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Abstract: Microbial keratitis (MK) is the most visually devastating complication associated with 

contact lens wear. Pseudomonas aeruginosa (PA) is highly invasive in the corneal epithelium 

and is responsible for more than half of the reported cases of contact lens-related MK. To protect 

against Pseudomonas-mediated MK, the corneal epithelium has evolved overlapping defense 

mechanisms that function to protect the ocular surface from microbial invasion. Research has 

shown that contact lens wear disrupts these protective mechanisms through breakdown of normal 

homeostatic surface renewal as well as damaging the corneal surface, exposing underlying cell 

membrane receptors that bind and internalize PA through the formation of lipid rafts. Human 

clinical trials have shown that initial adherence of PA with resulting increased risk for micro-

bial infection is mediated in part by contact lens oxygen transmissibility. Recently, chemical 

preserved multipurpose solutions (MPS) have been implicated in increasing PA adherence to 

corneal epithelial cells, in addition to inducing signifi cant levels of toxic staining when used 

in conjunction with specifi c silicone hydrogel lenses. This review summarizes what is cur-

rently known about the relationship between contact lenses, the corneal epithelium, MPS, and 

infection.
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Introduction
The corneal epithelium is a multi-layered stratifi ed epithelial sheet that undergoes 

continuous exposure to potential invasive ocular pathogens. Despite these recurrent 

attacks, the epithelium maintains a high level of resistance against microbial invasion, 

which is critical to preventing infection and preserving vision. This arsenal of defense 

includes the antimicrobial properties of the tear fi lm and self-defense capabilities of 

the epithelium itself, including the desquamation of apoptotic cells from the surface 

of the cornea, tight cellular junctions comprising the epithelial barrier, and the pro-

duction of ocular surface mucins by apical cells which contribute to the innermost 

surface of the tear fi lm as well as acting to reduce bacterial adherence. Breakdown of 

these collective mechanisms predispose the cornea to infection and are enhanced by 

penetration through the basal lamina.

Clinically, the overall result of these cellular events is the presence of a light-blocking 

infi ltrate with an overlying epithelial defect. Notably, trauma, pre-existing ocular surface 

disease, and contact lens wear have been earmarked as the most common etiologies of 

microbial infection, with Pseudomonas aeruginosa (PA) identifi ed as the primary caus-

ative organism (Ormerod and Smith 1986; Pachigolla et al 2007; Mondino et al 1986). 

Research directed at understanding and reducing PA-mediated contact lens microbial 

keratitis has steadily progressed over the past several decades. Hallmark epidemiologi-

cal studies have established for the fi rst time the relative risk of infection with contact 

lenses, particularly with extended wear, and patient associated risk factors have been 

identifi ed (Schein et al 1989; Poggio et al 1989; Keay et al 2006; Morgan et al 2005). 
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Lens-induced hypoxia was recognized as a key mediator for 

microbial invasion with PA and newer lens designs and types 

followed with increased oxygen transmissibility in hopes of 

improving lens safety (Holden and Mertz 1984).

Likewise, contact lens care solutions have evolved from the 

use of homemade saline to chemically preserved no-rub mul-

tipurpose solutions which currently account for a signifi cant 

portion of the lens care market. With the effi cacy of “no-rub” 

cleaning recently being called into question however; and, 

the current infl ux of increased reports of contact-lens related 

microbial infections in the news media, the effectiveness of 

these lens care solutions and their components as adequate 

antimicrobial disinfectants is being re-evaluated. In addition, 

the combination of these chemically preserved products with 

specifi c silicone hydrogel lens polymers has raised a new 

issue relating to the joint biocompatibility of these materials 

with the ocular surface. The purpose of this review is to sum-

marize the current body of research relating to contact lenses, 

the corneal epithelium, multipurpose lens care solutions, and 

infection for basic scientists and practicing clinicians.

Corneal epithelial physiology 
and contact lens wear
The corneal epithelium is a self-renewing, stratifi ed epithelial 

sheet that provides the fi rst-line of defense against micro-

organisms invading the eye and a smooth refractive surface 

essential for vision. Contact lenses share an intimate relation-

ship with the epithelial surface; and all forms of contact lens 

wear, regardless of lens material and modality of wear, have 

a profound effect on the physiology of this tissue. For more 

than two decades, researchers have focused on elucidating 

the effects of contact lens wear on the epithelium in both 

clinical and laboratory based studies in hopes of identifying a 

potential linkage between these events and the risk for contact 

lens-related infection. Importantly, the substantial cumula-

tion of these studies have shown that the physical presence 

of a contact lens, irrespective of oxygen transmissibility, 

disrupts corneal epithelial renewal mechanisms, producing 

a thinned, stagnant epithelium; however, the impact of this 

stagnation as it relates to infection is unknown (Ladage et al 

2002; Holden et al 1985).

It is well established that the continual supply of epithe-

lial cells originates in the limbus, where limbal stem cells, 

the gatekeepers of epithelial renewal reside. Offspring from 

the limbus migrate centrally, wherein basal epithelial cells 

undergo a single round of cell division, with both daughter 

cells migrating vertically toward the ocular surface (Ren et al 

1999). Preliminary studies on the effects of contact lens wear 

on central epithelial proliferation in the rabbit demonstrated 

for the fi rst time that contact lenses inhibited mitosis in the 

basal layer of the epithelium (Hamano et al 1983). Later stud-

ies using BrdU, a marker for proliferating cells, confi rmed 

that contact lens wear results in a reduction in proliferation 

in basal cells through out the central cornea and the degree 

of mitotic suppression was regulated in part by lens oxygen 

transmission (Figure 1A) (Ren et al 1999; Ladage et al 2003; 

Ladage et al 2001). Similarly, triple-labeling studies using 

BrdU, the cell cycle marker Ki67, and propidium iodide in the 

rabbit cornea have further shown that not only is proliferation 

reduced, but contact lens wear results in a concurrent decrease 

in the vertical migration of terminally differentiated cells as 

they migrate out of the basal cell layer toward the corneal 

surface (Ladage et al 2003). This delay in differentiation and 

renewal is accompanied by an observable increase in surface 

epithelial cell size, presumably due to the retention of older 

cells on the surface of the epithelium (Ladage et al 2002; 

Lemp et al 1990; Mathers et al 1992; Ren et al 1999).
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Figure 1 (A) The effect of contact lens wear on basal cell proliferation. Single pulse 
BrdU labeling in the rabbit corneal epithelium following 24 hours of contact lens wear 
demonstrated a reduction in basal cells mitosis in all lens groups tested and from 
hypoxia induced by eyelid suturing, suggestive of both lens- and oxygen-mediated 
effects. (B) The effect of contact lens wear on apoptosis in the central corneal epi-
thelium. Annexin V labeling, an early marker for apoptosis, also showed a reduction 
in epithelial desquamation with all forms of contact lens wear, which did not appear 
to be related to lens-oxygen transmissibility. Copyright © 2008. Figures adapted with 
permission from Ladage PM, Yamamoto K, Li L, et al. 2002. Corneal epithelial homeo-
stasis following daily and overnight lens wear. Contact Lens Anterior Eye, 25:11–21.
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This retention of older cells on the surface of the 

epithelium is a result of an inhibition in apoptosis-driven sur-

face cell desquamation into the preocular tear fi lm (Ren and 

Wilson 1996). In the noncontact lens wearing eye, the major-

ity of epithelial cells desquamate from the central corneal (Li 

et al 2002; Yamamoto et al 2002). Mechanical forces from 

the eyelid during blinking may be responsible for this unique 

geographic pattern, likely through activation of stress proteins 

along the epithelial surface. In addition, the ability of epithe-

lial cells to continually shed in a controlled manner represent 

an important component in the innate immune response, as 

cells infected with PA initiate apoptosis and shed from the 

surface of the normal eye, providing inherent anti-infective 

protection. In contrast, in the contact lens wearing eye, central 

epithelial desquamation is markedly reduced (Ren et al 1999; 

Ladage et al 2001). Whole mount studies in the rabbit cornea 

using Annexin V and Ethidium labeling following 24 hours 

of contact lens wear have further demonstrated a signifi cant 

reduction in central epithelial cell death for both rigid gas 

permeable (RGP) and soft contact lenses with varying levels 

of oxygen transmissibility, as well as prolonged eyelid closure 

(Figure 1B) (Li et al 2002; Yamamoto et al 2002). These 

fi ndings have been further related to changes in the pattern of 

epithelial cell localization of the antiapoptotic protein BCL2. 

In both rabbit and human tissue, BCL2 localizes to the nuclei 

of surface central corneal epithelial cells and disappears or 

becomes undetectable prior to positive TUNEL labeling, 

indicating apoptosis has ensued (Yamamoto et al 2001). In 

the contact lens wearing eye, co-localization experiments 

with BCL2 and TUNEL following 24 hours of contact lens 

wear reveals persistent nuclear BCL2 expression in central 

surface cells corresponding to a loss of positive TUNEL 

labeling (Yamamoto et al 2001). Collectively, these fi ndings 

indicate severe reduction of normal epithelial desquamation 

at the cellular level secondary to daily or overnight lens 

wear, which is insensitive to lens oxygen transmission levels. 

When challenged with microbial invasion, the inhibition of 

the apoptotic response also represents a further breakdown 

in the barrier function of the cornea.

Corneal epithelial damage, bacterial 
adherence and internalization
Contact lenses can also produce varying levels of direct 

corneal epithelial surface damage, further compromising 

the tight cell to cell barrier function. Critical early animal 

studies in the rabbit model using both rigid and hydrogel 

contact lenses demonstrated that oxygen played an impor-

tant role in contact lens-related cell loss and damage to the 

underlying corneal epithelium. In these early studies, lactate 

dehyrdrogenase (LDH), an enzyme that is released by dam-

aged or dying cells, was used as a measure of the direct effects 

of contact-lens hypoxia and lens pressure on the epithelial 

surface (Ichijima et al 1992). Specifi cally, analysis of the 

effects of seven-day extended wear of high (Dk/t = 34), 

super high (Dk/t = 56), and ultra high (Dk/t = 64) oxygen 

transmissible RGP contact lenses demonstrated that both 

high and super high lens wear signifi cantly increased LDH 

activity, whereas ultra high oxygen transmitting lenses failed 

to increase LDH activity compared to controls (Imayasu et al 

1993). Additional studies using scanning electron micros-

copy and tandem scanning confocal microscopy confi rmed 

that polymethylmethacrylate (PMMA) lenses with zero 

oxygen transmissibility induced robust epithelial surface 

damage, whereas RGP lenses with varying levels of oxygen 

transmissibility induced milder levels of surface cell loss 

(Imayasu et al 1994). Signifi cantly, the rigid lens with the 

highest oxygen transmissibility (Dk/t = 64) resulting in an 

equivalent oxygen percentage of 19.13 produced no apparent 

epithelial surface damage. In comparison, all soft hydrogel 

lenses induced more moderate levels of surface cell loss at 

all lens oxygen levels studied (Imayasu et al 1994).

These surface damage fi ndings were further correlated 

with PA adherence to the cornea following 24 hours of lens 

wear, demonstrating that PMMA and RGP lenses with low 

oxygen transmissibility all signifi cantly increased PA bound 

to the corneal surface; likewise, the three hydrogel lenses 

tested signifi cantly bound PA as well (Imayasu et al 1994). 

This increase in bacterial adhesion for rigid and soft lenses 

suggested that there was increased PA receptor exposure on 

deeper epithelial cells following loss of the protective outer 

layer. Specifi cally, these studies provided the fi rst direct 

experimental data illustrating that the lower the oxygen trans-

missibility of the lens, the greater the degree of ocular surface 

damage (R = 0.993, P � 0.01) and the greater the amount 

of PA adhered to the corneal surface (R = 0.998, P � 0.01), 

regardless of lens rigidity (Figure 2) (Imayasu et al 1994). 

However, when rigidity was accounted for and RGP lenses 

were compared to soft hydrogel lenses at the same lens oxy-

gen transmissibility levels, rigid lenses induced more surface 

damage but less PA binding than their soft lens counterparts. 

Notably, these fi ndings are further consistent with a similar 

study in rabbits using a direct, injury induced wound healing 

model. In this parallel study, the authors used fi lter paper to 

create a partial thickness injury to remove the superfi cial epi-

thelial cell layer as well as denuded epithelium with stromal 

exposure. In all eyes examined, there was an increase in PA 
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binding to deeper cell layers following partial injury compared 

to undisturbed eyes, with the greatest increase in bacterial 

adherence seen at the stromal surface in the denuded cornea; 

as the epithelial defect resolved over time, PA adherence 

returned to baseline values (Klotz et al 1989).

In the corneal epithelium, PA has been shown not only to 

bind to the plasma membrane, but also to possess the novel 

ability to invade internally into intact epithelial cells (Fleiszig 

et al 1994). Recent studies investigating the mechanism of 

PA binding and internalization in corneal epithelial cells 

have established an entry route for bacteria to the cell interior 

through fl uid structures in the cell membrane known as lipid 

rafts (Yamamoto et al 2006; Yamamoto et al 2005). Lipid rafts 

are cholesterol and glycosphingolipid enriched micro-domains 

which function as signaling platforms to mediate a host of 

cellular signaling functions, including microbial internaliza-

tion (Simons and Ikonen 1997; Shin and Abraham 2001; Shin 

and Abraham 2001; Duncan et al 2002). Once inside the cell, 

the normal host response to microbial invasion is to initiate 

apoptosis and shedding of the infected cell from the surface 

of eye (Grassme and Kirschnek 2000). In contact lens wear 

however, the mechanism regulating epithelial apoptosis has 

been altered, allowing PA to replicate within the cellular 

cytoplasm and providing a safe reservoir from commonly 

used extracellular aminoglycoside antibiotics.

In the rabbit eye, 24 hours of PMMA lens wear induced 

lipid raft formation in the central and peripheral epithelium 

(Figure 3) (Yamamoto et al 2006). Following lens removal 

and subsequent incubation in PA, lipid raft expressing cells 

preferentially bound PA compared to nonraft expressing 

cells. Laser confocal microscopy confi rmed the direct 

association of PA with the lipid raft fraction of the cell 

as well as the intracellular localization of the bacteria. In 

contrast, despite uniform localization of B-cholera toxin, 

a marker for lipid rafts, in the limbal and conjunctival 

epithelium, no PA adherence was detected. To dissect out 

the mechanical effects of the contact lens from hypoxia on 

raft formation, eyelid suturing experiments were performed 

to induce chronic hypoxia in the absence of a contact lens 

(Yamamoto et al 2006). While these suturing experiments 
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Figure 2 (A) Percentage of epithelial desquamation as a function of equivalent oxygen 
percentage (EOP).  As lens oxygen transmissibility increased, there was a signifi cant decrease 
in epithelial desquamation for both RGP and hydrogel lenses.  At lower oxygen transmission 
levels, RGP lenses induced greater levels of surface epithelial desquamation.  At the highest 
EOP tested, RGP lenses induced no observable desquamation. (B) Increase in PA adherence, 
expressed as colony forming units (CFU), as a function of EOP.  Similar to desquamation, 
increasing EOP levels resulted in a reduction of PA adherence.  In contrast to desquamation, 
for each level of oxygen transmission, rigid lenses bound signifi cantly less PA than hydrogel 
lenses. Copyright © 1994. Figures adapted with permission from Imayasu M, Petroll WM, 
Jester JV, et al. 1994. The relation between contact lens oxygen transmissibility and binding of 
Pseudomonas aeruginosa to the cornea after overnight wear. Ophthalmology, 101:371–88.

Figure 3 Lipid raft expression in the rabbit corneal epithelium. After 24 hours of 
PMMA lens wear, whole mount tissue was labeled with beta cholera toxin (green) and 
counterstained with PI (red) to label epithelial nuclei and allow for visualization of PA. 
(A) Undisturbed corneal epithelium. No lipid raft expression was seen in the absence 
of a contact lens. (B) After 24 hours of lens wear, pre-infection with PA, lipid rafts were 
detected in surface epithelial cells, evident by green punctate staining. (C) Thirty minutes 
after infection with PA, PA were seen to preferentially adhere to lipid raft expressing 
cells. (D) At 1 hour post infection, PA appeared to cluster around the lipid raft fraction of 
the plasma membrane. In the vertical XZ plane, lipid rafts appeared to associate directly 
with the lipid raft and internalization was noted. Copyright © 2005. Image adapted with 
permission from Yamamoto N, Yamamoto N, Petroll WM, et al. 2005. Internalization of 
Pseudomonas aeruginosa is mediated by lipid rafts in contact lens-wearing rabbit and 
cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci, 46:1348–55.
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demonstrated an upregulation of lipid raft expression in the 

central cornea, there was no detectable increase in intra-

cellular PA, as measured by Gentamicin survival assays. 

In contrast, 3 days of low Dk RGP extended lens wear 

upregulated lipid rafts in the peripheral rabbit epithelium 

(outside the central 6 mm) with subsequent PA adherence 

and internalization (Yamamoto et al 2006). Interestingly, 

this peripheral raft localization corresponds to a commonly 

reported geographic region associated with corneal infi l-

trative events in response to silicone hydrogel lens wear 

(Schein et al 2005).

Cystic fi brosis transmembrane conductance regulator 

(CFTR), a chloride anion channel, has been proposed to 

be the epithelial receptor responsible for binding PA and 

mediating internalization through lipid rafts (Kowalski and 

Pier 2004). In corneal epithelial cells cultured in the pres-

ence of serum, hypoxia has been shown to regulate CFTR 

expression and subsequent bacterial internalization (Zaidi 

et al 2004). More recently, CFTR has also been shown to 

recruit major vault protein (MVP) which appears to play an 

essential role in mediating the subsequent immune response 

in pulmonary epithelial cells (Kowalski et al 2007). In 

contrast to these studies, in vitro cell culture experiments 

using a unique telomerase immortalized corneal epithelial 

cell line grown in the absence of serum failed to establish 

a functional role for CFTR in lipid raft internalization 

(Yamamoto et al 2006; Robertson et al 2005). The results 

from these serum-free studies correlated with in vivo contact 

lens animal studies which confi rmed the presence of CFTR 

in the corneal epithelium; however, such studies failed to 

detect a role for CFTR in PA internalization. Signifi cantly, 

CFTR did not co-localize with lipid raft expressing cells 

and blocking peptides targeting amino acids 108–117 and 

103–117, the functional site on the CFTR receptor, failed 

to alter PA internalization. Collectively, these fi ndings sug-

gest that the functional activation of the CFTR receptor in 

epithelial cells may be regulated by the differential effects 

of serum or cell type and that disparate mechanisms may be 

responsible for the internalization of PA in ocular trauma 

where the epithelium is serum-exposed, compared to the 

contact-lens wearing model where the post-lens tear fi lm is 

a serum-free environment.

Bacterial binding: An effective 
marker?
In order for in vitro fi ndings on changes in epithelial apop-

tosis and bacterial adherence to be clinically relevant, it is 

imperative to establish in vivo markers that can be tested and 

applied in a clinical setting. Based upon the well accepted 

view that the initial inciting step in infection is PA binding 

to the corneal epithelium, a technique to evaluate bacterial 

binding to exfoliated corneal epithelial cells ex vivo was 

proposed (Fullard and Wison 1986; Fleiszig et al 1992; Ren 

et al 2007). This noninvasive irrigation technique uses sterile 

saline to gently remove exfoliated cells from the corneal sur-

face for subsequent incubation in a well-established invasive 

strain of PA (strain 27853, American Type Culture Collec-

tion, Rockville, MD) (Figure 4A). Promising initial reports 

implementing this technique in human subjects reported an 

increase in PA adherence to exfoliated corneal epithelial cells 

following extended hydrogel lens wear (Fleiszig et al 1992). 

In an effort to justify the use of this technique in large scale 

human clinical studies, the adherence of PA to exfoliated 

cells from the rabbit corneal surface was compared to the 

adherence of PA to the residual rabbit corneal surface fol-

lowing irrigation (Ren et al 1997). In this study, rabbits were 

fi t with rigid gas permeable or soft contact lenses stratifi ed 

by oxygen transmissibility. After 24 hours, exfoliated cells 

were collected and both exfoliated cells and the remaining 

corneal surface were incubated in PA. After 30 minutes of 

bacterial exposure, the number of PA bound to the total 

corneal surface following contact lens wear correlated with 

PA adherence to shed corneal cells (R = 0.78, P � 0.001, 

Figure 4B). Signifi cantly, this fi nding validated this ex vivo 

method as an indirect measure of bacterial binding in vivo 

(Ren et al 1997).

Implementing this methodology, the role of the contact 

lens and hypoxia was evaluated in a series of successive, 

prospective human clinical trials using RGP, hydrogel, and 

silicone hydrogel lens designs and identical study protocols. In 

the initial pilot study, 109 patients wore lenses on a six-night 

extended wear schedule over three months and exfoliation 

rates as well as PA adherence were measured after 24 hours of 

overnight and 3 months of extended wear (Ren et al 1999). The 

signifi cant outcome for this study was that lens material did not 

regulate PA adherence; however, the lens oxygen transmissi-

bility was inversely correlated with PA adherence to exfoliated 

cells. In addition, the use of hyper Dk lens materials failed 

to increase PA adherence compared to controls. In another 

study, 246 patients wore either soft or RGP lenses on a daily 

wear basis for 4 weeks (Ladage et al 2001). In comparison 

to the pilot, both high and hyper oxygen transmissible soft 

lenses signifi cantly upregulated PA binding, with high oxygen 

transmissible lenses binding much higher levels of PA than 

their hyper oxygen transmissible counterparts. Interestingly, 

hyper Dk RGP lenses did not affect PA adherence; however, 
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all test lenses signifi cantly reduced epithelial desquamation 

(P � 0.001) (Ladage et al 2001).

The long term effects of extended contact lens wear on the 

corneal epithelium were then investigated in 178 patients in 

6 or 30 night extended wear over one year (Ren et al 2002). 

Similar to the previous results, this study again showed that 

while hyper oxygen transmissible lenses had a signifi cant 

increase in PA adherence, this increase was considerably 

lower than PA adherence following high Dk lens wear; 

and again, hyper Dk RGP lenses failed to upregulate PA 

adherence (Ren et al 2002). Additionally, there were two 

interesting and unexpected fi ndings in this study: there was 

no signifi cant difference between 6 and 30 night extended 

wear of the hyper oxygen lens materials and there appeared 

to be an adaptive physiological recovery to PA adherence at 

9 and 12 months of extended wear for all lenses tested (Ren 

et al 2002). A subsequent clinical trial evaluating 136 patients 

over 1 year of extended lens wear further confi rmed these 

fi ndings (Cavanagh et al 2002).

The collective results from these clinical studies indi-

cate that the combined presence of a lens and reduced 

availability of oxygen are critical factors in mediating bacte-

rial binding. From these fi ndings, relative risk of infection 

was established and the predicted safety of contact lens wear 

correlated exactly with previous historical epidemiological 

data allowing for stratifi cation based upon lens type and 

wearing modality (RGP DW/EW � soft DW � soft EW 

lenses) (Schein et al 1989; Poggio et al 1989; Ren et al 

2002). Additionally, these fi ndings also demonstrated an 

unexpected adaptive return to baseline values, predicting for 

the fi rst time that the risk of microbial keratitis was highest 

during the fi rst six months of lens wear; a subsequent epi-

demiological study has recently confi rmed this prediction 

(Stapleton et al 2008).

A third key fi nding illustrated by these clinical studies 

was the repeated observation that hyper oxygen transmis-

sible hydrogel lenses bound signifi cantly less PA than high 

oxygen transmissible lens wear. Not surprisingly, this fi nding 

lent further support to a role for oxygen transmission in the 

regulation of PA binding, calling for an in vivo human study 

to delineate the role of oxygen from the mechanical effects of 

the lens. In order to accomplish this, 10 subjects were fi tted 

with goggles that exposed the corneal surface to conditions 

of hypoxia and anoxia for up to 6 hours of wear (Ren et al 

1999). Signifi cantly, while hypoxia down-regulated epithe-

lial desquamation similar to contact lens wear, there was 

no corresponding increase in PA adherence to shed cells, 

establishing for the fi rst time that hypoxia alone does not 

regulate PA adherence, but the presence of a lens is required 

(Ren et al 1999).
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Figure 4 (A) Schematic of the noninvasive ocular irrigation device.  Warmed saline is gently applied to the eye and collected in a test tube directly below. Cells are then incubated 
in an invasive strain of PA for 30 minutes, vacuum fi ltered onto polycarbonate fi lters, and stained with acridine orange for visualization using an epifl uorescent microscope. 
(B) Correlation of PA adherence between exfoliated corneal epithelial cells and the residual corneal surface (R = 0.78, P � 0.001). Copyright © 1997. Images adapted with permission from 
Ren DH, Petroll WM, Jester JV, et al. 1997.  Adherence of Pseudomonas aeruginosa to shed rabbit corneal epithelial cells after overnight wear of contact lenses. CLAO J, 23:63–8.
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While hypoxia may have a corroborative role in PA 

adherence, a disparity in PA adherence between the 3 month 

pilot study and the remaining clinical trials exists. Specifi -

cally, in patients wearing silicone hydrogel lenses, there was 

no increase seen in the initial pilot (Ren et al 1999), compared 

to signifi cant increases in PA adherence as early as 24 hours 

following lens wear in the latter studies (Ladage et al 2001; 

Ren et al 2002; Cavanagh et al 2002). In evaluating this 

data, it is important to note that the initial three month study 

utilized a nonpreserved contact lens care solution. Thus it 

appears that the absence of an increase in PA binding seen 

with hyper oxygen transmissible soft lenses may be due to 

the use of a nonpreserved care solution compared to the 

increase in PA adherence seen with the same lens using 

chemically preserved MPS (Ren et al 1999). To further 

examine the effect of preserved solutions on PA adherence, 

the most recent clinical trial evaluated 121 silicone hydrogel 

lens wearers using hydrogen-peroxide based solutions in 

both daily and 6/30 night extended wear over one year. In 

agreement with the 3 month data, the use of a nonpreserved 

hydrogen peroxide-based solution in this study eliminated 

the increase in PA binding that was seen with MPS usage 

(Ren et al 1999; Robertson et al 2008). Irrespective of dif-

ferences in PA binding, corneal epithelial homeostasis was 

still altered, with decreases seen in epithelial desquamation 

and central epithelial thickness similar to that of previ-

ously reported studies; no adaptive effects of either daily or 

extended wear were seen.

Signifi cantly, the fi nding that preservatives in MPS solu-

tions may play a role in altering epithelial desquamation and 

PA adherence is not novel and has been previously reported 

in a clinical study investigating the use of chemical preserva-

tives on the cornea in the absence of a contact lens (Figure 5) 

(Li et al 2003). In this prospective cross-over clinical trial, 

patients instilled one of four solutions into the eye 6 times 

a day for four days. For all solutions tested, the instillation 

of MPS resulted in a signifi cant decrease in exfoliation of 

shed corneal epithelial cells with a corresponding signifi cant 

increase in PA binding. The results from this study coincide 

with an even earlier study evaluating the effects of contact 

lenses and care solutions on the rabbit corneal epithelium, 

which found that care solutions using hydrogen peroxide dem-

onstrated 3 times greater PA attachment than PBS, whereas 

preserved solutions using Dymed or Polyquad increased 

PA adherence by 8 and 24 times, respectively (Williams 

et al 1990). Taken together, while a potential underlying 

mechanism responsible for these increases in PA adherence 

is unknown, these data highlight the possibility that the use of 

chemically preserved MPS may interact in conjunction with 

contact lens wear to increase PA adherence to the corneal 

epithelium synergistically; and therefore may further increase 

the risk for contact lens-related microbial infection.

Lens-care solutions, corneal staining 
and adverse events
The potential role of contact lens care solutions in micro-

bial keratitis has recently gained signifi cant interest due to 

increased reports of fungal and Acanthamoeba keratitis in the 

news media. In addition, since the widespread acceptance of 

silicone hydrogel lenses into the marketplace, there have also 

been a signifi cant number of reports of increased solution-

induced corneal staining associated with specifi c silicone 

hydrogel contact lens/solution combinations (Andrasko 

and Ryen 2007; Jones et al 2002; Garofalo et al 2005). This 

increase in solution-induced corneal staining is of interest, 

as the use of silicone hydrogel lenses has not reduced the 
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rates of  MK as expected. In contrast to silicone hydrogel lens 

wear, RGP lenses, which carry the lowest risk for infection, 

can induce signifi cant amounts of  3 and 9 o’clock staining in 

the limbal region. Signifi cantly, when compared to the recent 

studies on lipid raft internalization, the inability of functional 

lipid rafts to form in the limbal epithelium in response to lens 

wear suggests that it is the location of fl uorescein staining 

within the corneal epithelium that relates to the potential risk 

for infection and not the presence of staining alone.

More recent reports support the view that corneal staining 

may be directly related to inflammation. Retrospective 

clinical studies have shown that contact lens solution-

induced corneal staining is associated with a 3 times greater 

risk of corneal infi ltrative events with a positive correlation 

between the two (Carnt et al 2007). Similar to clinical trials, 

this report also found that the least amount of toxic staining 

was seen with the use of hydrogen peroxide care solutions 

(Carnt et al 2007; Cho et al 1998). Of note, this latter fi nding 

also corresponds to the low amount of toxic staining seen with 

hydrogen peroxide care solutions compared to multipurpose 

solutions previously reported elsewhere.

At the cellular level, early studies using the in vivo 

confocal microscope investigated the effect of different 

contact lens care solutions coupled with a single hydrogel 

lens and demonstrated differential effects on the corneal 

epithelium. Interestingly, these confocal studies showed 

effects on the corneal epithelium long before biomicroscopy 

fi ndings were evident, suggesting that staining alone is not 

a sensitive measure of epithelial disruption. This study 

also demonstrated that when used with the same hydrogel 

contact lens, different preservatives and buffer systems 

had different effects on the corneal epithelium (Chang et al 

1999). In support of this view, more recent studies reported 

signifi cant cytotoxic effects in vitro based upon inhibition 

of cell growth from commonly used MPS as well as the 

various agents used in their formulations (Mowrey-Mckee 

et al 2002; Santodomingo-Rubido et al 2006).

In terms of barrier function, numerous attempts have 

been made to examine and clarify the effects of contact 

lens solutions on the epithelial surface. Many of these 

studies have focused on the localization of the tight junc-

tion associated protein ZO-1; whereas others have focused 

on measurements of the epithelial barrier function, using 

both fl uorescein permeability assays as well as measure-

ments of transepithelial resistance (Imayasu et al 2008; 

Bernal and Ubels 1991). In a recent study, the use of four 

commonly used MPS on corneal epithelial cell monolayer 

culture showed a breakdown of ZO-1, along with a decrease 

in transepithelial resistance, indicating a disruption in the 

epithelial barrier (Imayasu et al 2008). It is likely that the 

reported breakdown of ZO-1 is the in vitro corollary to 

solution induced toxic staining seen at the corneal surface; 

however, restrain must still be exercised when extrapolating 

serum-exposed monolayer toxicity culture data to increased 

rates of MK in vivo.

Discussion
Pseudomonas aeruginosa is a pathogenic Gram-negative 

microbe that is highly infectious in the corneal epithelium 

and is the most common pathogen associated with contact 

lens wear (Ormerod and Smith 1986; Mondino et al 1986). 

In the undisturbed eye, the corneal epithelium utilizes a host 

of defense mechanisms to defl ect invasion by PA; however, 

following contact lens wear, these innate defense mechanisms 

are collectively compromised. This compromise includes the 

inhibition of apoptotic desquamation and a slowed renewal 

mechanism, producing a thinned, stagnant epithelial sheet 

(Ladage et al 2002). The relationship between contact lens 

wear and alterations in epithelial homeostasis as well as the 

implications of delayed renewal in the pathogenesis of MK 

are unknown. While it is likely that the alteration or loss of 

one of these defense mechanisms may place the host at an 

increased risk for infection, it is well understood that the loss 

of one mechanism alone is not suffi cient to induce infection 

in animal models. This resilient property of the epithelium 

is due to the incredible redundancy built into this biological 

system. Thus, it appears that it is the cumulative breakdown 

of these collective processes that results in contact lens 

related MK and further illustrates the multifactorial nature 

of the disease process.

A signifi cant amount of research has shown that contact 

lenses damage the corneal epithelium, with the greatest 

amount of damage being seen with low oxygen transmis-

sible RGP lenses (Imayasu et al 1994). From the results of 

our clinical trials however, it is now known that at similar 

oxygen transmissibility levels, even though rigid lenses 

induce substantially more epithelial surface damage than 

hydrogel lenses, corneal epithelial cells inherently bind more 

PA after hydrogel lens wear than their rigid counterparts (Ren 

et al 1999; Ladage et al 2001; Ren et al 2002). The overall 

results from these studies suggest two possible conclusions; 

(1) reduced tear fl ow and stagnation in the post lens tear fi lm 

of hydrogel lens wearers may increase PA binding to surface 

corneal epithelial cells by trapping or increasing bacterial 

exposure to the ocular surface as opposed to wear of RGP 

lenses which permit adequate tear fl ushing; (2) while damage 
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to the epithelial surface disrupts the tight barrier function of 

the corneal epithelium and exposes receptors on underlying 

squamous cells, PA binding is not solely related to epithelial 

damage alone.

In addition to lens-induced corneal damage, chemically 

preserved MPS have been shown to induce a transient 

“toxic” staining event at the corneal surface (Carnt et al 

2007). MPS toxic staining has been shown to be a risk 

factor for corneal infl ammatory events, however, thus far 

there has been no correlation between staining and MK 

(Carnt et al 2007). Importantly, while no association has 

been established, the use of chemically preserved MPS in 

human clinical trials has been shown to reduce epithelial 

desquamation in concert with an upregulation of PA-binding 

receptors in surface epithelial cells in both the presence and 

absence of a contact lens (Li et al 2003). This increase in 

PA binding to corneal epithelial cells is a well-established 

risk factor for infection. Therefore, it may be that the use 

of these chemical preservatives and buffering agents in 

contact lens solutions may be altering cell surface protein 

expression in corneal epithelial cells and upregulating PA 

receptor expression independent of the clinical manifesta-

tion seen as staining.

Solution-induced staining aside, in addition to increased 

PA adherence, contact lens wear and MPS alike inhibit 

epithelial desquamation (Li et al 2003). The inability of an 

epithelial cell to desquamate following invasion results in a 

failure of the body to rid itself of the infecting organism. This 

mechanism of internalization has been established to occur 

through glycosphingolipid- and cholesterol-enriched raft 

formation in the plasma membrane (Yamamoto et al 2005). 

Uniquely, contact lens-induced corneal lipid raft formation 

and preferential PA adherence to raft-expressing cells has 

been localized to the central and peripheral epithelium, cor-

responding to the pattern of localization of MK (Yamamoto 

et al 2006). In contrast, limbal and conjunctival epithelium 

which uniformly label with beta cholera toxin fail to form 

functional raft areas and do not exhibit any detectable level 

of PA adherence or internalization. These fi ndings suggest 

that raft formation and bacterial internalization within the 

ocular surface epithelia is restricted to the central and periph-

eral corneal epithelium, corresponding to the established 

clinical phenotypes seen in epidemiological studies (Schein 

et al 2005).

Further studies are necessary to understand the mecha-

nism by which contact lenses induce lipid raft formation in 

the corneal epithelium and receptor expression facilitating 

PA adherence. CFTR has been proposed as one potential 

receptor; however, there are confl icting reports on the role of 

CFTR in PA internalization (Yamamoto et al 2006; Kowalski 

and Pier 2004). This disparity arises from the use of serum 

in culture media and represents an important aspect of in 

vitro cell culture experimentation, as corneal cells in vivo 

are maintained in a relatively serum free environment in 

the nonwounded cornea. Thus, further studies are needed 

to examine the differential effects of serum on receptor 

expression in vitro with direct comparison to events in the 

in vivo animal eye.

In order to produce PA infection in the cornea in animal 

models, a break in the basal lamina is required, leading 

to stromal invasion. Invasive PA strains internalize into 

epithelial cells, while other cytotoxic strains of PA migrate 

between cells to the basal surface where they exert their 

destructive effect through the injection of cytotoxins into 

the cell interior (Fleiszig et al 1996; Fleiszig et al 1997). 

The combined intracellular and paracellular migration 

results in the localization of PA beneath the epithelial 

sheet in apposition to the basal lamina (Fleiszig 2006). 

Presumably factors secreted by either the epithelial cells 

in response to cellular damage and bacteria or the bacteria 

themselves lead to the eventual destruction and penetration 

of the basal lamina. While breakdown of the various layers 

of the epithelial defense mechanism along the way each 

represent a potential increased risk factor for infection, a 

cumulative series of events appears to be required in order 

for an MK to ensue.

Given the multifactorial nature of the disease process, it 

may be some time before we truly understand the mecha-

nisms underlying contact-lens related MK and establish safe, 

therapeutic measures to prevent it. The collective fi ndings 

summarized in this review however, provide a useful strategy 

for maximizing safe contact lens wear based upon the current 

lens materials and care solutions available. RGP lenses made 

with hyper oxygen transmissible lens materials by far provide 

the safest option for patients electing to undergo daily or 

extended lens wear. While soft contact lenses inherently carry 

a higher risk, likely due to the stagnation or cesspool that is 

created in the post lens tear fi lm, the use of hyper oxygen 

transmissible silicone hydrogel lens materials coupled with 

nonpreserved hydrogen peroxide care solutions can minimize 

the risk for microbial keratitis.
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