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Introduction: β-lactam and fluoroquinolone antibiotics are usually used for the treatment 

of urinary tract infections (UTIs). The aim of this study was to determine the prevalence of 

plasmid-mediated quinolone resistance (PMQR) and extended spectrum β-lactamases (ESBLs) 

in Enterobacteriaceae isolated from UTIs.

Materials and methods: Two hundred and nineteen samples of Enterobacteriaceae isolated 

from UTIs were collected in the Northwest of Iran. Antimicrobial susceptibility testing was 

determined by the disk diffusion method. ESBLs were detected by the double-disk test. ESBL 

and PMQR-encoding genes were screened using the polymerase chain reaction. 

Results: The rate of resistance to moxifloxacin, nalidixic acid, gatifloxacin, ofloxacin, cipro-

floxacin, and levofloxacin in ESBL-producing isolates was 89.3%, 88%, 84%, 80%, 78.7%, 

and 73.3%, respectively. PMQR-producing Enterobacteriaceae isolates were identified in 67 

samples (89.1%). The most prevalent PMQR genes were aac (6′)-Ib-cr 120 (68.6%) followed 

by oqxB 72 (41.1%), oqxA 59 (33.7%), qnrB 36 (20.6%), qnrS 33 (18.9%), qnrD 19 (10.9%), 

qepA 13 (7.4 %), qnrA 10 (5.7%), and qnrC 9 (5.1%). There was a strong association between 

PMQR genes and bla
CTX-M-15 

and bla
TEM-116 

and other ESBL genes.

Conclusion: High resistance rates were detected to quinolones among ESBL-producing isolates 

from UTIs. There is a high prevalence of PMQR genes in Enterobacteriaceae in Azerbaijan and 

Iran, and the most common PMQR is aac(6′)-Ib-cr. There is a significant association between 

PMQR and ESBL-producing isolates. 

Keywords: Enterobacteriaceae, ESBLs, plasmid-mediated quinolone resistance, urinary tract 

infections

Introduction
Urinary tract infections (UTIs) are the most common infections around the world. It is 

estimated that 150 million UTIs occur each year worldwide, with about 70%–80% of 

uncomplicated UTIs caused by Escherichia coli.1 Drugs commonly recommended for 

simple UTIs include cotrimoxazole, nitrofurantoin, cephalexin, and ceftriaxone. The 

fluoroquinolones, such as ciprofloxacin and levofloxacin are commonly recommended 

for complicated UTIs. However, β-lactam and fluoroquinolone antibiotics have been 

used for the treatment of UTIs.2

On the other hand, fluoroquinolones resistance and extended spectrum β-lactamases 

(ESBL)-producing Enterobacteriaceae have increased worldwide.3 The most important 
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mechanism of quinolone resistance is chromosomal muta-

tions in the quinolone resistance-determining region of genes 

encoding DNA gyrase (gyrA and gyrB) and topoisomerase 

IV (parC and parE) genes.4 In addition, plasmid-mediated 

quinolone resistance (PMQR) determinants have been 

reported. PMQR include Qnr (quinolone resistance) proteins 

(qnrA, qnrB, qnrC, qnrD, and qnrS), which protect the DNA 

gyrase and topoisomerase IV from quinolone inhibition, aac 

(6′)-Ib-cr (aminoglycoside acetyltransferase variant), which 

acetylates aminoglycoside, ciprofloxacin, and norfloxacin 

and reduces their activity. Additionally, oqxAB and qepA 

are plasmid-mediated efflux pumps.5 Although the PMQR 

determinants lead to low-level quinolone resistance, they 

facilitate the chromosome-encoded quinolone resistance.6 

ESBL-producing Enterobacteriaceae has emerged as mul-

tidrug-resistant (MDR), especially resistant to trimethoprim/

sulfamethoxazole, aminoglycosides, and fluoroquinolones.7

PMQR genes are often on the same plasmid as the ESBL 

genes.8 Resistance plasmids with genes encoding ESBLs can 

be transferred by the conjugation that helps dissemination 

of PMQR determinants in different Enterobacteriaceae spe-

cies.9 Due to MDR establishment, co-existence of ESBLs and 

PMQR genes are a major concern. The infections caused by 

these MDR isolates are associated with high public health 

costs, therapeutic failures, restriction of the antibacterial 

agents choice, increased duration of hospitalization, rising 

morbidity, and mortality.7 

On the other hand, Enterobacteriaceae is the most com-

mon cause of UTIs, and MDR in Enterobacteriaceae is a 

serious threat to community health as it limits the selection 

of antibiotics for the empirical treatment of UTIs caused by 

Enterobacteriaceae.

There are few studies regarding co-resistance of 

β-lactamas and quinolones in Enterbacteriaecae isolated 

from UTIs in Iran.10 Emergence of ESBLs and PMQR have 

lead to MDR Enterbacteriaecae, which is a serious hazard 

for community heath. The aim of this study was to investigate 

the prevalence of PMQR and ESBLs determinants in Entero-

bacteriaceae isolated from UTIs in Azerbaijan and Iran.

Materials and methods
Bacterial isolates
This prospective study was conducted in the Department 

of Microbiology, Tabriz University of Medical Sciences, 

Iran, from December 2015 until August 2016. All patients 

were from the Azerbaijan and Iran. Urine samples were col-

lected from inpatients and outpatients suspected of having 

a UTI, who had not received antibiotics within the previous 

2 months. The method of samples collection was simple 

random sampling. Urine was collected in adult patients by 

clean-catch midstream and children aged <3 years were 

sampled using a sterile urine bag or suprapubic catheter.

All urine samples were inoculated on blood agar as well 

as MacConkey agar. A specimen was considered positive 

for UTIs if a single microorganism was cultured at a count 

of 105 cfu/mL and was included in this study. Two hun-

dred and nineteen isolates of Enterobacteriaceae causing 

UTIs were isolated. Enterobacteriaceae was identified by 

the conventional biochemical tests and standard culture 

methods. 

The local ethics committee, Tabriz University of Medical 

Sciences, approved this project, number 5/4/10393, and the 

participants provided written informed consent.

Antimicrobial susceptibility testing
The antibiotic susceptibility profile was determined on 

Muller–Hinton agar (Merck, Munchen, Germany) plates by 

the disk diffusion method (the modified Kirby–Bauer assay) 

as described by the Clinical and Laboratory Standards Insti-

tute (CLSI).11 The used disks were amoxicillin–clavulanic 

acid (20/10 µg), ampicillin (10 µg), cefotaxime (30 µg), 

ceftazidime (30 µg), cefepime (30 µg), cefuroxime (30 µg), 

imipenem (10 µg), aztreonam (30 µg), gentamicin (10 µg), 

amikacin (30 µg), trimethoprim–sulfamethoxazole (30 µg), 

nitrofurantoin (300 µg), ciprofloxacin (5 µg), nalidixic acid 

(30 µg), levofloxacin (5 µg), gatifloxacin (5 µg), ofloxacin 

(5 µg), and moxifloxacin (5 µg). All the disks were obtained 

from MAST Company, Bootle, UK. The minimum inhibitory 

concentrations (MICs) of nalidixic acid, ciprofloxacin, and 

levofloxacin were determined using the agar dilution method 

and interpreted according to the guidelines of the CLSI.11 E. 

coli American Type Culture Collection (ATCC) 25922 was 

used as a quality control strain.

ESBLs detection
The initial screening test to detect ESBL activity was car-

ried out by the disk diffusion method according to the CLSI 

guidelines. Inhibition zone size of ≤22 mm with ceftazi-

dime (30 μg), ≤27 mm with cefotaxime (30 μg), suggested 

ESBL production. The phenotypic confirmatory test for 

ESBL was done by double disk synergy using cefotaxime 

(30 µg) and ceftazidime (30 µg) alone and in combination 

with clavulanic acid (10 µg). ESBL activities were identi-

fied by zone diameter increase of ≥5 mm around the disk 

with the antibiotic in combination with clavulanic acid.11 

E. coli ATCC 25922 and Klebsiella pneumoniae ATCC 
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700603 were used as the ESBL-positive and negative control 

strains, respectively.

Molecular detection of ESBLs
All isolates that were phenotypically resistant to β-lactams 

were screened for ESBL genes by the polymerase chain 

reaction (PCR) and sequencing of relevant encoding genes, 

including bla
SHV

, bla
CTX-M

, and bla
TEM

. The multiplex PCR 

assays were used as described by Dallenne et al.12 The QIA-

quick PCR Purification Kit (Qiagen, Hilden, Germany) was 

used for amplified PCR products and sequencing of both 

strands was conducted using an ABI 3730XL DNA Analyzer. 

Each sequence was compared with known β-lactamase gene 

sequences using the multiple-sequence alignment of the Basic 

Local Alignment Search Tool program.

Detection of PMQR genes
All phenotypically fluoroquinolone-resistant isolates were 

screened by PCR for detection of qnrA, qnrB, qnrC, qnrD, 

qnrS, aac(6′)- Ib-cr, oqxAB, and qepA genes.13,14

Statistical analysis
The relationships between demographic characteristics of the 

patients and fluoroquinolones resistance, ESBL production, 

and PMQR determinants were evaluated by the Chi-square test 

or Fisher’s exact test. P-values of ≤0.05 were considered statis-

tically significant. The data were analyzed using the Statistical 

Package for Windows v.19.0 (SPSS Inc., Chicago, IL, USA).

Results
The patients and bacteria
The mean age of patients was 50±31 years (range, 1–93 

years), and included 78 (35.6%) males and 141 (64.4%) 

females. Two hundred and nineteen samples of Enterobacteri-

aceae from urine specimens in different wards of the hospital 

(internal 135 (61.6%), surgery 47 (21.5%), intensive care unit 

(ICU) 22 (10%), and pediatrics 15 (6.8%)) were collected. 

E. coli was the most common isolate at 177 (80.8%), fol-

lowed by K. pneumoniae 28 (12.8%), Enterobacter cloacae 

7 (3.2%), Proteus mirabilis 2 (0.9%), Morganella morganii 

2 (0.9%), Proteus vulgaris 1 (0.5%), Citrobacter freundii 1 

(0.5%), and Klebsiella oxytoca 1 (0.5%). 

Susceptibility testing
Total resistance rate of Enterobacteriaceae to antimicrobial 

agents was as follows: ampicillin 189 (86.3%), ceftazidime 

174 (79.4%), nalidixic acid 150 (68.5%), moxifloxacin 143 

(65.3%), trimethoprim–sulfamethoxazole 140 (63.9%), gati-

floxacin 131 (59.8%), ofloxacin 130 (59.4%), ciprofloxacin 

126 (57.5%), cefuroxime 117 (53.4%), levofloxacin 115 

(52.5%), aztreonam 103 (47.1%), cefepime 79 (36.1%), 

gentamicin 77 (35.1%), nitrofurantoin 57 (26.1%), amoxi-

cillin–clavulanic acid 49 (22.4%), cefotaxime 41 (18.7%), 

amikacin18 (8.2%), and imipenem 7 (3.2%). Table 1 shows 

resistance patterns of various Enterobacteriaceae in patients 

with UTIs. High resistance to fluoroquinolones was found in 

the internal ward 42 (60%) followed by, surgery 10 (14%), 

Table 1 Patterns of antibiotic resistance of Enterobacteriaceae species in urinary tract infections

Antibiotics Escherichia 
coli 
(n=177)

Klebsiella 
pneumoniae 
(n=28)

Enterobacter 
cloacae (n=7)

Proteus 
mirabilis 
(n=2)

Morganella 
morganii 
(n=2)

Klebsiella 
oxytoca 
(n=1)

Citrobacter 
freundii 
(n=1)

Proteus 
vulgaris 
(n=1)

Amoxicillin–clavulanic acid 36.6% 75% 85.7% 0 0 0 100% 0
Ampicillin 85.8% 96.4% 85.7% 50% 0 100% 100% 100%
Cefotaxime 14.7% 25% 19.4% 0 0 0 2.8% 0
Ceftazidime 79.7% 75% 85.7% 50% 100% 100% 100% 100%
Cefepime 32.8% 64.3% 42.9% 0 0 0 0 0
Cefuroxime 52.5% 60.7% 57.1% 50% 1.7% 0 0 0
Imipenem 0 21.5% 0 50% 0 0 0 0
Aztreonam 46.9% 60.7% 42.9% 0 0 0 0 0
Gentamicin 33.9% 46.4% 42.9% 0 0 0 0 0
Amikacin 7.7% 17.9% 0 0 0 0 0 0
Trimethoprim–sulfamethoxazole 65% 67.9% 57.1% 100% 0 0 0
Nitrofurantoin 16.4% 64.3% 85.7% 100% 100% 0 0 0
Ciprofloxacin 62.1% 53.6% 14.3% 0 0 0 0 0
Nalidixic acid 72.3% 64.3% 57.1% 0 0 0 0 0
Levofloxacin 58.8% 39.3% 0 0 0 0 0 0
Gatifloxacin 63.8% 53.6% 14.3% 50% 0 0 100% 0
Ofloxacin 65% 42.9% 14.3% 50% 0 0 100% 0
Moxifloxacin 67.2% 60.7% 71.4% 50% 0 0 100% 0
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ICU 9 (12.9%), and pediatrics 9 (12.9%). There was a signifi-

cant relationship between resistance to fluoroquinolones and 

the different wards of the hospital (P≤0.05). The agar dilution 

results indicated that 44, 85, and 60 of the isolates were highly 

resistant; MIC≥512 µg/mL, MIC≥64 µg/mL, and MIC≥128 

µg/mL to nalidixic acid, ciprofloxacin, and levofloxacin, 

respectively. There were no significant relationships between 

the antimicrobial resistance, gender and age groups (P>0.05).

Molecular analysis
The ESBLs were phenotypically detected in 75 (34.2%) of 

the isolates. ESBL-producing Enterobacteriaceae in inter-

nal, surgery, ICU, and pediatrics wards were 47 (62.7%), 

16 (21.3%), 8 (10.7%), and 4 (5.3%), respectively. Table 2 

shows the frequency of ESBL genes among isolates. bla
CTX‑M

 

group (38.4%) was the most frequent
 
ESBL gene in tested 

isolates followed by bla
TEM

 (20.6%) and bla
SHV 

(1.5%). We 

observed a high-level resistance to all tested quinolones in 

ESBL-producing isolates (67/75, 89.3%) compared with 

non-ESBL-producing isolates. The rate of moxifloxacin, 

nalidixic acid, gatifloxacin, ofloxacin, ciprofloxacin, and 

levofloxacin resistance in ESBL-producing isolates was 

89.3%, 88%, 84%, 80%, 78%, and 73.3%, respectively. There 

was a significant relationship between the activity of ESBLs 

and fluoroquinolones resistance (P≤0.05). The prevalence 

of ESBLs was high in elderly and male patients (P≤0.05). 

One hundred and fifty-six (89.1%) of the 175 fluoroqui-

nolone-resistant isolates were positive for at least 1 PMQR 

gene. The most common PMQR gene was aac (6′)-Ib-cr 120 

(68.6%) followed by oqxB 72 (41.1%), oqxA 59 (33.7%), 

qnrB 36 (20.6%), qnrS 33 (18.9%), qnrD 19 (10.9%), qepA 

13 (7.4 %), qnrA 10 (5.7%), and qnrC 9 (5.1%) (Table 3). 

Table 2 The prevalence of ESBL-producing genes among the members of Enterobacteriaceae isolated from urinary tract infections

Genes Escherichia 
coli
(n=177)

Klebsiella 
pneumoniae
 (n=28)

Klebsiella 
oxytoca
 (n=1)

Enterobacter 
cloacae
 (n=7)

Proteus 
mirabilis
 (n=2)

Proteus 
vulgaris 
(n=1)

Morganella 
morganii 
(n=2)

Citrobacter 
freundii
(n=1)

Total
 (n=219)

blaTEM
TEM-12
TEM-24
TEM-116

34 (75.6%)
1
1
32

6 (13.3%)
0
0
6

0
0
0
0

3(6.7%)
0
0
3

1 (2.2%)
0
0
1

0
0
0
0

0
0
0
0

1 (2.2%)
0
0
1

45 (20.6%)
1
1
43

bla CTX-M
CTX-M-3
CTX-M-9
CTX-M-14
CTX-M-15
CTX-M-22
CTX-M-27
CTX-M-28
CTX-M-55
CTX-M-79

66 (78.6%)
5
1
3
45
1
5
1
2
3

15 (17.9%)
5
0
0
8
1
0
0
1
0

0
0
0
0
0
0
0
0
0
0

3 (3.6%)
0
0
1
2
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

84 (38.4%)
10
1
3
55
2
5
1
3
3

blaSHV
SHV-2a
SHV-27
SHV-28

1 (33.3%)
1
0
0

2 (66.6%)
0
1
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

3 (1.5%)
1
1
1

Table 3 Prevalence of plasmid-mediated quinolone resistance in Enterobacteriaceae species isolated from urinary tract infections

Genes Escherichia 
coli
(n=144)

Klebsiella 
pneumoniae 
(n=21)

Enterobacter 
cloacae
(n=6)

Proteus 
mirabilis
(n=2)

Proteus 
vulgaris
(n=1)

Citrobacter 
freundii
(n=1)

Total
(n=175)

qnrA 8 1 0 1 10
qnrB 27 7 1 1 36
qnrC 9 9
qnrD 14 5 19
qnrS 26 3 2 1 1 33
aac(6′)- Ib-cr 99 14 5 2 120
oqxA 36 19 2 2 59
oqxB 50 20 1 1 72
qepA 12 1 13

Abbreviation: Qnr, quinolone resistance gene.
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Table 4 Co-existence of ESBLs and PMQR in E. coli (n=144) and 
K. pneumoniae (n=21) isolated from urinary tract infections

PMQR 
genes

Species ESBL genes Numbers 
of isolates 

qnrA Escherichia coli 
E. coli
Klebsiella pneumoniae 
E. coli

CTX-M-15
CTX-M-27
TEM-116+SHV-27
CTXM-15+ TEM-116

1
1
1
3

qnrB E. coli
K. pneumoniae
K. pneumoniae
K. pneumoniae
E. coli
K. pneumoniae
E. coli
K. pneumoniae
E. coli

CTX-M-15
CTX-M-3
CTX-M-22
SHV-28+ CTX-M-15
CTX-M-15+ TEM-116
CTX-M-15+ TEM-116
CTX-M-15+ TEM-24
CTX-M-55+ TEM-116
CTX-M-14+ TEM-116 

5
3
1
1
2
1
1
1
2

qnrC E. coli
E. coli
E. coli

CTX-M-15
CTX-M-79
CTX-M-15+ TEM-116

1
1
2

qnrD E. coli TEM-116 2
K. pneumoniae TEM-116 1
E. coli CTX-M-15 3
K. pneumoniae CTX-M-15 1
E. coli CTX-M-3 1

QnrS K. pneumoniae CTX-M-15 2
K. pneumoniae CTX-M-15+SHV28 1
E. coli CTX-M-15+ TEM-116 6
K. pneumoniae CTX-M-3+ TEM-116 1
E. coli CTX-M-28+ TEM-116 1
E. coli CTX-M-27+ TEM-116 1
E. coli CTX-M-14+ TEM-116 1
E. coli CTX-M-15+ TEM-24 1

PMQR 
genes

Species ESBL genes Numbers 
of isolates 

aac(6′)-
Ib-cr

E. coli TEM-116 1

E. coli CTX-M-15 14
K. pneumoniae CTX-M-15 2
E. coli CTX-M-3 1
K. pneumoniae CTX-M-3 3
E. coli CTX-M-22 1
K. pneumoniae CTX-M-22 1
E. coli CTX-M-79 1
K. pneumoniae SHV-27+ TEM-116 1
K. pneumoniae SHV-28+ CTX-M-15 1
E. coli CTX-M-15+ TEM-116 13
K. pneumoniae CTX-M-15+ TEM-116 3
E. coli CTX-M-3+ TEM-116 1
K. pneumoniae CTX-M-3+ TEM-116 1
E. coli CTX-M-55+ TEM-116 1
E. coli CTX-M-55+ TEM-116 1
E. coli CTX-M-28+ TEM-116 1
E. coli CTX-M-14+ TEM-116 2
E. coli CTX-M-9+ TEM-116 1
E. coli CTX-M-27+ TEM-12 1
E. coli CTX-M-15+ TEM-24 1

OqxA E. coli TEM-116 1
E. coli CTX-M-15 7
K. pneumonia CTX-M-15 3
K. pneumonia CTX-M-3 4
K. pneumoniae CTX-M-22 1
K. pneumoniae SHV-27+ TEM-116 1
K. pneumoniae SHV-28+ CTX-M-15 1
E. coli CTX-M-15+ TEM-116 3
K. pneumoniae CTX-M-15+ TEM-116 3
K. pneumoniae CTX-M-3+ TEM-116 1
K. pneumoniae CTX-M-55+ TEM-116 1
K. pneumoniae CTX-M-14+ TEM-116 1

OqxB E. coli TEM-116 2
E. coli CTX-M-15 8
K. pneumoniae CTX-M-15 3
E. coli CTX-M-3 1
K. pneumoniae CTX-M-3 3
K. pneumoniae CTX-M-22 1
E. coli CTX-M-14 1
K. pneumoniae SHV-27+ TEM-116 1
K. pneumoniae SHV-27+ CTX-M-15 1
E. coli CTX-M-15+ TEM-116 4
K. pneumoniae CTX-M-15+ TEM-116 3
E. coli CTX-M-15+ TEM-24 1
K. pneumoniae CTX-M-3+ TEM-116 1
E. coli CTX-M-27+ TEM-116 1
E. coli CTX-M-14+ TEM-116 1

QepA E. coli CTX-M-15 1
E. coli CTX-M-15+ TEM-116 1
E. coli CTX-M-3+ TEM-116 1
E. coli CTX-M-14+ TEM-116 1

Abbreviations: ESBL, extended spectrum β-lactamases; PMQR, plasmid-mediated 
quinolone resistance.

Table 4 (Continued)

(Continued)

The prevalence of PMQR genes was more in isolates with 

high-level quinolone MIC than low-level quinolone MIC. 

PMQR genes were detected from the internal ward in 97 

cases (62.2%), surgery in 39 cases (25%), ICU in 14 cases 

(9%), and pediatrics ward in 6 cases (3.8%). 

Among the 75 ESBL-producing isolates, 51 (68%), 32 

(42.6%), 27 (36%), 17 (22.6%), 14 (18.6%), 8 (10.6%), 6 

(8%), 4 (5.3%), and 4 strains (5.3%) carried the aac (6′)- Ib-cr, 

oqxB, oqxA, qnrB, qnrS , qnrD, qnrA, qnrC, and qepA genes, 

respectively. There were no significant relationships between 

PMQR genes, gender, and age groups (P>0.05). In this study, 

at least 1 ESBL was found in 44% of PMQR-positive isolates. 

We found that PMQR genes could co-exist with bla
CTX-M-15,

 

bla
CTX-M-14, 

and bla
TEM-116

,
 
and other ESBL genes (Table 4).

Discussion
A high proportion of our isolates (68%) were resistant to 

fluoroquinolones. Our results showed that resistance to 
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tested fluoroquinolones in ESBL-producing isolates was 

significantly higher than in non-ESBL-producing isolates. 

In the present study, 34.2% of isolates were ESBL-

producing. The prevalence of ESBL-producing E. coli and K. 

pneumoniae was 33.8% and 53.5%, respectively. The preva-

lence of ESBL varies depending on species and geographical 

regions. In South Korea and Iran, 30% and 34.8% of isolates 

were reported positive for ESBL, respectively.15,16 While in 

North America, the prevalence of ESBL-producing E. coli 

and K. pneumoniae was low.17 However, a high prevalence 

of ESBL was reported in other countries.18,19 Differences 

between these results may be due to the length of ICU stay, 

inappropriate and excessive use of antibiotics, and length of 

hospitalization.20

In the current study, the prevalence of ESBL genes was 

examined by the multiplex PCR and sequencing methods. 

We found that bla
CTX-M

 was the most prevalent ESBL gene 

followed by bla
TEM

 and bla
SHV

. Similar to the present investiga-

tion, the frequency of bla
CTX-M

, bla
TEM

,
 
and

 
bla

SHV
 genes was 

reported as 40%, 20.3%, and 14%, respectively.21,22 ESBL 

producers are often resistant to other antibiotics, such as 

fluoroquinolones.23 The presence of ESBL and some of the 

fluoroquinolone-resistant genes in the same mobile genetic 

elements may be the cause of co-resistance to β-lactams 

and fluoroquinolones. Our results showed that resistance to 

fluoroquinolones (89.3%) was significantly higher in ESBL-

producing isolates than the non-ESBL-producing isolates, as 

previously described in other studies conducted in Pakistan, 

Nepal, and Asia/Pacific.18,22,24 Therefore, the incidence of 

multidrug resistance among ESBL-producing Enterobacte-

riaceae limits therapeutic options. However, some studies 

indicated that there was no significant association between 

resistance to the fluoroquinolone and ESBL-producing 

isolates.7,20

Our study showed a high prevalence of PMQR (89.1%) 

among quinolone-resistant Enterobacteriaceae. The aac(6′)-
Ib-cr was the most prevalent PMQR gene in this study, in 

agreement with previous reports.25,26 In contrast, qnrA and 

qnrC were detected at low frequency. It has been shown that 

the presence of PMQR genes provides a favorable field for 

quinolone resistance. Our data indicated that aac(6′)-Ib-cr, 

oqxB, oqxA, and qnrB genes were detected in a significant 

proportion of ESBL-producing Enterobacteriaceae. The 

presence of PMQR genes was significantly associated with 

ESBL genes, perhaps due to the common carriage on a plas-

mid in Enterobacteriaceae.27 Interestingly, at least 1 ESBL 

was detected in PMQR-positive isolates (44%). Several 

previous studies reported a high percentage of PMQR genes 

among ESBL genes.6,28

Notably, we found that blaCTX
-M-15 

and bla
TEM-116

 were 

common among most of the PMQR-positive isolates.
 
In 

this study, 34 and 26 of 51 aac(6′)-Ib-cr-positive isolates 

produced bla
CTX-M-15 

and bla
TEM-116

, respectively
.
 In our study, 

several PMQR-positive isolates contained bla
CTX-M-3 

except 

for qnrA and qnrC isolates. In addition, at least 1 PMQR-

positive isolate carried SHV-27, SHV-28, or CTX-M-14 

genes, except for the qnrA, qnrC, and qepA isolates. The 

previous studies have reported a significant association 

among aac(6′)-Ib-cr and qnrB with CTX-M-15 and CTX-

M-14 in Enterobacteriaceae isolates.29,30 However, in a study 

from Korea, CTX-M-15 and CTX-M-3 were rare among 

qnr-positive isolates.27 These genes are usually transported 

by the plasmid and can easily spread among the members 

of Enterobacteriaceae. The association between PMQRs 

and ESBLs could be clinically important since treatment 

options for these isolates are limited and may lead to failure 

of therapy and death of patients. 

The limitations of our study were, no equal number of 

isolates from each bacterium and not performing molecular 

epidemiology and typing. Due to the high prevalence of 

Enterobacteriaceae in the UTIs, and co-resistance to fluo-

roquinolones and β-lactams in ESBL-producing isolates, we 

emphasize the correct and judicious use of fluoroquinolone. 

The determination of susceptibility testing may help to pre-

vent the dissemination of MDR isolates.

Conclusion
The rate of resistance to β-lactams and fluoroquinolones in 

Enterobacteriaceae isolated from UTIs is high. Amikacin 

and imipenem are the most effective antibiotics for empiri-

cal therapy in our setting. The prevalence of PMQR genes is 

high in Enterobacteriaceae isolates and the most common 

PMQR is aac(6′)-Ib-cr. The PMQR genes and their associa-

tion with ESBL-producing plasmids contribute to the spread 

of multidrug resistance and may lead to serious problems 

for treatment. Therefore, detection of PMQR determinants 

and ESBL genes among non-susceptible fluoroquinolone 

Enterobacteriaceae is important for appropriate empirical 

treatment and infection control.
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