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Abstract: Alzheimer’s disease is characterized histopathologically by deposition of insol-

uble forms of the peptide Aβ and the protein tau in brain. Aβ is the principal component of 

amyloid plaques and tau of neurofi brillary tangles. Familial cases of AD are associated with 

causal mutations in the gene encoding the amyloid precursor protein, APP, from which the 

amyloidogenic Aβ peptide is derived, and this supports a role for Aβ in disease. Aβ can promote 

tau pathology and at the same time its toxicity is also tau-dependent. Aβ can adopt different 

conformations including soluble oligomers and insoluble fi brillar species present in plaques. 

We discuss which of these conformations exert toxicity, highlight molecular pathways involved 

and discuss what has been learned by applying functional genomics.
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Incidence of dementia
Alzheimer’s disease (AD) is the most common cause of  dementia, comprising 50%–70% 

of all cases and affecting more than 15 million people worldwide. Frontotemporal 

dementia (FTD), in comparison, is less common but may make up to 50% of dementia 

cases presenting before the age of 60 (Graff-Radford and Woodruff 2007). Dementia is 

defi ned as the signifi cant loss of intellectual abilities such as memory functions, severe 

enough to interfere with social or occupational functioning. At present, AD cannot be 

cured which is different from memory dysfunction caused by malnutrition, drug abuse 

or depression where some form of treatment is available (Patel et al 2007).

Neuropathology of AD and FTD
The AD brain is characterized by massive neuronal cell and synapse loss at specifi c 

predilection sites (Selkoe 2002). The extracellular plaques and the intracellular neurofi -

brillary tangles are the key histopathological hallmarks of AD. The major proteinaceous 

component of the amyloid plaques is a 40- to 42-amino acid polypeptide termed Aβ 

(Aβ
40

 and Aβ
42

), which is derived by proteolytic cleavage from the amyloid precursor 

protein, APP, as part of normal cellular metabolism (Glenner and Wong 1984; Masters 

et al 1985). β-Secretase is the protease that generates the amino terminus of Aβ and 

γ-secretase cleavage at the carboxy-terminus dictates its length. Aβ
40

 is the most 

common species and Aβ
42

 is the more fi brillogenic and neurotoxic species. Recent 

evidence suggests that Aβ
40

 may prevent Aβ
42

 from aggregating and forming plaques 

(Yan and Wang 2007). β-Secretase activity has been attributed to a single protein, 

BACE 1 (Vassar et al 1999), whereas γ-secretase activity depends on four components, 

presenilin, nicastrin, APH-1 and PEN-2 forming a proteolytic complex (Edbauer et al 

2003). α-Secretase is involved in the non-amyloidogenic pathway by cleaving APP 

within the Aβ domain, thus precluding Aβ formation (Gotz and Ittner 2008). Which 

higher order forms of Aβ exert toxicity is a matter of debate. The confl icting data as 

well as putative mechanisms of toxicity are discussed in detail below.
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The second histopathological hallmark of AD are the 

neurofi brillary lesions that are found in cell bodies and 

apical dendrites as neurofi brillary tangles, in distal dendrites 

as neuropil threads, and in the abnormal neurites that are 

associated with some β-amyloid plaques (neuritic plaques). 

Neurofi brillary tangles are also abundant, in the absence 

of overt plaques, in FTD and other so-called tauopathies 

(Lee et al 2001). The neurofibrillary lesions contain 

aggregates of the microtubule-associated protein tau that 

under physiological conditions is mainly localized to the 

axonal compartment of neurons (Goedert et al 1988). In 

tauopathies such as PSP (Progressive Supranuclear Palsy) 

or CBD (Corticobasal Degeneration), tau also forms aggre-

gates in non-neuronal cells (Gotz 2001), emphasizing the 

important role of glia in disease (Kurosinski and Gotz 2002). 

Tau has an unusually high content of serine and threonine 

residues and many of these are phosphorylated under physi-

ological conditions (Chen et al 2004a). Under pathological 

conditions, tau is hyperphosphorylated, which means that it 

is phosphorylated to a higher degree at physiological sites, 

and at additional “pathological” sites. Phosphorylation tends 

to dissociate tau from microtubules. Tau also undergoes a 

conformational change which likely assists in differential 

phosphorylation (Jicha et al 1997). Both tau and Aβ undergo 

nucleation-dependent fi bril formation (Harper and Lansbury 

1997). In the course of this process, initially dispersed 

polypeptide chains slowly come together to form a diverse 

array of fi brillation nuclei that enable the rapid outgrowth into 

higher order assemblies including fi brils (Hortschansky et al 

2005; Pellarin and Cafl isch 2006; Gotz et al 2008).

Genetics of AD and FTD
In familial AD, autosomal dominant mutations have been 

identifi ed in three genes: APP and the presenilin 1 (PS1) 

and presenilin 2 (PS2) genes. Together, they account for less 

than 1% of the total number of AD cases (Delacourte et al 

2002). In addition, several susceptibility genes have been 

identifi ed but only the apolipoprotein E (APOE) gene has 

been unanimously confi rmed and found to be associated with 

sporadic AD (Rocchi et al 2003). Clinically and histopatho-

logically, early-onset familial AD cannot be discriminated 

from late-onset sporadic AD (Gotz 2001).

Whereas in AD no mutations were found in the MAPT gene 

encoding tau, they were identifi ed in FTD with Parkinsonism 

linked to chromosome 17 (FTDP-17) (Hutton et al 1998; 

Poorkaj et al 1998; Spillantini et al 1998). This established 

that dysfunction of tau in itself can cause neurodegeneration 

and lead to dementia. The existence of a subgroup of FTD 

with no tau aggregation was enigmatic for some time leading 

to the coining of terms such as ‘dementia lacking distinctive 

histology’. This dementia with tau-negative and ubiquitin-

positive lesions today is termed FTLD-U or FTDU-17 

although this is misleading as it implies that the tau lesions in 

FTDP-17 are ubiquitin-negative which is not the case.

FTDU-17 is caused by loss-of-function mutations in 

the gene encoding progranulin (PGRN), a growth factor 

involved in multiple physiological and pathological processes 

including tumorigenesis (Baker et al 2006; Cruts et al 2006). 

The TAR DNA-binding protein of 43 kDa (TDP-43) is 

a constituent of the ubiquitin-positive inclusions in both 

FTLD-U and sporadic amyotrophic lateral sclerosis (ALS) 

arguing for an overlap in the pathology between these two 

entities (Neumann et al 2006). Similar to tau, in diseased 

brain, TDP-43 becomes hyperphosphorylated, ubiquitinated, 

and carboxy-terminally truncated. Mutations in the gene 

encoding valosin-containing protein cause frontotemporal 

dementia with inclusion body myopathy and Paget disease 

of bone (IBMPFD), a rare, autosomal-dominant disorder. As 

TDP-43, but not valosin-containing protein, is accumulating 

in the ubiquitin-positive inclusions in IBMPFD this would 

argue that valosin-containing protein gene mutations lead to 

a dominant negative loss or alteration of valosin-containing 

protein function culminating in impaired degradation of 

TDP-43. In other words, TDP-43 is a common pathologic 

substrate linking a variety of distinct patterns of FTLD-U 

pathology caused by different genetic alterations (Neumann 

et al 2007).

Clinical features of AD and FTD
AD is characterized by early memory deficits, followed 

by a gradual erosion of other cognitive functions such as 

judgment, verbal fl uency and orientation. The most severe 

neuropathological changes occur in the hippocampal formation, 

followed by the association cortices and subcortical structures, 

including the amygdala and the nucleus basalis of Meynert 

(Arnold et al 1991). Neurofibrillary tangles develop and 

spread in a predictable manner across the brain providing the 

basis for distinguishing six stages of disease progression: the 

transentorhinal Braak stages I-II represent clinically silent 

cases; the limbic stages III-IV incipient AD; and the neocortical 

stages V-VI fully developed AD. By using phosphorylation-

dependent anti-tau antibodies such as AT8, neuronal changes 

can be visualized well before the actual formation of neurofi -

brillary tangles (Braak and Braak 1991, 1995).

In contrast to AD, which is characterized predominantly 

by memory loss, FTD is mainly initiated with behavioral 
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impairment. The average age of diagnosis is about 60, which 

is around 10 years before the average sporadic AD patient is 

diagnosed (Snowden et al 2001; Weder et al 2007). Patients 

may have an often asymmetrical atrophy of the frontal 

and temporal cortex. There is evidence that motor neuron 

disease and FTD coexist, and the motor symptoms may 

precede, coincide, or follow the development of cognitive 

and behavioral changes (Graff-Radford and Woodruff 2007). 

In a signifi cant subset of FTD, late parkinsonism is found 

(Lee et al 2001).

Animal models of AD and FTD
To better understand the role of Aβ and tau in AD and 

related disorders, experimental animal models have been 

developed which reproduce aspects of the neuropathological 

characteristics of these diseases (Gotz et al 2007; Gotz and 

Ittner 2008).

In 1995, Games and coworkers established the fi rst Aβ 

plaque-forming mouse model by targeting high levels of 

the disease-linked V717F mutant form of APP in brain, 

using the platelet-derived growth factor mini-promoter 

for expression. These PDAPP mice showed many of the 

pathological features of AD, including extensive deposition 

of extracellular amyloid plaques, astrocytosis and neuritic 

dystrophy (Games et al 1995). Similar features were observed 

in a second transgenic model established by Hsiao and 

coworkers by expressing the APPsw mutation inserted into a 

hamster prion protein cosmid vector (Hsiao et al 1996). The 

APP23 strain was established by expressing APPsw under the 

control of the neuronal mThy1.2 promoter, with a seven-fold 

overexpression of APP (Sturchler-Pierrat et al 1997; Stalder 

et al 1999). Subsequently, many more models have been 

developed such as the TgCRND8 or J20 mice (Janus et al 

2000; Mucke et al 2000). These mouse models have been 

instrumental in addressing aspects of Aβ toxicity and testing 

therapies such as vaccination trials (Gotz 2001; Gotz et al 

2004b; Kulic et al 2006).

The fi rst tau transgenic model was established by us in 

1995, expressing the longest human brain tau isoform, without 

a pathogenic mutation, in mice using the hThy1 promoter 

for neuronal expression (Gotz et al 1995). Despite the lack 

of a neurofi brillary pathology, these mice modeled aspects 

of human AD, such as the somatodendritic localization of 

hyperphosphorylated tau and, therefore, represented an early 

‘pre-tangle’ phenotype. The subsequent use of stronger 

promoters caused a more pronounced tau phenotype in 

transgenic mice (Ishihara et al 1999; Spittaels et al 1999; 

Probst et al 2000; Gotz and Nitsch 2001). Once the fi rst 

pathogenic FTDP-17 mutations were identifi ed in the MAPT 

gene in 1998, several groups expressed them in mice and 

achieved neurofi brillary tangle formation, both in neurons 

and in glial cells (Gotz and Ittner 2008). We, for example, 

expressed G272V and P301L mutant tau and obtained mice 

with aggregated tau and neurofi brillary tangles (Gotz et al 

2001a; Gotz et al 2001b; Gotz et al 2001c; Deters et al 2008). 

The P301L tau-expressing pR5 mice showed a behavioural 

impairment in amygdala- and hippocampus-dependent tasks; 

aspects of the behavioral impairment could be correlated 

with the aggregation pattern of the transgene (Pennanen et al 

2004; Pennanen et al 2006). K369I transgenic mice, on the 

other hand, model Parkinsonism in FTD, in parts owing to 

expression of the transgene in the substantia nigra (Ittner 

et al 2008).

Cross-talk between Aβ and tau
The amyloid cascade hypothesis claims, in simplistic terms, 

that in the pathogenic cascade of AD, Aβ is upstream of 

tau (Hardy and Selkoe 2002). To address the interaction 

between Aβ and tau (Gotz et al 2004a), Aβ plaque-forming 

Tg2576 mice were crossed with tangle-forming P301L 

tau-transgenic JNPL3 mice; also, P301L tau transgenic pR5 

mice were intracerebrally injected with fi brillar preparations 

of Aβ
42

 (Gotz et al 2001b; Lewis et al 2001). Both strategies 

caused an increased tau phosphorylation at pathological 

epitopes and neurofi brillary tangle formation, establishing 

a link between Aβ and tau in vivo (Gotz et al 2001b; Lewis 

et al 2001). Similarly, tangle formation was aggravated by 

infusing brain extracts of aged plaque-forming APP23 mice 

intracerebrally in P301L tau transgenic mice or by crossing 

APP23 and P301L tau transgenic mice (Bolmont et al 2007). 

Together, these studies established that Aβ exaggerates a 

pre-existing tau pathology supporting, at least in parts, the 

amyloid cascade hypothesis in mice.

Interestingly, recent evidence suggests that Aβ toxicity 

is also tau-dependent (Roberson et al 2007). Reducing 

endogenous tau levels prevented behavioral deficits as 

assessed in the Morris water maze, without altering Aβ 

levels. This was achieved by crossing plaque-forming APP 

transgenic mice onto hetero- and homozygous tau knockout 

backgrounds (Roberson et al 2007). Tau reduction also 

protected both transgenic and non-transgenic mice against 

pentylenetetrazole (PTZ)-mediated excitotoxicity as shown 

by dramatic changes in seizure severity and latency. We were 

able to reproduce these fi ndings in a second plaque-forming 

APP transgenic mouse model (Ittner et al submitted). Earlier 

fi ndings in cultured hippocampal neurons derived from tau 
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knockout and transgenic mice supports the model that tau 

is required for Aβ toxicity (Rapoport et al 2002). Together, 

this suggests that a reduction in tau levels is a potentially 

powerful treatment strategy for AD and other neurological 

conditions that are associated with neurotoxicity. A mecha-

nistic explanation is lacking and therefore the importance of 

this information should encourage more research groups to 

work on the interaction between Aβ and tau.

Functional genomics and Aβ toxicity
An unbiased approach to address the toxicity of tau and Aβ is 

by functional genomics, which encompasses transcriptomic 

and proteomic techniques (Chen et al 2004b; Hoerndli 

et al 2004; David et al 2005a; Hoerndli et al 2005). These 

highlighted a role for oxidative stress (see below) and 

impaired axonal transport in disease (Gotz et al 2006). When 

we analyzed the proteome pattern of total brain from P301L 

tau transgenic pR5 and wild-type mice by proteomics, we 

discovered that it was mainly metabolic related proteins 

including mitochondrial respiratory chain complex 

components, antioxidant enzymes and synaptic proteins that 

were modifi ed in P301L tau mice. Importantly, mitochondrial 

dysfunction could be functionally validated in the P301L 

tau mice. Furthermore, the reduction in mitochondrial 

complex V levels in the P301L tau mice was also decreased 

in human P301L FTDP-17 brains. Finally, P301L tau 

mitochondria displayed an increased vulnerability towards 

fi brillar preparations of Aβ
42

, suggesting a synergistic action 

of tau and Aβ pathology on the mitochondria (David et al 

2005b).

In a follow-up study we investigated the toxicity of 

oligomeric Aβ species that in recent years have been 

suggested to be the main culprit, rather than fi brillar Aβ 

(Hartley et al 1999; Necula et al 2007). The identity of the 

Aβ toxic species in both AD brains and in experimentally 

generated systems correlates best with the soluble, rather 

than the insoluble fi brillar forms. However, at present, there 

is little chemical and structural detail at the molecular and 

atomic level about the various aggregates to properly defi ne 

the toxic species (Cappai and Barnham 2008). Interestingly, 

in cortical brain cells obtained from P301L tau transgenic 

pR5 mice both oligomeric and fi brillar, but not monomeric 

Aβ
42

 caused a decreased mitochondrial membrane potential 

(Eckert et al 2008a). This was not observed with cerebellar 

preparations indicating selective vulnerability of cortical 

neurons. Furthermore, we measured reductions in state 

3 respiration, the respiratory control ratio and uncoupled 

respiration when incubating P301L tau mitochondria either 

with oligomeric or fi brillar preparations of Aβ
42

. We also 

found that aging specifi cally increased the sensitivity of 

mitochondria to oligomeric Aβ
42

 damage indicating that 

while oligomeric and fi brillar Aβ
42

 are both toxic, they exert 

different degrees of toxicity in mitochondria from older 

animals (Eckert et al 2008a).

To understand which processes are disrupted by Aβ
42

 

in the presence of tau aggregates a comparative proteomics 

study was performed in both a cellular and an in vivo system 

(David et al 2006). P301L tau expressing neuroblastoma cells 

were treated with Aβ
42

 as prior studies had shown that this 

caused tau fi lament formation (Ferrari et al 2003; Pennanen 

and Gotz 2005). In parallel, the amygdala of P301L tau 

transgenic mice was stereotaxically injected with Aβ
42

 as this 

causes increased tangle formation (Gotz et al 2001b). When 

the deregulated proteins in the two experimental paradigms 

were classifi ed, it was found that a signifi cant fraction of the 

altered proteins belonged to the same functional categories, 

ie, stress response and metabolism. We also identified 

model-specifi c effects of Aβ
42

 treatment such as differences 

in cell signaling proteins in the cellular model and changes 

in cytoskeletal and synapse proteins in the amygdala. By 

Western blotting and immunohistochemistry, we were able 

to show that 72% of the tested candidates were altered in 

human AD brain with a major emphasis on stress-related 

unfolded protein responsive candidates. This highlights 

these processes as important initiators in the Aβ
42

-mediated 

pathogenic cascade in AD and further supports the role of 

unfolded proteins in the course of AD (David et al 2006).

Human SH-SY5Y neuroblastoma cells were also 

investigated by transcriptomics to assess the role of P301L 

mutant tau expression and treatment with or without Aβ on 

gene regulation. We found that Aβ and P301L tau expression 

independently affected the regulation of genes controlling cell 

proliferation and synaptic elements. Moreover, Aβ and P301L 

tau acted synergistically on cell cycle and DNA damage 

genes, yet infl uenced specifi c genes within these categories. 

By using neuronally differentiated P301L tau cells, it was 

shown that Aβ treatment induced an early up-regulation of 

cell cycle control and synaptic genes. Together, the study 

showed that Aβ treatment and human tau over-expression in 

a cell culture model acted synergistically to promote aberrant 

cell cycle re-entry supporting the mitosis failure hypothesis 

in AD (Arendt 2003; Hoerndli et al 2007).

The Yin and Yang of Aβ
AD has been termed a synaptic failure (Selkoe 2002). While 

Aβ can kill neurons, it can also act by causing synaptotoxicity 



Neuropsychiatric Disease and Treatment 2008:4(6) 1037

Aβ toxicity in Alzheimer’s disease

which may be more relevant for the earlier stages of AD that 

are best characterized by synaptic loss rather than neuronal 

death. Loss of synaptic terminals or dendritic spines could 

cause the associated decline in cognitive functions that charac-

terizes AD. Whether the neurotoxic and synaptotoxic actions 

of Aβ are separate activities or whether they share common 

mechanisms is not known (Cappai and Barnham 2008).

How cells respond to Aβ varies depending upon 

the concentration of Aβ used, which adds another level 

of complexity. While Aβ peptide added at micromolar 

concentrations to primary neuronal cultures induces cell death 

(Yankner et al 1990), low, subnanomolar concentrations are 

neurotrophic arguing in favor of a physiological function of 

Aβ (Yankner et al 1990). As discussed above, the neurotoxic 

activity of Aβ is dependent upon its aggregation state. When 

Aβ aggregation was induced this increased its neurotoxic 

activity suggesting that the toxic species was associated with 

the formation of fi brils (Pike et al 1991a; Pike et al 1991b; 

Pike et al 1993). At present, however, there is a major research 

focus on the role of non-fi brillar soluble Aβ as the toxic 

species in AD (Lambert et al 1998; Walsh et al 2002; Smith 

et al 2007). These species have been given different names, 

including Aβ-derived diffusible ligands (ADDLs) (Lambert 

et al 1998). globulomers (Barghorn et al 2005) and the Aβ star 

species 56 (Aβ*56) (Lesne et al 2006). To assist in identifying 

these species, conformational antibodies have been developed 

that not only stabilize the Aβ protofi brils but also prevent 

mature amyloid fi bril formation (Habicht et al 2007).

Aβ can inhibit long-term potentiation (LTP), a model 

system for synaptic strengthening and memory (Lambert 

et al 1998; Walsh et al 2002; Cleary et al 2005; Klyubin et al 

2005; Trommer et al 2005). When cell medium containing 

abundant Aβ monomers and proposed oligomers, but not 

amyloid fi brils was microinjected into rat brain, this markedly 

inhibits hippocampal long-term potentiation (LTP) (Walsh 

et al 2002). Immunodepletion from the medium of all Aβ 

species completely abrogated this effect. Pretreatment of the 

medium with insulin-degrading enzyme, which degrades Aβ 

monomers but not oligomers, did not prevent the inhibition 

of LTP, indicating a role for Aβ oligomers. These were 

shown to disrupt synaptic plasticity in vivo at concentrations 

found in human brain and cerebrospinal fl uid, in the absence 

of monomeric or fi brillar amyloid. When cells were treated 

with γ-secretase inhibitors at doses which prevented oligomer 

formation but allowed appreciable monomer production, 

this no longer disrupted LTP, indicating that synaptotoxic 

Aβ oligomers can be targeted therapeutically (Walsh et al 

2002; Walsh et al 2005).

In Neuro-2A cells, oligomers were shown to induce a 

tenfold greater increase in neurotoxicity as compared to 

fi brils (Stine et al 2003). However, whereas LTP seems to 

be inhibited by oligomeric Aβ only and not fi brillar Aβ, in 

a different experimental paradigm, the two species seem 

to have both toxic, yet diverse effects (White et al 2005). 

Using rat astrocyte cultures, oligomeric Aβ
42

 was shown to 

induce initial high levels of the pro-infl ammatory molecule 

IL-1β that decreased over time, whereas fi brillar Aβ caused 

increased levels over time (White et al 2005). It has been 

suggested that their neurotoxic activity is associated with 

dimeric and trimeric species however the exact composition 

of these higher molecular weight Aβ species has not been 

determined (Walsh et al 2002; Cleary et al 2005) and remains 

a crucial point to definitively establish their molecular 

identity. Together, this shows that the relative role of the 

toxicity of monomeric compared to oligomeric compared 

to fi brillar species is far from being resolved.

Aβ and downstream signaling
What are the down-stream effectors of Aβ toxicity? Aβ 

may act via a plethora of pathways to induce synaptic and 

neuronal degeneration (Small et al 2001). Aβ’s anti-LTP 

activity can be modulated with antagonists to the p38 MAP 

kinase (Wang et al 2004) and the Jun NH
2
-terminal kinase 

(JNK) pathways (Minogue et al 2003), both of which have 

also been implicated in tau phosphorylation (Kins et al 2001; 

Kins et al 2003). While inhibitors of p38, JNK, GSK-3β and 

phosphatidylinositol 3-kinase showed either no or only minor 

inhibition of Aβ oligomer-mediated cell death in mouse 

hippocampal slices, inhibitors of MAPK kinase kinase, which 

is upstream of the extracellular signal-regulated kinases, 

signifi cantly inhibited Aβ-mediated neuronal death (Chong 

et al 2006).

Another interesting kinase is the non-receptor tyrosine 

kinase Fyn, as it links Aβ and tau. Fyn is a known interaction 

partner of tau (Lee et al 1998). Furthermore, Fyn is neces-

sary for the toxicity of ADDLs (an oligomeric form of Aβ) 

as Fyn knockout neurons are resistant to ADDL-mediated 

neuronal cell death (Lambert et al 1998). Moreover, Fyn 

knockout mice display reduced synaptotoxicity without 

affecting aberrant sprouting, when crossed with APP trans-

genic mice (Chin et al 2004). Fyn has a role in modulating 

synaptic activity and plasticity, by phosphorylating the 

NMDA receptor (Braithwaite et al 2006). This fi nding is 

consistent with the fact that Aβ oligomers alter the trans-

port of the NMDA receptor by promoting its endocytosis 

and resulting in decreased NMDA receptor activity both 
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in vitro and in APP transgenic mice (Snyder et al 2005). 

Work in neuronal and astrocyte cultures further suggests that 

Aβ causes Ca2+-dependent oxidative stress by activating an 

astrocytic NADPH oxidase, with neuronal death following 

through a failure of antioxidant support (Abramov et al 2004). 

Together, this suggests a fi ne-balanced network of molecular 

interactions (Cappai and Barnham 2008).

At present it is not understood whether Aβ acts via a 

receptor or whether membrane binding alone is suffi cient 

(Cappai and Barnham 2008). If Aβ acts via a receptor, this 

receptor may have specifi city for Aβ or it may bind proteins 

or peptides with shared amyloid properties. Work in primary 

cortical and hippocampal cultures treated with Aβ and human 

amylin, respectively, indicates that the latter may be the case, 

as rat amylin, which is not amyloidogenic, turns out not to be 

toxic (Lim et al 2008). Membrane interaction of Aβ can occur 

via its hydrophobic carboxy-terminal domain (Bhatia et al 

2000; Ambroggio et al 2005) or by electrostatic interactions 

mediated by the charged amino acids in the amino-terminal 

domain (Lau et al 2006). Aβ may bind to the cell membrane 

forming channels or pores that disrupt ion homeostasis, 

hence leading to neuronal dysfunction (Arispe et al 1993; 

Pollard et al 1995; Holscher 1998; Bhatia et al 2000; Lin et al 

2001). As several molecules associated with disease (such 

as the Prion protein, the British peptide, or human amylin) 

can form soluble oligomers and bind to membranes and 

disrupt ion homeostasis, this may be an inherent property of 

amyloidogenic proteins or peptides (Demuro et al 2005).

Aβ binding proteins
A number of Aβ-binding proteins have been identifi ed on the 

plasma membrane of neurons and glial cells. These include 

the alpha7 nicotinic acetylcholine receptor, the receptor 

for advanced glycosylation end-products (RAGE), APP 

itself, the NMDA receptor, the P75 neurotrophin receptor 

(P75NTR), the scavenger receptors, CD36 and low-density 

lipoprotein receptor-related protein (LRP) members (Verdier 

et al 2004). RAGE can bind both non-fi brillar and fi brillar 

forms of Aβ (Yan et al 1996).Transgenic mice co-expressing 

mutant APP and RAGE revealed an earlier onset of memory 

defects and synaptic dysfunction than single APP transgenic 

mice (Arancio et al 2004). LRP, apoE and the serum protein 

α2-macroglobulin (α2M) probably modulate Aβ toxicity via 

clearance of apoE:Aβ and α2M:Aβ complexes or Aβ alone 

from the brain and hence reduce Aβ levels (Shibata et al 

2000; Deane et al 2004). The addition of an anti-NMDA 

receptor antibody can block Aβ oligomer binding to neurons 

and reduce ROS stimulation in hippocampal cultures (De 

Felice et al 2007) suggesting a direct interaction between 

these two proteins. Alternatively, Aβ may be interacting 

with NMDA receptor via an integrin-mediated effect (Bi 

et al 2002). P75NTR can bind a variety of Aβ oligomeric 

species and modulate Aβ toxicity in a cell type- and P75 

isoform-dependent manner (Coulson 2006; Sotthibundhu 

et al 2008). Full-length P75NTR blocks toxicity of fi brillar 

and non-fi brillar Aβ in primary neurons (Zhang et al 2003), 

but promotes toxicity of fi brillar Aβ in neuroblastoma cells 

(Perini et al 2002).

Aβ may not only bind to the cell surface but also act on 

intracellular organelles such as mitochondria (Lustbader et al 

2004; Caspersen et al 2005; Crouch et al 2005; Devi et al 

2006; Manczak et al 2006) whose function it impairs (Keil 

et al 2004; David et al 2005b; Eckert et al 2008a; Eckert 

et al 2008b). Mitochondrial dysfunction was also linked 

to full-length and carboxy-terminally truncated APP, that 

was shown to accumulate exclusively in the protein import 

channels of mitochondria of human AD, but not age-matched 

control brains (Devi et al 2006). Similarly, accumulation of 

full-length APP in the mitochondrial compartment in a trans-

membrane-arrested form, but not lacking the acidic domain, 

was shown to cause mitochondrial dysfunction and impair 

energy metabolism (Anandatheerthavarada et al 2003). Aβ can 

disrupt mitochondrial cytochrome c oxidase activity (Crouch 

et al 2005; Takuma et al 2005) in a sequence- and conformer-

dependent manner (Crouch et al 2005). The Aβ binding 

protein alcohol dehydrogenase (ABAD) is a short-chain 

alcohol dehydrogenase that binds to Aβ in the mitochondrial 

matrix. This lead to mitochondrial failure via changes in 

mitochondrial membrane permeability and a reduction in the 

activities of enzymes involved in mitochondrial respiration 

(Lustbader et al 2004). ABAD can bind to the oligomeric 

Aβ
42

 present in the cortical mitochondria of APP transgenic 

mice (Yan et al 2007). Protease sensitivity assays suggest 

that Aβ gains access to the mitochondrial matrix rather than 

simply being adsorbed to the external surface of mitochondria 

(Caspersen et al 2005). The interaction between Aβ and 

the mitochondria may explain how Aβ induces apoptosis 

and caspase activation (Ivins et al 1998; White et al 2001; 

Lustbader et al 2004). Intracellullar Aβ may be derived from 

internalized extracellular Aβ or from intracellularly generated 

Aβ (Casas et al 2004; Gomez-Ramos and Asuncion Moran 

2007; Wegiel et al 2007). The presence of intracellular Aβ 

adds a further level of complexity to the mechanism of Aβ 

toxicity as this enables direct access to organelles that are vital 

for the function and viability of neurons. It is needless to say, 

that this has important implications for treatment strategies.
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Conclusions
What can be expected in the forthcoming years? Some of the 

current therapeutic trials targeting Aβ may come to fruition 

(Gotz and Ittner 2008). With the advent of new tools it will 

likely become easier to discriminate Aβ conformations and 

hence allow establishing a defi ned role of specifi c conformers 

in toxicity (Habicht et al 2007). The mode of Aβ uptake 

and/or binding by neurons and other cell types will be 

elucidated and interacting proteins, both under physiologic 

and pathologic conditions, will be identifi ed. Finally, how 

Aβ and tau interact and contribute to disease will assist in 

the development of treatment strategies for AD and related 

disorders.
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