularly when a faster 

release is desired.40 Therefore, the use of PVP for the pro-

duction of MPE-loaded nanofibers intended for immediate 

release would be advantageous. Successful production of 

MPE:PVP nanofibers using electrospinning technique has 

been previously reported.34 However, comprehensive studies 

that investigate contributing factors affecting in vitro perfor-

mance of MPE-containing nanofiber mats, such as crystallin-

ity, size, and drug-to-polymer ratio, are still scarce. 

In this study, we synthesized PVP:MPE nanofiber mats 

using electrospinning technique, in which PVP is an US 

Food and Drug Administration–approved polymer matrix 

that is acceptable for food and pharmaceutical products 

with low toxicity and highly biocompatible.34,41 In addition, 

it has great water solubility and spinnability,42 which are 

important for electrospinning process. It was expected that 

PVP would assist the release of α-mangostin more rapidly in 

comparison with other water-soluble polymers. The morphol-

ogy, physicochemical characteristics, and in vitro release of 

α-mangostin, the marker compound for antioxidant activity 

of MPE, from the MPE:PVP nanofiber mats were examined. 

Moreover, in vitro antioxidant activity of α-mangostin was 

determined to study if a high voltage application during 

electrospinning impairs the biological activity of active 

compounds contained in MPE.

Materials and methods
Materials 
Polyvinylpyrrolidone (PVP) with molecular weight of 

1,300,000 kg  mol-1, pure α-mangostin powder, and 1,1-

diphenyl-2-picrylhydrazyl (DPPH) were obtained from 

Sigma-Aldrich Co. (St Louis, MO, USA). Mangosteen 

pericarp was collected from a local market in Bandung, 

Indonesia. Other chemical substances used for this study 

were of analytical grade.

α-Mangostin content assay 
Pure MPE was prepared as follows. The fruit pericarps were 

rinsed with water thoroughly, cut into small pieces, and dried 

in oven at 50°C for 24 hours. The dried pericarps were milled 

into fine powder. The mangosteen pericarp powder was mac-

erated with ethanol for 5 days. The as-macerated extract was 

filtered and concentrated using a rotary evaporator (RV 05-ST 

Janke & Kunkel IKA, Staufen, Germany) at 45°C and stored 

properly until used. α-Mangostin content in the MPE was 

analyzed using a high-performance liquid chromatography 

(HPLC) system as follows. MPE was accurately weighed 

and was dispersed in methanol with the final MPE content 

of 1,000 ppm. The mixture was homogenized for 20 minutes 
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Figure 1 The schematic diagram of electrospinning apparatus used in the experiments.
Abbreviations: HV, high voltage; LCD, liquid crystal display.

Table 1 The mass ratio of MPE and PVP for electrospinning process

Precursor solution Mass ratio 
of MPE:PVP

MF0 0:10
MF1 2:10
MF2 4:10
MF3 6:10

Abbreviations: MPE, mangosteen pericarp extract; PVP, polyvinylpyrrolidone; 
MF0, mangosteen:PVP fiber 0; MF1, mangosteen:PVP fiber 1; MF2, mangosteen:PVP 
fiber 2; MF3, mangosteen:PVP fiber 3. 

to allow for the extraction of α-mangostin. The mixture 

was then centrifuged at 10,000 rpm for 10 minutes, and the 

supernatant was collected. Dilution of the supernatant was 

performed accordingly.

The sample was injected into a C-18 column (250 × 4.6 mm, 

particle size of 5 µm; Phenomenex, CA, USA) using the 

HPLC system with a UV spectrophotometer detector (Agilent 

Technologies, Santa Clara, CA, USA). The mobile phase was 

water–methanol (95:5) with a flow rate of 1 mL/min. The pure 

MPE content was detected at a wavelength of 320 nm. 

Preparation of nanofibers 
PVP:MPE fibers were fabricated from a PVP:MPE precur-

sor solution prepared with in situ process, in which PVP and 

MPE solutions were dissolved separately and then mixed 

together just before electrospinning process. The MPE solu-

tion (10 wt%) was prepared by dissolving MPE in ethanol 

at room temperature under constant stirring for 5 hours. 

Separately, the PVP solution was prepared in ethanol at 40°C 

and stirred for 2 hours. The PVP and MPE solutions were 

mixed and stirred for 1 hour at room temperature to form a 

homogeneous precursor solution. 

An electrospinning apparatus (Nachriebe 600, Nachriebe; 

Integrated Laboratory of Materials and Instrumentation, 

Department of Physics, ITB, Bandung, Indonesia), which is 

schematically described in Figure 1, was used.67 It consists 

of a syringe pump to discharge the precursor solution in a 

syringe with needle, a high-voltage power supply (HVPS) 

with the positive pole connected to the needle to induce fiber 

formation via a solution jet, and a drum collector connected 

to the negative pole of HVPS to collect fibers. This apparatus 

produced fibers with very large surface area to volume ratio. 

Each precursor solution to produce nanofibers as given in 

Table 1, which is labeled as MF0, MF1, MF2, or MF3, was 

loaded into a 10 mL syringe with 0.45 mm needle. During 

electrospinning process, the flow rate of syringe pump was 

maintained at 5 μL/min, the high voltage at 10 kV, and the 

distance between needle and collector at 12 cm. The resulting 

fiber mats were subjected to α-mangostin content assay by 

using the method described in the previous section.

Viscosity and conductivity
Viscosity and conductivity of the MF0, MF1, MF2, and MF3 

precursor solutions were determined by using a Fenske-Ostwald 

viscometer (Thermo Fisher Scientific, Waltham, MA, USA) and 

a conductivity meter (Mettler Toledo) at 25°C, respectively.
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Scanning electron microscopy
A scanning electron microscope (SEM, JSM-6510; JEOL, 

Tokyo, Japan) was used to examine the morphology of mats 

resulted from the MF0, MF1, MF2, and MF3 precursor solu-

tions. Conductive coating of sample was applied prior to SEM 

imaging. SEM images of the mats were observed at the volt-

age of 10 kV and an optical magnification of 10,000 times. 

The size distribution of the fibers was determined using Origin 

ver.9 software (Origin Lab Corporation, MA, USA).

Fourier-transform infrared (FTIR) 
spectroscopy 
FTIR analysis was performed to investigate the possible 

chemical interactions between PVP and MPE in the nanofi-

bers. The FTIR spectra of nanofiber mats were acquired from 

an FTIR spectrophotometer (Alpha; Bruker, Germany) with 

spectral range of 500–4,000 cm-1. 

X-ray diffraction (XRD)
An X-ray diffractometer (D8 Advance, Bruker) was used 

to obtain the XRD patterns of the pure MPE along with the 

MF0, MF1, MF2, and MF3 nanofiber mats. The sample was 

placed in a standard Cu tube and irradiated with Cu (Kα) with 

a wavelength of 1.5405 Å at an operating voltage of 40 kV 

and electric current of 35 mA. The angular position (2θ) of 

the diffraction pattern was recorded in the range of 5°–70°.

Differential scanning calorimetry 
Thermal behaviors of the MF1, MF2, and MF3 nanofiber 

mats in comparison with the PVP (MF0) nanofiber mat were 

studied by a differential scanning calorimeter (DSC, STA 

PT1600; Linseis, NJ, USA). Accurately weighed samples 

were sealed in an aluminum crimp pan and scanned from 

50°C to 270°C at a heating rate of 10°C/min.

Antioxidant activity 
Scavenging activity of MPE/PVP nanofiber mats was per-

formed by using a modified method reported by Blois.43 Vari-

ous concentrations of the pure MPE were prepared, ranging 

from 10 to 80 µg/mL. Each preparation was reacted with equal 

volume of DPPH solution at 50 µg/mL concentration. The 

mixture was incubated for 30 minutes. The MF1, MF2, and 

MF3 nanofiber mats were treated likewise. The absorbance was 

measured after 30 minutes of incubation by using a UV-Visible 

spectrophotometer (DU 7500i; Beckman Coulter, CA, USA) 

at the wavelength of 515 nm. Methanol was used for blank 

absorbance reading. An amount of 50 µg/mL of DPPH solu-

tion was used as a control solution, and ascorbic acid was used 

as a reference material for antioxidant activity. The analysis 

was conducted in triplicate for ascorbic acid, pure MPE, and 

the nanofiber mats. Antioxidant activities of the pure MPE, 

MF1, MF2, and MF3 nanofiber mats were determined based 

on the reduction of DPPH absorbance by calculating the 

percentage of antioxidant activity.44

In vitro release study 
Release profile of α-mangostin from the MF1, MF2, and MF3 

nanofiber mats were studied on a dissolution test apparatus 

(SR8 Plus; Hanson Research, Los Angeles, CA, USA). Dis-

solution apparatus 2 (paddle apparatus) was used with the 

following conditions: paddle rotation speed of 50 rpm, 400 

mL of phosphate-buffered solution (pH 6.8) as the medium, 

and temperature controlled at 37°C±0.5°C. Each nanofiber 

mat containing 40 mg of MPE was carefully weighed and was 

dispersed in the phosphate-buffered solution. This procedure 

was run triplicate. About 5 mL of aliquot was taken at 5, 10, 

15, 30, 45, 60, and 120 minutes and the medium was replaced 

with equal volume of fresh buffer. The amount of α-mangostin 

released over time was measured by using the HPLC system 

Figure 2 Schematic illustration of the experiment. 
Notes: α-Mangostin is poorly soluble in aqueous environment. Precursor solution was 
prepared by mixing MPE with PVP solution. The precursor solution was electrospun 
into fiber mat. Finally, in vitro evaluation and characterization were performed to 
predict the pharmacological effect in vivo.
Abbreviations: MPE, mangosteen pericarp extract; PVP, polyvinylpyrrolidone.
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at 320 nm as described previously. The summary of our study 

is illustrated in Figure 2.

Release kinetics 
The release kinetics of the pure MPE, PVP:MPE physical 

mixture, and nanofiber mats were investigated using zero-

order model, first-order model,45,46 and Hixson–Crowell 

model,47 as follows: 

1.	 Zero-order model

�In this model, the cumulative amount of drug released (Q
t
) 

is plotted against time. The pattern of drug release adopts 

the condition that the rate of drug release is independent 

of its concentration as shown by Eq (1).

	
Q k t

t
=

0 	
(1)

where Q
t
 is the total drug released at time t (in percentage 

concentration) and k
0
 is the constant of zero-order model (in 

concentration/time).

2.	 Fist-order model

�In this model, the log of the cumulative percentage of 

drug remaining is plotted against time. In this model, 

the rate of drug release is assumed to be dependent on 

its concentration as presented in Eq (2). 

	

Log Q Log Q
kt

t10 10 0 2 303
− = −

. 	
(2)

where Q
0
 is the initial concentration of the drug, k is the 

constant of first-order model, and t is the time.

3.	 Hixson–Crowell model

�This model is based on Hixson and Crowell (1931) recogniz-

ing that the regular area of the particle is proportional to the 

cubic root of its volume. This model has been used to describe 

the release profile considering the diminishing surface of the 

drug particles during the dissolution as in Eq (3).

	
Q Q kt

t0
1 3 1 3/ /− =

	
(3) 

where Q
0
 is the initial concentration of the drug, Q

t
 is the 

amount of drug released at time t, and k is the constant of Hix-

son–Crowell model. A straight line can be gained by plotting 

(Q
0
1/3 - Q

t
1/3) vs t while slope is the Hixson–Crowell constant.

Results and discussion
α-Mangostin content
α-Mangostin as the major xanthone in mangosteen pericarp 

was identified as a marker compound for quantitative analysis 

and standardization of MPE.12,48 Standardization of the MPE is 

required to maintain the product quality. In this study, this was 

achieved by determining the amount of α-mangostin contained 

in each nanofiber mat and the amount of α-mangostin released 

over time. It was found that the amount of α-mangostin in the 

pure MPE, MF1, MF2, and MF3 nanofiber mats were 13%, 

1.3%, 2.6%, and 3.4%, respectively. When incorporated into 

nanofibers, the release rate of α-mangostin increased threefold 

in comparison with that of pure MPE, with more than 90% of 

α-mangostin released in just an hour. Figure 3 shows HPLC 

chromatograms of standard α-mangostin, MPE, and MF1, 

MF2, MF3 nanofiber mats. α-Mangostin was detected from 

the nanofiber samples by using the HPLC system at reten-

tion time of 6.4–6.7 minutes. The chromatogram showed 

that α-mangostin peak was clearly distinguished from the 

baseline and the other peaks.

Morphology and average diameter of 
nanofibers 
The morphology of MF0, MF1, MF2, and MF3 fiber mats 

observed by SEM is shown in Figure 4. The fibers were 

commonly ribbon-shaped without flaws such as bead 

α

Figure 3 HPLC chromatograms of α-mangostin, MPE and MF1-, MF2-, MF3 nanofiber 
mats. 
Abbreviations: MPE, mangosteen pericarp extract; MF0, mangosteen fiber 0; MF1, 
mangosteen fiber 1; MF2, mangosteen fiber 2; MF3, mangosteen fiber 3; HPLC, high-
performance liquid chromatography.
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formation or broken strands, with diameter in nanometer 

range. The presence of MPE with different mass concentra-

tions in PVP fibers did not affect their morphologies. This 

finding is similar to our previous work in which the presence 

of curcumin in PVP nanofibers did not affect the shape of 

nanofibers.22 Although there were some polar–polar interac-

tions between curcumin and PVP, the nanofibers were still 

in a uniform shape. Therefore, the formation of PVP:MPE 
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nanofibers were absolutely influenced by the concentration 

of PVP:MPE solution in electrospinning process. 

The diameters of MF0, MF1, MF2, and MF3 nanofibers 

of their mats varied in the range of 200 to 1,200 nm. The 

average diameters of these nanofibers were 586, 464, 412, 

and 387 nm, respectively. Figure 5 illustrates the average 

diameter of the nanofibers as a function of the MPE loaded 

to the nanofibers. As clearly depicted in the graph, the 

diameter of nanofibers decreased with the increase in MPE 

concentration. A possible reason is due to the influence of 

decreased viscosity and increased electric conductivity of 

the precursor solution. The viscosity of pure PVP precursor 

solution (MF0) was found to be 70.10 cP. In the presence of 

MPE, its viscosity decreased to 67.86, 61.76, and 55.87 cP for 

the MF1, MF2, and MF3 precursor solutions, respectively. 

The low-viscosity precursor solution resulted in less polymer 

unit per volume in the solution. Consequently, the polymer 

chains tend to interact with the solvent rather than to form a 

coiled structure and to entrap the solutes. Under this condi-

tion, the number of intermolecular interactions that can be 

formed between PVP and MPE such as van der Waals force, 

hydrogen bond, and dipole–dipole interaction is lower. These 

weak interactions caused PVP chains to straighten out in the 

solvent and be easily affected by the given electric field.36,49 

The straightened PVP chains are more likely to achieve 

perfect elongation upon exposure to electrical charge during 

the electrospinning process, resulting in finer fibers. These 

presumptions can explain our findings where the diameter of 

the fibers became smaller when the viscosity decreased, with 

smallest diameter obtained in the MF3 nanofibers.

It was found that the electrical conductivity of the 

PVP:MPE precursor solution increased as the concentration 

of MPE increased. The electrical conductivity of the MF3 

precursor solution was the highest, that is, 258.3 µS/cm, 

while the MF1 had the lowest electrical conductivity at 

118.2 µS/cm. Upon exposure to high voltage, the electrical 

conductivity of the precursor solution represents the number 

of ions at the surface of the solution. The MF3 precursor 

solution with a higher electrical conductivity underwent a 

rapid elongation due to higher ion formation on the sur-

face of the solution.36,50 This phenomenon also explained 

a significant drop in the diameter of the electrospun nano-

fibers due to the increased electrical conductivity. These 

findings are in line with other studies that reported similar 

observation.51

Figure 5 Correlation between the diameter of nanofibers and MPE concentration 
in the nanofibers. 
Abbreviation: MPE, mangosteen pericarp extract.

Figure 4 SEM images of nanofiber mats and their fiber-size distributions. 
Note: SEM image at 10,000× of MF0, MF1, MF2, and MF3 nanofiber mats.
Abbreviations: SEM, scanning electron microscope; MF0, mangosteen fiber 0; MF1, mangosteen fiber 1; MF2, mangosteen fiber 2; MF3, mangosteen fiber 3.
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FTIR spectroscopy analysis
FTIR study was conducted to identify characteristic func-

tional groups in MPE, PVP (MF0) nanofiber mat, and 

MPE:PVP (MF1, MF2, and MF3 nanofiber mats). The 

recorded spectra are shown in Figure 6A. Hydroxyl group 

in the MPE was identified from a broad peak at 3,326 cm-1, 

which belongs to O-H stretching.21 This peak confirmed the 

presence of polyphenolic xanthones in the MPE.52 The peaks 

at 2,972 and 2,925 cm-1 were assigned to asymmetric C-H 

stretching of the methyl group.20,21 The presence of ester 

group in the MPE was indicated by sharp peaks at 1,639 cm-1 

(C=O stretching of carbonyl group) and 1,279 cm-1 (C-O-C 

stretching of methoxy group).20,52 The medium-intensity peak 

at 1,423 cm-1 was assigned to asymmetric C=C stretching 

from aromatic ring.20 Alkene groups in the MPE were con-

firmed by the presence of peaks at 838 and 583 cm-1 for =C-H 

bending.53 The characteristic peaks of PVP were noticed in 

the FTIR spectrum of MF0 nanofiber mat: O-H stretching 

at around 3,420 cm-1, C=O stretching at 1,653 cm-1, and 

C-N stretching at 1,288 cm-1.54,55 Asymmetric stretching 

of CH
2
 in PVP chain was shown by the moderate peak 

at 2,952 cm-1.55

We observed two distinct features of infrared spectra 

of the MPE-containing nanofiber mats: 1) a higher MPE 

content led to sharper and more noticeable hydroxyl peaks 

occurring around 3,800–3,000 cm-1 and 2) a higher MPE 

content caused hydroxyl and carbonyl peak of PVP to shift 

toward lower wavenumbers. The hydroxyl peak of PVP in 

the MF0 nanofiber mat at 3,420 cm-1 shifted to 3,395 cm-1 

in the MF1 nanofiber mat, while it changed to 3,390 and 

3,380 cm-1 in the MF2 and MF3 nanofiber mats, respectively. 

The carbonyl stretching peak that belongs to pyrrolidone 

ring in PVP appeared at 1,653 cm-1. This peak appeared 

at 1,650 cm-1 in the MF1 nanofiber mat, while it existed at 

1,649 and 1,644 cm-1 in the MF2 and MF3 nanofiber mats, 

respectively. The peak shift of carbonyl stretching was 

thought to be a result of intermolecular interaction between 

MPE and PVP via hydrogen bond formation,21 as shown in 

Figure 6B. The hydrogen bond is formed between hydroxyl 

group among the tricyclic rings in the MPE, as a strong 

hydrogen bond donor, and carbonyl group in the PVP, as a 

strong hydrogen bond acceptor. However, the presence of 

OH- stretching in the spectrum of pure PVP and its direction 

of peak shift indicated that the PVP chains were partially 

α

Figure 6 (A) FTIR spectra of MPE, MF0, MF1, MF2, and MF3 nanofiber mats; (B) hydrogen bonding between PVP and α-mangostin.
Abbreviations: FTIR, Fourier transform infrared spectroscopy; MPE, mangosteen pericarp extract; MF0, mangosteen fiber 0; MF1, mangosteen fiber 1; MF2, mangosteen 
fiber 2; MF3, mangosteen fiber 3; PVP, polyvinylpyrrolidone.
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hydrated, owing to its hygroscopic nature.22 The adsorbed 

moisture on the surface of PVP was also confirmed by ther-

mal analysis, which is described later in our DSC results. As 

a result, the moisture contained in PVP chains also formed 

hydrogen bonds with carbonyl groups in MPE. This premise 

is supported by the peak shift of aromatic C=C stretching of 

MPE from 1,581 to 1,577 cm-1 in MF3, to 1,508 cm-1 in the 

MF2 nanofiber mat, and to 1,493 cm-1 in the MF1 nanofiber 

mat. The peak shift of C=C stretching in the presence of PVP 

occurred as the result of decreased resonance of carbonyl-

conjugated aromatic alkenes56 as the free carbonyl groups 

of MPE became hydrogen-bonded with hydroxyl groups 

of PVP. Considering that the glass transition point (T
g
) of 

PVP is around 178°C,22 the PVP chains had sufficient rigid-

ity to preserve this hydrogen bond-mediated intermolecular 

interaction under room temperature.57

XRD analysis 
XRD patterns of the MPE, MF0, MF1, MF2, and MF3 

nanofiber mats are shown in Figure 7. Using XPowder 

Ver.2004.04.70 PRO software, a typical diffraction pattern 

of MPE was found with intense peaks at 2θ of 5.99°, 11.62°, 

and 13.01°, indicating crystalline nature of MPE. The pattern 

and peaks exhibited by the MPE resemble those of man-

gosteen extract, despite slightly different 2θs (5.94°, 11.43°, 

and 12.69°).58 Due to the high abundance of α-mangostin 

content in the MPE, it was then thought that the diffrac-

tion pattern demonstrated by the MPE was originated from 

α-mangostin.45 Sharp and intense crystalline peaks in the 

MF1, MF2, and MF3 nanofiber mats were absent in the MF0 

nanofiber mat. In contrast, two broad haloes were present 

at 2θs of 5° and 40°. The second halo at 2θ of 22.72° was a 

shouldered peak with relatively lower intensity. The XRD 

pattern of the MF0 nanofiber mat clearly indicated amorphous 

PVP, as reported in the previous study.27

The XRD patterns of the MPE and PVP:MPE nanofiber 

mats suggested a crystalline-to-amorphous transformation of 

MPE, as indicated by the absence of crystalline peaks of the 

MPE in the MF1, MF2, and MF3 nanofiber mats. Note that 

PVP was reportedly capable of converting drug powder from 

crystalline state to amorphous state, particularly hydrophobic 

non-steroid anti-inflammatory drugs including indomethacin, 

ketoprofen, naproxen, and ibuproxam,59–62 in a binary system 

generated from co-milling, hot melt extrusion, or other mix-

ing processes under a certain environment where PVP is in 

rubbery state (above the glass transition point, T
g
).60–62 The 

degree of amorphization was dependent on the PVP content 

and the mechanism of amorphization involved loosening of 

crystal structure during exothermic mixing process, followed 

by dispersion in amorphous PVP chains and stabilization 

by intermolecular hydrogen bond between drug and PVP.62 

Amorphization power of PVP is noteworthy, owing to its 

spherical amorphous shape.62 Below the T
g
, PVP was able to 

induce amorphization of ibuprofen in a physical mixture over 

the storage time.60 In our study, conversion into amorphous 

state most probably occurred during the electrospinning 

process although the environment temperature was below 

the T
g
 of PVP. The applied voltage caused the drug/polymer 

solution to rapidly migrate from the needle tip to the collector. 

At the same time, the polymer underwent elongation along 

with solvent evaporation, resulting in solidification into a 

fiber.36 Within this extremely short time period, PVP and 

MPE molecules were incapable of rearranging their three-

dimensional structure. As a result, the molecules were not 

highly ordered as in their crystalline state. 

Our XRD study indicated molecular interactions between 

MPE and PVP, which strengthened the FTIR and DSC 

results. The XRD pattern of PVP was altered after being 

spun in a combination with MPE. The MPE nanofiber mats 

θ °
Figure 7 XRD patterns of MPE, MF0, MF1, MF2, and MF3 nanofiber mats.
Abbreviations: XRD, X-ray diffraction; MPE, mangosteen pericarp extract; MF0, 
mangosteen fiber 0; MF1, mangosteen fiber 1; MF2, mangosteen fiber 2; MF3, 
mangosteen fiber 3.
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showed a broad halo instead of two haloes, peaking at 2θ 

of 13°–15°. Meanwhile, the characteristic halo of PVP at 

2θ of 22.72° was not detected in the MF1, MF2, and MF3 

nanofiber mats. This finding strengthened our presumption 

that MPE and MF0 (PVP) formed intermolecular interac-

tions, particularly as hydrogen bonds, as explained in the 

FTIR studies.

Differential scanning calorimetry analysis
Figure 8 shows DSC thermograms of the MPE, MF0, MF1, 

MF2, and MF3 nanofiber mats. Three endothermic events 

were identified in MPE, peaking at 119°C, 177°C, and 

218.1°C. The first endothermic peak was thought to originate 

from residual volatile compounds, mostly sesquiterpenes,63 

since MPE was not exposed to temperature of .50°C 

throughout our study. The endothermic peaks at 177°C and 

218.1°C indicated the melting point and decomposition of 

MPE, respectively, in which MPE was represented by the 

α-mangostin content. The DSC thermogram of PVP showed 

a broad endothermic event from 35°C to 100°C due to the 

evaporation of adsorbed moisture. Our thermogravimetric 

analysis showed that the weight loss of the MF0 nanofiber 

mat at 100°C was 3.6%. The T
g
 of PVP was not detected in 

the MF0, MF1, MF2, and MF3 nanofiber mats, which was 

attributed to mechanically induced stress during electrospin-

ning process.22

The DSC thermogram of the MF1, MF2, and MF3 nano-

fiber mats were similar except that the endothermic event 

taking place at 199.3°C in the MF1 nanofiber mat occurred at 

lower temperatures when the amount of MPE was increased, 

being 173.8°C in the MF2 nanofiber mat and 167.7°C in the 

MF3 nanofiber mat. These peaks were extremely broad, 

resembling a diffusion of melting points of MPE and PVP. 

Characteristic crystalline peaks of the MPE were unable to 

observe in the MF1, MF2, and MF3 nanofiber mats, most 

probably due to the condition where electrospinning process 

of the MPE:PVP solution inhibited the recrystallization 

of α-mangostin.45 Moreover, the appearance of a single 

broad halo instead of fusion endotherms indicated complete 

amorphization.62 The decrease in crystallinity of α-mangostin 

was also confirmed in the XRD analysis.

In vitro antioxidant activity 
Antioxidant activity was detected in all MPE:PVP nanofiber 

mats (MF1, MF2, and MF3 nanofiber mats). The color of 

DPPH solution changed from purple to yellow after being 

reacted with MPE:PVP mats, indicating the quenching of 

DPPH free radicals by hydrogen donor groups in MPE:PVPV 

and, eventually, the formation of a stable compound.64,65 The 

hydrogen donor groups from α-mangostin, most commonly 

hydroxyl groups, play a fundamental role in scavenging 

the free radicals. The extent of antioxidant activity in this 

study was described by an IC
50

 value.43,66–68 A very strong 

antioxidant will have an IC
50

 value between 1 and 50 µg/mL, 

while strong antioxidant and moderate antioxidant will dem-

onstrate IC
50

 values in 50–100 and 101–150 µg/mL range, 

respectively. IC
50

 value of $150 µg/mL indicates weak 

antioxidant activity.67,68

The IC
50

 values of the MPE, MF1, MF2, and MF3 nano-

fiber mats were compared to ascorbic acid as the reference 

for antioxidant activity (Table 2). It is clear that the MF3 

nanofiber mat had the strongest antioxidant activity among 
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Figure 8 DSC thermograms of MPE, MF0, MF1, MF2, and MF3 nanofiber mats.
Abbreviations: DSC, differential scanning calorimetry; MPE, mangosteen pericarp 
extract; MF0, mangosteen fiber 0; MF1, mangosteen fiber 1; MF2, mangosteen fiber 2; 
MF3, mangosteen fiber 3.

Table 2 Antioxidant activities of ascorbic acid, MPE and PVP:MPE 
composite nanofiber mats

Sample Diameter 
(nm)

IC50 
(µg/mL)

Antioxidant 
activity

Ascorbic acid – 1.041±0.21 Very high
MPE – 69.50±0.24 High
MF1 nanofiber mat 468 67.76±0.38 High
MF2 nanofiber mat 412 65.43±0.05 High
MF3 nanofiber mat 387 55.45±0.27 High

Abbreviations: MPE, mangosteen pericarp extract; PVP, polyvinylpyrrolidone; 
MF1, mangosteen:PVP fiber 1; MF2, mangosteen:PVP fiber 2; MF3, mangosteen:PVP 
fiber 3.
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the nanofiber mats as shown by its lower IC
50

 value. Surpris-

ingly, the antioxidant activity of MPE in the MF1, MF2, and 

MF3 nanofiber mats were stronger than the pure MPE. These 

findings suggest that the antioxidant activity of MPE was 

enhanced due to the nanostructure offered by the nanofiber 

mats. In nanofiber form, α-mangostin particles, in nanometer 

size, are distributed in a matrix with very high surface area.69 

As a result, the number of α-mangostin particles that can 

be released at a given time is significantly higher, and thus, 

α-mangostin can quench the free radicals more effectively. 

Our findings show that the stability of the biologically active 

compounds in MPE can still be maintained during the elec-

trospinning process. Our previous study showed a similar 

report, in which the antioxidant activity of MPE was not 

weakened by the electrospinning process, despite the use of 

high voltage for a long period.67 

In vitro release study 
α-Mangostin possesses limited aqueous solubility20 yet 

good intestinal absorption,70 which means that solubility 

of α-mangostin is the rate-limiting step. We attempted to 

increase the release rate of α-mangostin by incorporating 

MPE into nano-sized fibers, presuming that there would be 

higher fraction of dissolved α-mangostin readily absorbed 

by the intestinal membrane at given time. The release study 

was adapted from standard protocol of dissolution test for 

immediate-release drug dosage form with modifications. 

Until recently, there is no single standardized method for 

release or dissolution study of drug from nano-sized dosage 

form.71 However, this release study can be a predictive tool 

to investigate the release behavior, an important biopharma-

ceutical aspect of nanoparticulate delivery system. 

Earlier, we intended to investigate pH-dependence of 

α-mangostin release by studying the release rate in two dif-

ferent media: acidic (pH 1.2) and basic (pH 6.8). However, 

α-mangostin was not detected when acidic medium (pH 1.2) 

was used. The phosphate-buffered solution (pH 6.8) was 

chosen since the pH mimics the small intestine environment, 

the region of gastrointestinal tract where most xanthones can 

be absorbed.72 The amount of α-mangostin released from 

the three nanofiber preparations and pure MPE was carried 

out in phosphate buffer pH 6.8 at 37°C for 2 hours. The 

release profiles are shown in Figure 9. Overall, the release 

of α-mangostin from the MF1, MF2, and MF3 nanofiber 

mats exhibited triphasic pattern. In such pattern, extremely 

high release rate or burst release effect takes place in the 

first phase as the result of accumulation of drug molecules 

on the surface of the polymeric-based system. The second 
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Figure 9 The release profile of α-mangostin from MPE:PVP (MF1, MF2, and MF3) 
nanofiber mats and pure MPE at pH 6.8.
Abbreviations: MPE, mangosteen pericarp extract; PVP, polyvinylpyrrolidone; 
MF0, mangosteen fiber 0; MF1, mangosteen fiber 1; MF2, mangosteen fiber 2; MF3, 
mangosteen fiber 3.

phase, which is identified by a slower release rate, generally 

indicates drug release via mild polymer degradation or chain 

scission.73,74 Finally, as the polymer is continuously hydrated, 

water can eventually reach the fiber further and bulk erosion 

occurs. The time required to reach bulk erosion makes the 

release rate slower than those in the prior phases.73,75,76 The 

multi-phase release pattern was typical of small-molecule 

release from a polymeric matrix, and this was not related to 

the overall release rate. In fact, release rate of α-mangostin 

was improved by incorporation into nanofiber, being three 

times higher than α-mangostin release from pure MPE.

As seen in Figure 9, it is clear that α-mangostin release 

from the pure MPE was lower in comparison with those of 

the MF1, MF2, and MF3 nanofiber mats. Less than 35% 

of α-mangostin was released from the pure MPE over 

60 minutes. Meanwhile, α-mangostin in the nanofiber mats 

was immediately released with 90% average cumulative per-

centage in 60 minutes. It is clear that encapsulation of MPE 

into PVP-based nanofibers, regardless the ratio of MPE:PVP, 

has improved the rate of α-mangostin release dramatically. 

This indicated that the release enhancement was not only due 

to improvement of surface hydrophilicity by PVP.77 

The nature of nanofibers, where the surface area at a given 

volume is very high, played significant role for release rate 

enhancement of α-mangostin. This finding is in accordance 

with the Nernst–Brunner equation:

	

dM

dt

SD
c c

s t
=

δ
( )−

	
(4)
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where dM/dt is the amount of drug dissolved at given time, 

S is the surface area, D is the diffusion coefficient, c
s
 and c

t
 

denote the solubility of the drug and concentration of drug 

dissolved in the aqueous medium, respectively, and δ is 

the thickness of diffusion layer.78 With an extremely high 

surface area in nanofiber, water can easily penetrate and 

then release α-mangostin from the fiber matrix. In addition, 

with the high surface area, more particles of MPE would 

reside on the surface of nanofibers and ready to be released. 

The release mechanism due to hydrophilic characteristic of 

PVP is suggested through diffusion79 as the release kinetic 

followed first-order model. The release kinetic is described 

in the next section. 

Our XRD and DSC studies indicated that conversion of 

MPE from crystalline state to amorphous state was due to 

electrospinning process. This can be another explanation for 

the rapid release of α-mangostin because an amorphous drug 

tends to have higher release rate. In amorphous state, the 

molecular interaction is relatively weaker and the molecular 

arrangement is rather irregular in comparison with crystalline 

state.80,81 Consequently, amorphous α-mangostin contained 

in the MF1, MF2, and MF3 nanofiber mats can be dissolved 

more rapidly, and thus, α-mangostin tends to diffuse out into 

the release medium on a higher rate.

The release rate of α-mangostin was found to be higher 

in nanofibers with smaller diameters. As shown in Figure 9, 

the MF3 and MF2 nanofiber mats with respective diameters 

of 387 and 412 nm released 100% of α-mangostin within 

60 minutes. Meanwhile, the MF1 nanofiber mat with a higher 

diameter of 468 nm only released 90% of α-mangostin over 

similar period. These results could be explained as follows. 

It was reported that polymer chains with smaller fibers have 

higher rate of absorbance of the molecules of solvent.40,82 

Thus, it enlarges the volume of the polymer matrix which 

then allows the coil of polymer chains to be less tight, in 

which the PVP nanofibers reach a swollen state. As a result, 

the solvent can reach α-mangostin particles and dissolve 

them more easily. The dissolved α-mangostin can then 

immediately diffuse out of the matrix.

Release kinetics
A number of kinetic models represent release mechanisms 

of a certain drug from a certain matrix; zero-order, first-

order, Higuchi, and Hixson–Crowell are examples of those 

kinetic models.45–47 To study the release mechanism of 

α-mangostin from the fibers, release patterns were fitted 

to those five models based on R-square value (Table 3). 

In vitro release of α-mangostin from the pure MPE followed 

the zero-order kinetic model, but it followed the first-order 

one when formulated into nanofibers. This means that 

the release of active compound in nanofibers was mainly 

controlled by drug concentration. In contrast, the release 

of α-mangostin from the pure MPE was concentration-

independent. However, the release kinetic model of the 

MF1, MF2, and MF3 nanofiber mats also fitted well with 

the Hixson–Crowell model. This indicated that changes 

in surface area and diameter of matrix contributed for the 

release mechanism.46,83,84

The Hixson–Crowell kinetic model considers that 

1) the mass of dissolved compound does not significantly 

change with time, 2) the dissolving particles are spherical 

and do not change with time, and 3) the particles do not 

disintegrate into several fragments during dissolution.85 As 

illustrated in Figure 9, the release rates of α-mangostin from 

the MF1, MF2, and MF3 nanofiber mats were significantly 

high in the first 20 minutes, but dropped quickly afterwards. 

Despite the presumed mechanism of triphasic release which 

was thought to be facilitated by drug accumulation on the 

matrix surface, polymer chain scission and bulk erosion,77,79 

another possibility should be taken into consideration. This 

is because the first-order kinetic is based on the following 

assumptions: 1) the matrix is a non-swelling compound 

and 2) the matrix remains intact throughout the release 

process.86

In the previous study, it was found that the solid dispersion 

of ketoconazole/PVP nanoparticles grew into micrometer-

sized particles during dissolution study.87 Therefore, it is 

also possible that the α-mangostin molecules, which have 

been released from the nanofiber mat during the first phase 

of release (ie, .60% in the first 20 minutes), undergo super-

saturation and precipitate into nanoparticles. The nanopar-

ticles were subjected to nucleation and thus particle growth 

occurred. This event might result in a decreased release 

rate in the subsequent phase, where the amount of released 

α-mangostin was ,30% from 20 to 60 minutes.

Table 3 Comparison of several release kinetic models for 
MPE:PVP (MF1, MF2, and MF3) nanofiber and MPE

Sample R2 of kinetic models

Zero-order First-order Hixson–Crowell

MPE 0.9908 0.9875 0.9445
MF1 nanofiber mat 0.5735 0.9769 0.9339
MF2 nanofiber mat 0.6047 0.9723 0.9306
MF3 nanofiber mat 0.7820 0.9550 0.9545

Abbreviations: MPE, mangosteen pericarp extract; PVP, polyvinylpyrrolidone; 
MF0, mangosteen fiber 0; MF1, mangosteen fiber 1; MF2, mangosteen fiber 2; MF3, 
mangosteen fiber 3.
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Conclusion
Bead-free nanofibers were successfully synthesized from 

electrospinning of MPE:PVP solution. Size controlling 

was achieved by adjusting the viscosity and conductivity 

of precursor solution. Higher MPE content in the precursor 

solution lowered the viscosity while increased the conductiv-

ity. The SEM analysis revealed that the size of the nanofiber 

decreased as the MPE:PVP ratio was increased. However, 

the morphology of MPE:PVP nanofibers was identical in 

all preparations regardless the MPE content, confirming the 

excellent spinnability of PVP. Findings of the FTIR and 

DSC analyses suggested hydrogen-bond formation between 

MPE and PVP although PVP still retained its hygroscopic 

property. Crystalline-to-amorphous transformation was 

evident, as verified in the XRD study. α-Mangostin in the 

MPE:PVP nanofibers performed better radical scavenging 

and had significantly higher release rate in comparison with 

the pure MPE, as confirmed in antioxidant assay and in vitro 

release study. Enhanced antioxidant activity and release 

rate of α-mangostin from the MPE:PVP nanofibers was 

facilitated by high surface area of the nanofiber network. 

The mechanism of α-mangostin release from the MPE:PVP 

nanofibers was dependent on drug concentration and particle 

size since the release kinetic followed the first-order model 

as well as the Hixson–Crowell model. With the improvement 

of antioxidant activity and release rate, MPE:PVP nanofiber 

mats can potentially improve the clinical outcomes offered 

by MPE.
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